Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.033
Filter
1.
Int J Nanomedicine ; 19: 8309-8336, 2024.
Article in English | MEDLINE | ID: mdl-39161358

ABSTRACT

Purpose: The treatment of craniofacial bone defects caused by trauma, tumors, and infectious and degenerative diseases is a significant issue in current clinical practice. Following the rapid development of bone tissue engineering (BTE) in the last decade, bioactive scaffolds coupled with multifunctional properties are in high demand with regard to effective therapy for bone defects. Herein, an innovative bone scaffold consisting of GO/Cu nanoderivatives and GelMA-based organic-inorganic hybrids was reported for repairing full-thickness calvarial bone defect. Methods: In this study, motivated by the versatile biological functions of nanomaterials and synthetic hydrogels, copper nanoparticle (CuNP)-decorated graphene oxide (GO) nanosheets (GO/Cu) were combined with methacrylated gelatin (GelMA)-based organic-inorganic hybrids to construct porous bone scaffolds that mimic the extracellular matrix (ECM) of bone tissues by photocrosslinking. The material characterizations, in vitro cytocompatibility, macrophage polarization and osteogenesis of the biohybrid hydrogel scaffolds were investigated, and two different animal models (BALB/c mice and SD rats) were established to further confirm the in vivo neovascularization, macrophage recruitment, biocompatibility, biosafety and bone regenerative potential. Results: We found that GO/Cu-functionalized GelMA/ß-TCP hydrogel scaffolds exhibited evidently promoted osteogenic activities, M2 type macrophage polarization, increased secretion of anti-inflammatory factors and excellent cytocompatibility, with favorable surface characteristics and sustainable release of Cu2+. Additionally, improved neovascularization, macrophage recruitment and tissue integration were found in mice implanted with the bioactive hydrogels. More importantly, the observations of microCT reconstruction and histological analysis in a calvarial bone defect model in rats treated with GO/Cu-incorporated hydrogel scaffolds demonstrated significantly increased bone morphometric values and newly formed bone tissues, indicating accelerated bone healing. Conclusion: Taken together, this BTE-based bone repair strategy provides a promising and feasible method for constructing multifunctional GO/Cu nanocomposite-incorporated biohybrid hydrogel scaffolds with facilitated osteogenesis, angiogenesis and immunoregulation in one system, with the optimization of material properties and biosafety, it thereby demonstrates great application potential for correcting craniofacial bone defects in future clinical scenarios.


Subject(s)
Bone Regeneration , Copper , Graphite , Hydrogels , Rats, Sprague-Dawley , Skull , Tissue Engineering , Tissue Scaffolds , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Copper/chemistry , Copper/pharmacology , Graphite/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Skull/drug effects , Skull/injuries , Rats , Mice , Tissue Engineering/methods , Osteogenesis/drug effects , Mice, Inbred BALB C , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Gelatin/chemistry , RAW 264.7 Cells
2.
ACS Appl Mater Interfaces ; 16(30): 39035-39050, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39026394

ABSTRACT

Given the widespread clinical demand, addressing irregular cranial bone defects poses a significant challenge following surgical procedures and traumatic events. In situ-formed injectable hydrogels are attractive for irregular bone defects due to their ease of administration and the ability to incorporate ceramics, ions, and proteins into the hydrogel. In this study, a multifunctional hydrogel composed of oxidized sodium alginate (OSA)-grafted dopamine (DO), carboxymethyl chitosan (CMCS), calcium ions (Ca2+), nanohydroxyapatite (nHA), and magnesium oxide (MgO) (DOCMCHM) was prepared to address irregular cranial bone defects via dynamic Schiff base and chelation reactions. DOCMCHM hydrogel exhibits strong adhesion to wet tissues, self-healing properties, and antibacterial characteristics. Biological evaluations indicate that DOCMCHM hydrogel has good biocompatibility, in vivo degradability, and the ability to promote cell proliferation. Importantly, DOCMCHM hydrogel, containing MgO, promotes the expression of osteogenic protein markers COL-1, OCN, and RUNX2, and stimulates the formation of new blood vessels by upregulating CD31. This study could provide meaningful insights into ion therapy for the repair of cranial bone defects.


Subject(s)
Alginates , Anti-Bacterial Agents , Chitosan , Hydrogels , Skull , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Animals , Alginates/chemistry , Skull/drug effects , Skull/pathology , Skull/diagnostic imaging , Skull/injuries , Magnesium Oxide/chemistry , Magnesium Oxide/pharmacology , Bone Regeneration/drug effects , Dopamine/chemistry , Dopamine/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Mice , Cell Proliferation/drug effects , Calcium/metabolism , Calcium/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Osteogenesis/drug effects , Staphylococcus aureus/drug effects
3.
Bull Exp Biol Med ; 177(1): 155-161, 2024 May.
Article in English | MEDLINE | ID: mdl-38963597

ABSTRACT

Experimental model of resection craniotomy with subsequent reconstruction of the defect with a polymer implant enables comprehensive assessment of functional and ultrastructural changes during replacement of the damaged tissue. Reconstruction of a skull defect was accompanied by transient motor disturbance in the acute period and did not cause functional disorders and neurological deficits in a delayed period. Histological examination of osteal and brain tissue revealed no pathological reactions that could be associated with the response to the chemical components of the implant.


Subject(s)
Benzophenones , Craniotomy , Polyethylene Glycols , Polymers , Skull , Polymers/chemistry , Animals , Skull/surgery , Skull/injuries , Skull/diagnostic imaging , Polyethylene Glycols/chemistry , Craniotomy/methods , Rats , Male , Plastic Surgery Procedures/methods , Ketones/chemistry , Biocompatible Materials/chemistry , Brain/surgery , Rats, Wistar
4.
Biomater Sci ; 12(16): 4226-4241, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38984522

ABSTRACT

Objectives: The technique of guided bone regeneration (GBR) has been widely used in the field of reconstructive dentistry to address hard tissue deficiency. The objective of this research was to manufacture a novel bi-layered asymmetric membrane that incorporates demineralized dentin matrix (DDM), a bioactive bone replacement derived from dentin, in order to achieve both soft tissue isolation and hard tissue regeneration simultaneously. Methods: DDM particles were harvested from healthy, caries-free permanent teeth. The electrospinning technique was utilized to synthesize bi-layered DDM-loaded PLGA/PLA (DPP) membranes. We analyzed the DPP bilayer membranes' surface topography, physicochemical properties and degradation ability. Rat skull critical size defects (CSDs) were constructed to investigate in vivo bone regeneration. Results: The synthesized DPP bilayer membranes possessed suitable surface characteristics, acceptable mechanical properties, good hydrophilicity, favorable apatite forming ability and suitable degradability. Micro-computed tomography (CT) showed significantly more new bone formation in the rat skull defects implanted with the DPP bilayer membranes. Histological evaluation further revealed that the bone was more mature with denser bone trabeculae. In addition, the DPP bilayer membrane significantly promoted the expression of the OCN matrix protein in vivo. Conclusions: The DPP bilayer membranes exhibited remarkable biological safety and osteogenic activity in vivo and showed potential as a prospective candidate for GBR applications in the future.


Subject(s)
Bone Regeneration , Dentin , Skull , Animals , Bone Regeneration/drug effects , Skull/injuries , Skull/pathology , Skull/diagnostic imaging , Skull/drug effects , Rats , Dentin/chemistry , Rats, Sprague-Dawley , Membranes, Artificial , Male , Wound Healing/drug effects , X-Ray Microtomography , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tissue Scaffolds/chemistry , Osteogenesis/drug effects
5.
Stem Cells Transl Med ; 13(8): 791-802, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38986535

ABSTRACT

Platelet-derived growth factor receptor α (PDGFRα) is often considered as a general marker of mesenchymal cells and fibroblasts, but also shows expression in a portion of osteoprogenitor cells. Within the skeleton, Pdgfrα+ mesenchymal cells have been identified in bone marrow and periosteum of long bones, where they play a crucial role in participating in fracture repair. A similar examination of Pdgfrα+ cells in calvarial bone healing has not been examined. Here, we utilize Pdgfrα-CreERTM;mT/mG reporter animals to examine the contribution of Pdgfrα+ mesenchymal cells to calvarial bone repair through histology and single-cell RNA sequencing (scRNA-Seq). Results showed that Pdgfrα+ mesenchymal cells are present in several cell clusters by scRNA-Seq, and by histology a dramatic increase in Pdgfrα+ cells populated the defect site at early timepoints to give rise to healed bone tissue overtime. Notably, diphtheria toxin-mediated ablation of Pdgfrα reporter+ cells resulted in significantly impaired calvarial bone healing. Our findings suggest that Pdgfrα-expressing cells within the calvarial niche play a critical role in the process of calvarial bone repair.


Subject(s)
Receptor, Platelet-Derived Growth Factor alpha , Skull , Animals , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Mice , Skull/metabolism , Skull/injuries , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Bone Regeneration/physiology
6.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928145

ABSTRACT

Polyurethane (PU) is a promising material for addressing challenges in bone grafting. This study was designed to enhance the bone grafting capabilities of PU by integrating hydroxyapatite (HAp), which is known for its osteoconductive and osteoinductive potential. Moreover, a uniform distribution of HAp in the porous structure of PU increased the effectiveness of bone grafts. PEG/APTES-modified scaffolds were prepared through self-foaming reactions. A uniform pore structure was generated during the spontaneous foaming reaction, and HAp was uniformly distributed in the PU structure (PU15HAp and PU30HAp) during foaming. Compared with the PU scaffolds, the HAp-modified PU scaffolds exhibited significantly greater protein absorption. Importantly, the effect of the HAp-modified PU scaffold on bone repair was tested in a rat calvarial defect model. The microstructure of the newly formed bone was analyzed with microcomputed tomography (µ-CT). Bone regeneration at the defect site was significantly greater in the HAp-modified PU scaffold group than in the PU group. This innovative HAp-modified PU scaffold improves current bone graft materials, providing a promising avenue for improved bone regeneration.


Subject(s)
Bone Regeneration , Durapatite , Polyurethanes , Skull , Tissue Scaffolds , Polyurethanes/chemistry , Animals , Durapatite/chemistry , Tissue Scaffolds/chemistry , Rats , Bone Regeneration/drug effects , Skull/drug effects , Skull/injuries , Skull/pathology , Skull/metabolism , Rats, Sprague-Dawley , X-Ray Microtomography , Male , Porosity , Bone Transplantation/methods
7.
ACS Biomater Sci Eng ; 10(7): 4452-4462, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38875708

ABSTRACT

Mg-based biodegradable metallic implants are gaining increased attraction for applications in orthopedics and dentistry. However, their current applications are hampered by their high rate of corrosion, degradation, and rapid release of ions and gas bubbles into the physiological medium. The aim of the present study is to investigate the osteogenic and angiogenic potential of coated Mg-based implants in a sheep cranial defect model. Although their osteogenic potential was studied to some extent, their potential to regenerate vascularized bone formation was not studied in detail. We have studied the potential of magnesium-calcium (MgCa)-based alloys modified with zinc (Zn)- or gallium (Ga)-doped calcium phosphate (CaP) coatings as a strategy to control their degradation rate while enhancing bone regeneration capacity. MgCa and its implants with CaP coatings (MgCa/CaP) as undoped or as doped with Zn or Ga (MgCa/CaP + Zn and MgCa/CaP + Ga, respectively) were implanted in bone defects created in the sheep cranium. MgCa implants degraded faster than the others at 4 weeks postop and the weight loss was ca. 50%, while it was ca. 15% for MgCa/CaP and <10% in the presence of Zn and Ga with CaP coating. Scanning electron microscopy (SEM) analysis of the implant surfaces also revealed that the MgCa implants had the largest degree of structural breakdown of all the groups. Radiological evaluation revealed that surface modification with CaP to the MgCa implants induced better bone regeneration within the defects as well as the enhancement of bone-implant surface integration. Bone volume (%) within the defect was ca. 25% in the case of MgCa/CaP + Ga, while it was around 15% for undoped MgCa group upon micro-CT evaluation. This >1.5-fold increase in bone regeneration for MgCa/CaP + Ga implant was also observed in the histopathological examination of the H&E- and Masson's trichrome-stained sections. Immunohistochemical analysis of the bone regeneration (antiosteopontin) and neovascularization (anti-CD31) at the defect sites revealed >2-fold increase in the expression of the markers in both Ga- and Zn-doped, CaP-coated implants. Zn-doped implants further presented low inflammatory reaction, notable bone regeneration, and neovascularization among all the implant groups. These findings indicated that Ga- and Zn-doped CaP coating is an important strategy to control the degradation rate as well as to achieve enhanced bone regeneration capacity of the implants made of Mg-based alloys.


Subject(s)
Alloys , Calcium Phosphates , Coated Materials, Biocompatible , Gallium , Magnesium , Osteogenesis , Skull , Zinc , Animals , Zinc/chemistry , Zinc/pharmacology , Sheep , Skull/drug effects , Skull/pathology , Skull/injuries , Osteogenesis/drug effects , Magnesium/pharmacology , Gallium/chemistry , Gallium/pharmacology , Alloys/chemistry , Alloys/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Bone Regeneration/drug effects , Calcium/metabolism , Absorbable Implants
8.
J Forensic Sci ; 69(4): 1171-1182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38798041

ABSTRACT

Skeletal evidence usually constitutes the only source of information to interpret lesion patterns that help to clarify the circumstances surrounding death. The examination and interpretation of bone trauma are essential to the application and utility of anthropology as a forensic science. When discussing the effect of gunshot wounds in bone, it becomes imperative to differentiate between short and long-distance injuries based on clear, distinct, and observable signs. To contribute to the debate, our focus is directed toward the external analysis of the so-called circumferential delamination defect (CDD) as an observable proxy for close-range shooting (≤30 cm) and contact gunshot wounds in the skull. In the context of known extrajudicial killings, in which the perpetrators used short 9 × 19 FMJ ammunition in a close-range shooting, instances of CDD have been documented. Empirical evidence reinforcing the causal relationship between CDD and close-range shootings is presented. Elements' characteristics of firearm residues were also found in remains buried for up to 30 years. Primarily, this work shows that the concentrations of gunshot residues (Pb, Ba, and Sb) resemble those observed in fresh corpses with the same gunshot wound (GSW). Moreover, the correlation observed between CDD and gunshot residues, where the likelihood of CDD increases the closer to the head and the more perpendicular the shot angle is, reinforces CDD as a pivotal discriminatory factor in the skeletal evidence of short-range or contact shot. This research contributes to the field of forensic anthropology by providing fundamental insights into the etiology of CDD and its practical application.


Subject(s)
Firearms , Forensic Ballistics , Head Injuries, Penetrating , Wounds, Gunshot , Humans , Wounds, Gunshot/pathology , Male , Head Injuries, Penetrating/pathology , Barium/analysis , Lead/analysis , Adult , Middle Aged , Homicide , Skull/injuries , Skull/pathology , Cyclohexanones
9.
Biomater Adv ; 161: 213892, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795472

ABSTRACT

Guided bone regeneration (GBR) stands as an essential modality for craniomaxillofacial bone defect repair, yet challenges like mechanical weakness, inappropriate degradability, limited bioactivity, and intricate manufacturing of GBR membranes hindered the clinical efficacy. Herein, we developed a Janus bacterial cellulose(BC)/MXene membrane through a facile vacuum filtration and etching strategy. This Janus membrane displayed an asymmetric bilayer structure with interfacial compatibility, where the dense layer impeded cell invasion and the porous layer maintained stable space for osteogenesis. Incorporating BC with Ti3C2Tx MXene significantly enhanced the mechanical robustness and flexibility of the material, enabling clinical operability and lasting GBR membrane supports. It also contributed to a suitable biodegradation rate, which aligned with the long-term bone repair period. After demonstrating the desirable biocompatibility, barrier role, and osteogenic capability in vitro, the membrane's regenerative potential was also confirmed in a rat cranial defect model. The excellent bone repair performance could be attributed to the osteogenic capability of MXene nanosheets, the morphological cues of the porous layer, as well as the long-lasting, stable regeneration space provided by the GBR membrane. Thus, our work presented a facile, robust, long-lasting, and biodegradable BC/MXene GBR membrane, offering a practical solution to craniomaxillofacial bone defect repair.


Subject(s)
Bone Regeneration , Cellulose , Guided Tissue Regeneration , Osteogenesis , Titanium , Bone Regeneration/drug effects , Cellulose/chemistry , Animals , Rats , Titanium/chemistry , Titanium/pharmacology , Guided Tissue Regeneration/methods , Osteogenesis/drug effects , Membranes, Artificial , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats, Sprague-Dawley , Humans , Porosity , Skull/surgery , Skull/drug effects , Skull/injuries
10.
Int J Biol Macromol ; 270(Pt 2): 132419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759859

ABSTRACT

Bacterial infection is a serious challenge in the treatment of open bone defects, and reliance on antibiotic therapy may contribute to the emergence of drug-resistant bacteria. To solve this problem, this study developed a mineralized hydrogel (PVA-Ag-PHA) with excellent antibacterial properties and osteogenic capabilities. Silver nanoparticles (CNC/TA@AgNPs) were greenly synthesized using natural macromolecular cellulose nanocrystals (CNC) and plant polyphenolic tannins (TA) as stabilizers and reducing agents respectively, and then introduced into polyvinyl alcohol (PVA) and polydopamine-modified hydroxyapatite (PDA@HAP) hydrogel. The experimental results indicate that the PVA-Ag-PHA hydrogel, benefiting from the excellent antibacterial properties of CNC/TA@AgNPs, can not only eliminate Staphylococcus aureus and Escherichia coli, but also maintain a sustained sterile environment. At the same time, the HAP modified by PDA is uniformly dispersed within the hydrogel, thus releasing and maintaining stable concentrations of Ca2+ and PO43- ions in the local environment. The porous structure of the hydrogel with excellent biocompatibility creates a suitable bioactive environment that facilitates cell adhesion and bone regeneration. The experimental results in the rat critical-sized calvarial defect model indicate that the PVA-Ag-PHA hydrogel can effectively accelerate the bone healing process. Thus, this mussel-inspired hydrogel with antibacterial properties provides a feasible solution for the repair of open bone defects, demonstrating the considerable potential for diverse applications in bone repair.


Subject(s)
Bone Regeneration , Cellulose , Hydrogels , Metal Nanoparticles , Silver , Skull , Tannins , Silver/chemistry , Silver/pharmacology , Animals , Bone Regeneration/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Metal Nanoparticles/chemistry , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Skull/drug effects , Skull/injuries , Tannins/chemistry , Tannins/pharmacology , Bivalvia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Rats, Sprague-Dawley , Escherichia coli/drug effects
11.
Int J Biol Macromol ; 270(Pt 1): 132361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750857

ABSTRACT

Critical-sized bone defects are a major challenge in reconstructive bone surgery and usually fail to be treated due to limited remaining bone quality and extensive healing time. The combination of 3D-printed scaffolds and bioactive materials is a promising approach for bone tissue regeneration. In this study, 3D-printed alkaline-treated polycaprolactone scaffolds (M-PCL) were fabricated and integrated with tragacanth gum- 45S5 bioactive glass (TG-BG) to treat critical-sized calvarial bone defects in female adult Wistar rats. After a healing period of four and eight weeks, the new bone of blank, M-PCL, and M-PCL/TG-BG groups were harvested and assessed. Micro-computed tomography, histological, biochemical, and biomechanical analyses, gene expression, and bone matrix formation were used to assess bone regeneration. The micro-computed tomography results showed that the M-PCL/TG-BG scaffolds not only induced bone tissue formation within the bone defect but also increased BMD and BV/TV compared to blank and M-PCL groups. According to the histological analysis, there was no evidence of bony union in the calvarial defect regions of blank groups, while in M-PCL/TG-BG groups bony integration and repair were observed. The M-PCL/TG-BG scaffolds promoted the Runx2 and collagen type I expression as compared with blank and M-PCL groups. Besides, the bone regeneration in M-PCL/TG-BG groups correlated with TG-BG incorporation. Moreover, the use of M-PCL/TG-BG scaffolds promoted the biomechanical properties in the bone remodeling process. These data demonstrated that the M-PCL/TG-BG scaffolds serve as a highly promising platform for the development of bone grafts, supporting bone regeneration with bone matrix formation, and osteogenic features. Our results exhibited that the 3D-printed M-PCL/TG-BG scaffolds are a promising strategy for successful bone regeneration.


Subject(s)
Bone Regeneration , Glass , Osteogenesis , Polyesters , Printing, Three-Dimensional , Rats, Wistar , Skull , Tissue Scaffolds , Animals , Polyesters/chemistry , Tissue Scaffolds/chemistry , Rats , Bone Regeneration/drug effects , Skull/drug effects , Skull/pathology , Skull/injuries , Skull/diagnostic imaging , Osteogenesis/drug effects , Female , Glass/chemistry , Tragacanth/chemistry , X-Ray Microtomography , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
12.
Colloids Surf B Biointerfaces ; 239: 113971, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759296

ABSTRACT

The optimal material for repairing skull defects should exhibit outstanding biocompatibility and mechanical properties. Specifically, hydrogel scaffolds that emulate the microenvironment of the native bone extracellular matrix play a vital role in promoting osteoblast adhesion, proliferation, and differentiation, thereby yielding superior outcomes in skull reconstruction. In this study, a composite network hydrogel comprising sodium alginate (SA), epigallocatechin gallate (EGCG), and zinc ions (Zn2+) was developed to establish an ideal osteogenic microenvironment for bone regeneration. Initially, physical entanglement and hydrogen bonding between SA and EGCG resulted in the formation of a primary network hydrogel known as SA-EGCG. Subsequently, the inclusion of Zn2+ facilitated the creation of a composite network hydrogels named SA-EGCG-Zn2+ via dynamic coordination bonds with SA and EGCG. The engineered SA-EGCG2 %-Zn2+ hydrogels offered an environment mimicking the native extracellular matrix (ECM). Moreover, the sustained release of Zn2+ from the hydrogel effectively enhanced cell adhesion, promoted proliferation, and stimulated osteoblast differentiation. In vitro experiments have shown that SA-EGCG2 %-Zn2+ hydrogels greatly enhance the attachment and growth of osteoblast precursor cells (MC3T3-E1), while also increasing the expression of genes related to osteogenesis in these cells. Additionally, in vivo studies have confirmed that SA-EGCG2 %-Zn2+ hydrogels promote new bone formation and accelerate the regeneration of bone in situ, indicating promising applications in the realm of bone tissue engineering.


Subject(s)
Alginates , Catechin , Cell Proliferation , Hydrogels , Skull , Tissue Scaffolds , Zinc , Zinc/chemistry , Zinc/pharmacology , Alginates/chemistry , Alginates/pharmacology , Catechin/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Skull/drug effects , Skull/injuries , Skull/pathology , Animals , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Scaffolds/chemistry , Cell Proliferation/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Cell Differentiation/drug effects , Osteogenesis/drug effects , Bone Regeneration/drug effects , Cell Adhesion/drug effects
13.
Biomacromolecules ; 25(6): 3784-3794, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38743836

ABSTRACT

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Rats , Bone Regeneration/drug effects , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Osteogenesis/physiology , Tissue Engineering/methods , Polyesters/chemistry , Cell Differentiation , Rats, Sprague-Dawley , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cells, Cultured , Cell Proliferation , Skull/injuries , Skull/pathology , Durapatite/chemistry , Durapatite/pharmacology
14.
J Vis Exp ; (206)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38709029

ABSTRACT

Mild traumatic brain injury is a clinically highly heterogeneous neurological disorder. Highly reproducible traumatic brain injury (TBI) animal models with well-defined pathologies are urgently needed for studying the mechanisms of neuropathology after mild TBI and testing therapeutics. Replicating the entire sequelae of TBI in animal models has proven to be a challenge. Therefore, the availability of multiple animal models of TBI is necessary to account for the diverse aspects and severities seen in TBI patients. CHI is one of the most common methods for fabricating rodent models of rmTBI. However, this method is susceptible to many factors, including the impact method used, the thickness and shape of the skull bone, animal apnea, and the type of head support and immobilization utilized. The aim of this protocol is to demonstrate a combination of the thinned-skull window and fluid percussion injury (FPI) methods to produce a precise mouse model of CHI-associated rmTBI. The primary objective of this protocol is to minimize factors that could impact the accuracy and consistency of CHI and FPI modeling, including skull bone thickness, shape, and head support. By utilizing a thinned-skull window method, potential inflammation due to craniotomy and FPI is minimized, resulting in an improved mouse model that replicates the clinical features observed in patients with mild TBI. Results from behavior and histological analysis using hematoxylin and eosin (HE) staining suggest that rmTBI can lead to a cumulative injury that produces changes in both behavior and gross morphology of the brain. Overall, the modified CHI-associated rmTBI presents a useful tool for researchers to explore the underlying mechanisms that contribute to focal and diffuse pathophysiological changes in rmTBI.


Subject(s)
Brain Concussion , Disease Models, Animal , Skull , Animals , Mice , Brain Concussion/pathology , Skull/pathology , Skull/injuries , Skull/surgery , Male , Percussion/methods , Brain Injuries, Traumatic/pathology
15.
Leg Med (Tokyo) ; 69: 102443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38569417

ABSTRACT

Depressed skull fractures occur when broken bones displace inward, meaning that a portion of the outer table of the fracture line lies below the normal anatomical position of the inner table. They typically result from force trauma, when the skull is struck by an object with a moderately large amount of kinetic energy but a small surface area, or when an object with a large amount of kinetic energy impacts only a small area of the skull. In the present case, a depressed fracture of the frontal bone was detected at the autopsy of a 52-year-old man who, according to the belated confession of the assailant, was kicked in the head. The assailant was wearing sneakers. Could such a fracture be caused "just" by a kick? In this case it was possible due to an extraordinarily thin cranial vault (0.2 cm frontal, 0.3 cm occipital), which allowed the fractures to occur from a kinetic force that might not have been sufficient with a normal cranial vault thickness. An important role in the forensic analysis of the case was played by the 3D CT reconstruction.


Subject(s)
Imaging, Three-Dimensional , Skull Fracture, Depressed , Tomography, X-Ray Computed , Humans , Male , Middle Aged , Skull Fracture, Depressed/diagnostic imaging , Skull Fracture, Depressed/pathology , Autopsy/methods , Skull/diagnostic imaging , Skull/injuries , Skull/pathology , Skull Fractures/diagnostic imaging , Skull Fractures/pathology , Forensic Pathology/methods
16.
Leg Med (Tokyo) ; 69: 102445, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640873

ABSTRACT

A smoothbore musket firing a round ball was the primary weapon of the infantry from the 16th to mid 19th century. Musket ball injuries are thus relatively common when archaeological remains of battlefield victims from that period are studied. Several experimental studies have focused on terminal ballistics of a musket ball. In addition, there is a good supply of historical records directly from the battlefield and military hospitals. Studies and historical records have both concluded that head injuries are among the most lethal types of musket ball damage. In this study we utilized modern day research methods, including Synbone ballistic skull phantoms and computed tomography (CT) imaging, to examine more closely the head injuries and tissue damage caused by a musket ball. We were especially interested to observe how different musket ball velocities and shooting distances would influence bone and soft tissue defects. Our experiments clearly demonstrated that musket ball was a lethal projectile even from a longer distance. Already at low velocities, the musket ball perforated through the skull. Velocity also influenced the appearance of entrance and exit wounds. CT imaging provided us with a three-dimensional view of the wound channel, skull fragments and lead remnants inside the skull phantom. According to our findings, musket ball velocity influenced defect size and cavitation. In addition, velocity influenced the size and distribution of skull fragments and lead remnants in the wound channel. Combining all these aspects could aid us in studies of archaeological musket ball victims. In particular, they could help us to estimate the shooting distance and shed light on the potential course of events in the battlefield.


Subject(s)
Forensic Ballistics , Tomography, X-Ray Computed , Humans , Forensic Ballistics/methods , Wounds, Gunshot/diagnostic imaging , Skull/diagnostic imaging , Skull/injuries , Head Injuries, Penetrating/diagnostic imaging , Head Injuries, Penetrating/history , Head Injuries, Penetrating/pathology , Firearms , Phantoms, Imaging
17.
J Control Release ; 370: 277-286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679161

ABSTRACT

Addressing bone defects represents a significant challenge to public health. Localized delivery of growth factor has emerged as promising approach for bone regeneration. However, the clinical application of Platelet-Derived Growth Factor (PDGF) is hindered by its high cost and short half-life. In this work, we introduce the application of PDGF-mimicking peptide (PMP1) hydrogels for calvarial defect restoration, showcasing their remarkable effectiveness. Through osteogenic differentiation assays and q-PCR analyses, we demonstrate PMP1's substantial capacity to enhance osteogenic differentiation of bone marrow mesenchymal stem cell (BMSC), leading to increased expression of crucial osteogenic genes. Further molecular mechanistic investigations reveal PMP1's activation of the PI3K-AKT-mTOR signaling pathway, a key element of its osteogenic effect. In vivo experiments utilizing a rat calvaria critical-sized defect model underscore the hydrogels' exceptional ability to accelerate new bone formation, thereby significantly advancing the restoration of calvaria defects. This research provides a promising bioactive material for bone tissue regeneration.


Subject(s)
Becaplermin , Bone Regeneration , Cell Differentiation , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Skull , Animals , Hydrogels/chemistry , Skull/drug effects , Skull/injuries , Osteogenesis/drug effects , Becaplermin/administration & dosage , Bone Regeneration/drug effects , Mesenchymal Stem Cells/drug effects , Cell Differentiation/drug effects , Male , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacology , Cells, Cultured , Rats
18.
Front Immunol ; 15: 1353513, 2024.
Article in English | MEDLINE | ID: mdl-38680490

ABSTRACT

The recent identification of skull bone marrow as a reactive hematopoietic niche that can contribute to and direct leukocyte trafficking into the meninges and brain has transformed our view of this bone structure from a solid, protective casing to a living, dynamic tissue poised to modulate brain homeostasis and neuroinflammation. This emerging concept may be highly relevant to injuries that directly impact the skull such as in traumatic brain injury (TBI). From mild concussion to severe contusion with skull fracturing, the bone marrow response of this local myeloid cell reservoir has the potential to impact not just the acute inflammatory response in the brain, but also the remodeling of the calvarium itself, influencing its response to future head impacts. If we borrow understanding from recent discoveries in other CNS immunological niches and extend them to this nascent, but growing, subfield of neuroimmunology, it is not unreasonable to consider the hematopoietic compartment in the skull may similarly play an important role in health, aging, and neurodegenerative disease following TBI. This literature review briefly summarizes the traditional role of the skull in TBI and offers some additional insights into skull-brain interactions and their potential role in affecting secondary neuroinflammation and injury outcomes.


Subject(s)
Brain Injuries, Traumatic , Brain , Skull , Humans , Brain Injuries, Traumatic/pathology , Animals , Brain/immunology , Brain/pathology , Brain/metabolism , Skull/injuries , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/etiology , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Marrow/immunology
19.
Biomed Mater ; 19(3)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38626780

ABSTRACT

Wool derived keratin, due to its demonstrated ability to promote bone formation, has been suggested as a potential bioactive material for implant surfaces. The aim of this study was to assess the effects of keratin-coated titanium on osteoblast functionin vitroand bone healingin vivo. Keratin-coated titanium surfaces were fabricated via solvent casting and molecular grafting. The effect of these surfaces on the attachment, osteogenic gene, and osteogenic protein expression of MG-63 osteoblast-like cells were quantifiedin vitro. The effect of these keratin-modified surfaces on bone healing over three weeks using an intraosseous calvaria defect was assessed in rodents. Keratin coating did not affect MG-63 proliferation or viability, but enhanced osteopontin, osteocalcin and bone morphogenetic expressionin vitro. Histological analysis of recovered calvaria specimens showed osseous defects covered with keratin-coated titanium had a higher percentage of new bone area two weeks after implantation compared to that in defects covered with titanium alone. The keratin-coated surfaces were biocompatible and stimulated osteogenic expression in adherent MG-63 osteoblasts. Furthermore, a pilot preclinical study in rodents suggested keratin may stimulate earlier intraosseous calvaria bone healing.


Subject(s)
Bone Regeneration , Cell Proliferation , Coated Materials, Biocompatible , Keratins , Osteoblasts , Osteogenesis , Skull , Titanium , Titanium/chemistry , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Bone Regeneration/drug effects , Animals , Keratins/chemistry , Keratins/metabolism , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Proliferation/drug effects , Skull/drug effects , Skull/injuries , Osteogenesis/drug effects , Rats , Surface Properties , Male , Cell Line , Cell Adhesion/drug effects , Materials Testing , Cell Survival/drug effects , Rats, Sprague-Dawley
20.
Childs Nerv Syst ; 40(7): 2145-2151, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530414

ABSTRACT

PURPOSE: To introduce a method of cranial bone reconstruction for cranial burst fractures and early-stage growing skull fractures, named bone flap binding and transposition. METHODS: Cranial burst fractures, severe head injuries predominantly observed in infants, are characterized by widely diastatic skull fractures coupled with acute extracranial cerebral herniation beneath an intact scalp through ruptured dura mater. These injuries can develop into growing skull fractures. This study included two cases to illustrate the procedure, with a particular focus on the bone steps in managing these conditions. The medical history, clinical presentation, surgical procedures, and postoperative follow-up were retrospectively studied. The details of the surgical procedure were described. RESULTS: The method of bone reconstruction, named bone flap binding and transposition, was applied after the lacerated dural repair. Two bone pieces were combined to eliminate the diastatic bone defect and then fixed by an absorbable cranial fixation clip and bound by sutures. The combined bone flap was repositioned into the bone window, completely covering the area of the original dural laceration. Subsequently, the bone defect was transferred to the area of normal dura. The postoperative courses for the two infants were uneventful. Follow-up CT scans revealed new bone formation at the previous bone defect and no progressive growing skull fracture. The major cranial defects had disappeared, leaving only small residual defects at the corners of the skull bone window, which required further recovery and did not affect the solidity of the skull. CONCLUSION: Bone flap binding and transposition provide a straightforward, cost-effective, and reliable method for cranial bone reconstruction of cranial burst fractures and early-stage growing skull fractures. This method has taken full advantage of the small infant's dura osteogenic potential without the need for artificial or metallic bone repair materials. The effectiveness of the method needs further validation with more cases in the future.


Subject(s)
Plastic Surgery Procedures , Skull Fractures , Surgical Flaps , Humans , Skull Fractures/surgery , Plastic Surgery Procedures/methods , Infant , Male , Female , Skull/surgery , Skull/injuries , Retrospective Studies , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL