Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.581
Filter
1.
Stem Cell Res Ther ; 15(1): 282, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227878

ABSTRACT

BACKGROUND: Inflammation-induced testicular damage is a significant contributing factor to the increasing incidence of infertility. Traditional treatments during the inflammatory phase often fail to achieve the desired fertility outcomes, necessitating innovative interventions such as cell therapy. METHODS: We explored the in vivo properties of intravenously administered Sertoli cells (SCs) in an acute lipopolysaccharide (LPS)-induced inflammatory mouse model. Infiltrating and resident myeloid cell phenotypes were assessed using flow cytometry. The impact of SC administration on testis morphology and germ cell quality was evaluated using computer-assisted sperm analysis (CASA) and immunohistochemistry. RESULTS: SCs demonstrated a distinctive migration pattern, importantly they preferentially concentrated in the testes and liver. SC application significantly reduced neutrophil infiltration as well as preserved the resident macrophage subpopulations. SCs upregulated MerTK expression in both interstitial and peritubular macrophages. Applied SC treatment exhibited protective effects on sperm including their motility and kinematic parameters, and maintained the physiological testicular morphology. CONCLUSION: Our study provides compelling evidence of the therapeutic efficacy of SC transplantation in alleviating acute inflammation-induced testicular damage. These findings contribute to the expanding knowledge on the potential applications of cell-based therapies for addressing reproductive health challenges and offer a promising approach for targeted interventions in male infertility.


Subject(s)
Inflammation , Sertoli Cells , Spermatozoa , Male , Animals , Sertoli Cells/metabolism , Mice , Inflammation/pathology , Inflammation/therapy , Spermatozoa/metabolism , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Testis , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Sperm Motility , Macrophages/metabolism
2.
Front Endocrinol (Lausanne) ; 15: 1432612, 2024.
Article in English | MEDLINE | ID: mdl-39234505

ABSTRACT

Introduction: Epididymal lumen fluids provides a stable microenvironment for sperm maturation. Ca2+ binding protein CABS1 is known to maintain structural integrity of mouse sperm flagella during epididymal transit of sperm. Besides, CABS1 was reported to contain anti-inflammatory peptide sequences and be present in both human saliva and plasma. However, little is known about the role of CABS1 in regulation of the microenvironment of epididymal lumen fluids. Methods: To further confirm the role of CABS1 in epididymis, we identified the expression of CABS1 in epididymal lumen fluids. Moreover, high performance liquid chromatography, coupled with tandem mass spectrometry technique was used to analyze the metabolic profiles and in vivo microperfusion of the cauda epididymis and inductively coupled plasma mass spectrometry (ICP-MS) assays was used to detect the concentration of metal ion of mouse cauda epididymal lumen fluids in CABS1 deficient and normal mice. Results: The results showed that CABS1 is present in epididymal lumen fluids, and the concentration of calcium in epididymal lumen fluids is not changed in Cabs1-/- male mice. Among 34 differential metabolites identified in cauda epididymis, 21 were significantly upregulated while 13 were significantly downregulated in KO cauda epididymis. Pathway analysis identified pyrimidine metabolism, inositol phosphate metabolism, arachidonic acid metabolism, purine metabolism and histidine metabolism as relevant pathways in cauda epididymis. Discussion: The perturbations of mitochondrial dysfunction and inflammation may be the crucial reason for the poor performance of Cabs1-/- sperm.


Subject(s)
Epididymis , Metabolomics , Mice, Knockout , Spermatozoa , Animals , Male , Epididymis/metabolism , Mice , Spermatozoa/metabolism , Metabolomics/methods , Calcium-Binding Proteins/metabolism , Mice, Inbred C57BL , Sperm Maturation/physiology
3.
JCI Insight ; 9(17)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39253968

ABSTRACT

Emerging studies suggest that various parental exposures affect offspring cardiovascular health, yet the specific mechanisms, particularly the influence of paternal cardiovascular disease (CVD) risk factors on offspring cardiovascular health, remain elusive. The present study explores how paternal hypercholesterolemia affects offspring atherosclerosis development using the LDL receptor-deficient (LDLR-/-) mouse model. We found that paternal high-cholesterol diet feeding led to significantly increased atherosclerosis in F1 female, but not male, LDLR-/- offspring. Transcriptomic analysis highlighted that paternal hypercholesterolemia stimulated proatherogenic genes, including Ccn1 and Ccn2, in the intima of female offspring. Sperm small noncoding RNAs (sncRNAs), particularly transfer RNA-derived (tRNA-derived) small RNAs (tsRNAs) and rRNA-derived small RNAs (rsRNAs), contribute to the intergenerational transmission of paternally acquired metabolic phenotypes. Using a newly developed PANDORA-Seq method, we identified that high-cholesterol feeding elicited changes in sperm tsRNA/rsRNA profiles that were undetectable by traditional RNA-Seq, and these altered sperm sncRNAs were potentially key factors mediating paternal hypercholesterolemia-elicited atherogenesis in offspring. Interestingly, high-cholesterol feeding altered sncRNA biogenesis-related gene expression in the epididymis but not testis of LDLR-/- sires; this may have led to the modified sperm sncRNA landscape. Our results underscore the sex-specific intergenerational effect of paternal hypercholesterolemia on offspring cardiovascular health and contribute to the understanding of chronic disease etiology originating from parental exposures.


Subject(s)
Atherosclerosis , Hypercholesterolemia , Receptors, LDL , Animals , Atherosclerosis/genetics , Atherosclerosis/etiology , Male , Hypercholesterolemia/genetics , Female , Mice , Receptors, LDL/genetics , Mice, Knockout , Disease Models, Animal , RNA, Small Untranslated/genetics , Spermatozoa/metabolism , Sex Factors , Paternal Exposure/adverse effects
4.
Toxicology ; 508: 153907, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39121937

ABSTRACT

Gut microbiota symbiosis faces enormous challenge with increasing exposure to drugs such as environmental poisons and antibiotics. The gut microbiota is an important component of the host microbiota and has been proven to be involved in regulating spermatogenesis, but the molecular mechanism is still unclear. A male mouse model with gut microbiota depletion/dysbiosis was constructed by adding combined antibiotics to free drinking water, and reproductive parameters such as epididymal sperm count, testicular weight and paraffin sections were measured. Testicular transcriptomic and serum metabolomic analyses were performed to reveal the molecular mechanism of reproductive dysfunction induced by gut microbiota dysbiosis in male mice.This study confirms that antibiotic induced depletion of gut microbiota reduces sperm count in the epididymis and reduces germ cells in the seminiferous tubules in male mice. Further study showed that exosomes isolated from microbiota-depleted mice led to abnormally high levels of retinoic acid and decrease in the number of germ cells in the seminiferous tubules and sperm in the epididymis. Finally, abnormally high levels of retinoic acid was confirmed to disrupted meiotic processes, resulting in spermatogenesis disorders. This study proposed the concept of the gut microbiota-exosome-retinoic acid-testicular axis and demonstrated that depletion of the gut microbiota caused changes in the function of exosomes, which led to abnormal retinoic acid metabolism in the testis, thereby impairing meiosis and spermatogenesis processes.


Subject(s)
Dysbiosis , Exosomes , Gastrointestinal Microbiome , Spermatogenesis , Testis , Tretinoin , Animals , Male , Spermatogenesis/drug effects , Tretinoin/metabolism , Gastrointestinal Microbiome/drug effects , Exosomes/metabolism , Exosomes/drug effects , Mice , Testis/drug effects , Testis/metabolism , Testis/pathology , Dysbiosis/chemically induced , Anti-Bacterial Agents/toxicity , Mice, Inbred C57BL , Epididymis/drug effects , Epididymis/metabolism , Epididymis/pathology , Sperm Count , Spermatozoa/drug effects , Spermatozoa/metabolism , Spermatozoa/pathology
5.
Int Braz J Urol ; 50(5): 530-560, 2024.
Article in English | MEDLINE | ID: mdl-39106113

ABSTRACT

Varicocele can reduce male fertility potential through various oxidative stress mechanisms. Excessive production of reactive oxygen species may overwhelm the sperm's defenses against oxidative stress, damaging the sperm chromatin. Sperm DNA fragmentation, in the form of DNA strand breaks, is recognized as a consequence of the oxidative stress cascade and is commonly found in the ejaculates of men with varicocele and fertility issues. This paper reviews the current knowledge regarding the association between varicocele, oxidative stress, sperm DNA fragmentation, and male infertility, and examines the role of varicocele repair in alleviating oxidative-sperm DNA fragmentation in these patients. Additionally, we highlight areas for further research to address knowledge gaps relevant to clinical practice.


Subject(s)
DNA Fragmentation , Infertility, Male , Oxidative Stress , Spermatozoa , Varicocele , Humans , Male , Varicocele/physiopathology , Varicocele/complications , Oxidative Stress/physiology , Infertility, Male/etiology , Infertility, Male/genetics , Infertility, Male/physiopathology , Infertility, Male/metabolism , Spermatozoa/physiology , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism
6.
Chem Biol Interact ; 401: 111186, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39116916

ABSTRACT

Studies on the molecular mechanisms of heavy metal toxicity in invertebrate reproduction are limited. Given that PARP-catalysed ADP-ribosylation is also involved in counteracting heavy metal toxicity and maintaining genomic integrity, and that PARylation is implicated in chromatin remodelling but its role in sperm chromatin remains to be elucidated, we investigated the effects of chromium(VI) at 1, 10 and 100 nM on the reproductive health of Mytilus galloprovincialis. The damage to the gonads was assessed by morphological analyses and the damage indices PARP and É£H2A.X were measured. Changes in the binding of protamine-like (PL) to DNA and the possibility of poly(ADP-ribosyl)ation of PL proteins were also investigated. Gonadal chromium accumulation and morphological damage were found, especially when the mussels were exposed to the highest dose of chromium(VI). In addition, the maximum expression of gonadal É£H2A.X and PARP were obtained at 100 and 10 nM Cr(VI), respectively. Interestingly, for the first time in all exposed conditions, poly(ADP)-ribosylation was detected on PL-II, which, together with PL-III and PL-IV, are the major nuclear basic proteins of Mytilus galloprovincialis sperm chromatin. Since PL-II is involved in the final high level of sperm chromatin compaction, this post-translational modification altered the binding of the PL protein to DNA, favouring the action of micrococcal nuclease on sperm chromatin. This study provides new insights into the effects of chromium(VI) on Mytilus galloprovincialis reproductive system and proposes a molecular mechanism hypothesis describing the toxic effects of this metal on PL-DNA binding, sperm chromatin and gonads.


Subject(s)
Chromium , Mytilus , Protamines , Animals , Mytilus/drug effects , Mytilus/metabolism , Male , Chromium/toxicity , Protamines/metabolism , Poly ADP Ribosylation/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Histones/metabolism , Gonads/drug effects , Gonads/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Reproduction/drug effects , DNA/metabolism , DNA/drug effects
7.
BMC Mol Cell Biol ; 25(1): 19, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090552

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS: A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS: Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS: This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.


Subject(s)
CpG Islands , DNA Methylation , Genomic Imprinting , Hepatitis B virus , Hepatitis B , Promoter Regions, Genetic , Spermatozoa , Humans , Male , DNA Methylation/genetics , Promoter Regions, Genetic/genetics , Spermatozoa/metabolism , CpG Islands/genetics , Genomic Imprinting/genetics , Hepatitis B/genetics , Hepatitis B/virology , Adult , Hepatitis B virus/genetics , Haplotypes/genetics , Middle Aged
8.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125928

ABSTRACT

Azoospermia, the absence of sperm cells in semen, affects around 15% of infertile males. Sertoli cell-only syndrome (SCOS) is the most common pathological lesion in the background of non-obstructive azoospermia and is characterised by the complete absence of germinal epithelium, with Sertoli cells exclusively present in the seminiferous tubules. Studies have shown a correlation between successful spermatogenesis and male fertility with lipid composition of spermatozoa, semen, seminal plasma or testis. The aim of this research was to discover the correlation between the Johnsen scoring system and phospholipid expressions in testicular cryosections of SCOS patients. MALDI imaging mass spectrometry is used to determine spatial distributions of molecular species, such as phospholipids. Phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingomyelins (SMs) are the most abundant phospholipids in mammalian cells and testis. SMs, the structural components of plasma membranes, are crucial for spermatogenesis and sperm function. Plasmalogens, are unique PCs in testis with strong antioxidative properties. This study, using imaging mass spectrometry, demonstrates the local distribution of phospholipids, particularly SMs, PCs, plasmalogens and PEs in human testicular samples with SCOS for the first time. This study found a strong relationship between the Johnsen scoring system and phospholipid expression levels in human testicular tissues. Future findings could enable routine diagnostic techniques during microTESE procedures for successful sperm extraction.


Subject(s)
Sertoli Cell-Only Syndrome , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Testis , Male , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Testis/metabolism , Testis/pathology , Sertoli Cell-Only Syndrome/metabolism , Sertoli Cell-Only Syndrome/pathology , Phospholipids/metabolism , Spermatogenesis , Azoospermia/metabolism , Azoospermia/pathology , Sphingomyelins/metabolism , Lipids/analysis , Adult , Spermatozoa/metabolism , Spermatozoa/pathology
9.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126092

ABSTRACT

Sperm, a crucial gamete for reproduction in sexual reproduction, is generated through the proliferation, differentiation, and morphological transformations of spermatogonial stem cells within the specialized microenvironment of the testes. Replicating this environment artificially presents challenges. However, interdisciplinary advancements in physics, materials science, and cell engineering have facilitated the utilization of innovative materials, technologies, and structures for inducing in vitro sperm production. This article offers a comprehensive overview of research progress on inducing in vitro sperm production by categorizing techniques into two major systems based on matrix-based and non-matrix-based approaches, respectively. Detailed discussions are provided for both types of technology systems through comparisons of their similarities and differences, as well as research advancements. The aim is to provide researchers in this field with a comprehensive panoramic view while presenting our own perspectives and prospects.


Subject(s)
Spermatogenesis , Humans , Male , Animals , Cell Differentiation , Spermatozoa/physiology , Spermatozoa/cytology , Spermatozoa/metabolism , Testis/cytology
10.
BMC Genomics ; 25(1): 793, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164623

ABSTRACT

BACKGROUND: Alcohol consumption is widely known to have detrimental effects on various organs and tissues. The effects of ethanol on male reproduction have been studied at the physiological and cellular levels, but no systematic study has examined the effects of ethanol on male reproduction-related gene expression. RESULTS: We employed a model of chronic ethanol administration using the Lieber-DeCarli diet. Ethanol-fed mice showed normal testicular and epididymal integrity, and sperm morphology, but decreased sperm count. Total RNA sequencing analysis of testes from ethanol-fed mice showed that a small fraction (∼ 2%) of testicular genes were differentially expressed in ethanol-fed mice and that, of these genes, 28% were cell-type specific in the testis. Various in silico analyses were performed, and gene set enrichment analysis revealed that sperm tail structure-related genes, including forkhead box J1 (Foxj1), were down-regulated in testes of ethanol-fed mice. Consistent with this result, ethanol-fed mice exhibited decreased sperm motility. CONCLUSION: This study provides the first comprehensive transcriptomic profiling of ethanol-induced changes in the mouse testis, and suggests gene expression profile changes as a potential mechanism underlying ethanol-mediated reproductive dysfunction, such as impaired sperm motility.


Subject(s)
Ethanol , Gene Expression Profiling , Testis , Transcriptome , Animals , Male , Testis/metabolism , Testis/drug effects , Ethanol/pharmacology , Mice , Transcriptome/drug effects , Sperm Motility/drug effects , Spermatozoa/metabolism , Spermatozoa/drug effects , Sperm Count
11.
Nat Commun ; 15(1): 6817, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122673

ABSTRACT

Arboviruses can be paternally transmitted by male insects to offspring for long-term persistence, but the mechanism remains largely unknown. Here, we use a model system of a destructive rice reovirus and its leafhopper vector to find that insect ribosome-rescuer Pelo-Hbs1 complex expressed on the sperm surface mediates paternal arbovirus transmission. This occurs through targeting virus-containing tubules constituted by viral nonstructural protein Pns11 to sperm surface via Pns11-Pelo interaction. Tubule assembly is dependent on Hsp70 activity, while Pelo-Hbs1 complex inhibits tubule assembly via suppressing Hsp70 activity. However, virus-activated ubiquitin ligase E3 mediates Pelo ubiquitinated degradation, synergistically causing Hbs1 degradation. Importantly, Pns11 effectively competes with Pelo for binding to E3, thus antagonizing E3-mediated Pelo-Hbs1 degradation. These processes cause a slight reduction of Pelo-Hbs1 complex in infected testes, promoting effective tubule assembly. Our findings provide insight into how insect sperm-specific Pelo-Hbs1 complex is modulated to promote paternal virus transmission without disrupting sperm function.


Subject(s)
Hemiptera , Insect Proteins , Spermatozoa , Animals , Male , Spermatozoa/metabolism , Spermatozoa/virology , Hemiptera/virology , Hemiptera/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Arboviruses , HSP70 Heat-Shock Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Reoviridae/physiology , Insect Vectors/virology , Insect Vectors/metabolism , Ribosomes/metabolism , Arbovirus Infections/transmission , Arbovirus Infections/metabolism , Arbovirus Infections/virology
12.
Cryobiology ; 116: 104953, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39142616

ABSTRACT

Our objectives were to explore the effect of naringenin addition in the semen extender on the post-thaw 1) sperm quality, 2) fertility-associated gene expression, and 3) fertilization potential of buffalo bull sperm. In experiment 1, semen samples (n = 32) from four Nili-Ravi buffalo bulls were pooled (n = 8) and diluted with the tris-citric acid (TCF-EY) extender containing different concentrations of naringenin, i.e., placebo (DMSO), 0 (control), 50, 100, 150 and 200 µM naringenin. After dilution, semen samples were packed in 0.5 mL French straws, cryopreserved and analyzed for post-thawed sperm quality and gene expression. Computer-assisted Semen Analysis, Hypo-osmotic Swelling test, Normal Apical Ridge assay, Rhodamine 123, Acridine orange, Propidium iodide staining and Thiobarbituric Acid Reactive Substances assay were performed to assess sperm motility parameters, plasma membrane functionality, acrosome integrity, mitochondrial membrane potential, DNA integrity, viability and lipid peroxidation, respectively. Expression levels of sperm acrosome-associated SPACA3, DNA condensation-related PRM1, anti-apoptotic BCL2, pro-apoptotic BAX, and oxidative stress-associated ROMO1 genes were evaluated through qPCR. Results revealed that total and progressive motility, plasma membrane functionality, acrosome integrity, mitochondrial membrane potential, DNA integrity and viability were higher (P < 0.05) with 50, 100 and 150 µM naringenin compared to 200 µM naringenin, placebo and control groups. Moreover, all naringenin-treated groups improved catalase activity, and reduced lipid peroxidation compared to placebo and control groups (P < 0.05). Relative expression levels of SPACA3 and PRM1 genes were higher (P < 0.05) with 150 µM naringenin compared to all groups except 100 µM (P > 0.05). No difference (P > 0.05) in the expression level of BCL2 gene was observed among all groups. Furthermore, BAX gene was expressed higher (P < 0.05) in the 200 µM naringenin group, whereas no difference (P > 0.05) in expression was noticed among the remaining groups. In addition, ROMO1 gene was expressed lower (P < 0.05) in all naringenin-treated groups compared to the control. In experiment 2, the in vivo fertility of semen doses (n = 400; 200/group) containing optimum concentration of naringenin (150 µM; depicted better in vitro sperm quality in experiment 1) was compared with control during the breeding season. Buffaloes were inseminated 24 h after the onset of natural estrus and palpated transrectal for pregnancy at least 60 days post-insemination. The fertility rate of 150 µM naringenin group was higher (P = 0.0366) compared to the control [57.00 ± 0.03 % (114/200) vs. 46.50 ± 0.04 % (93/200), respectively]. Taken together, it is concluded that naringenin supplementation in semen extender improves post-thaw quality, fertility-associated gene expression and fertilization potential of buffalo bull sperm, more apparently at 150 µM concentration.


Subject(s)
Buffaloes , Cryopreservation , Flavanones , Semen Preservation , Sperm Motility , Spermatozoa , Animals , Male , Spermatozoa/drug effects , Spermatozoa/metabolism , Flavanones/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Semen Preservation/veterinary , Semen Preservation/methods , Sperm Motility/drug effects , Cryoprotective Agents/pharmacology , Fertility/drug effects , Semen Analysis/veterinary , Fertilization/drug effects , Membrane Potential, Mitochondrial/drug effects , Lipid Peroxidation/drug effects
13.
Sci Rep ; 14(1): 20159, 2024 08 29.
Article in English | MEDLINE | ID: mdl-39215164

ABSTRACT

Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.


Subject(s)
Proteasome Endopeptidase Complex , Proteomics , Sperm Capacitation , Spermatozoa , Ubiquitin , Sperm Capacitation/physiology , Animals , Male , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Swine , Spermatozoa/metabolism , Spermatozoa/physiology , Proteomics/methods , Proteome/metabolism
14.
J Cell Sci ; 137(16)2024 08 15.
Article in English | MEDLINE | ID: mdl-39092789

ABSTRACT

The structure of the sperm flagellar axoneme is highly conserved across species and serves the essential function of generating motility to facilitate the meeting of spermatozoa with the egg. During spermiogenesis, the axoneme elongates from the centrosome, and subsequently the centrosome docks onto the nuclear envelope to continue tail biogenesis. Mycbpap is expressed predominantly in mouse and human testes and conserved in Chlamydomonas as FAP147. A previous cryo-electron microscopy analysis has revealed the localization of FAP147 to the central apparatus of the axoneme. Here, we generated Mycbpap-knockout mice and demonstrated the essential role of Mycbpap in male fertility. Deletion of Mycbpap led to disrupted centrosome-nuclear envelope docking and abnormal flagellar biogenesis. Furthermore, we generated transgenic mice with tagged MYCBPAP, which restored the fertility of Mycbpap-knockout males. Interactome analyses of MYCBPAP using Mycbpap transgenic mice unveiled binding partners of MYCBPAP including central apparatus proteins, such as CFAP65 and CFAP70, which constitute the C2a projection, and centrosome-associated proteins, such as CCP110. These findings provide insights into a MYCBPAP-dependent regulation of the centrosome-nuclear envelope docking and sperm tail biogenesis.


Subject(s)
Centrosome , Mice, Knockout , Nuclear Envelope , Sperm Tail , Animals , Male , Nuclear Envelope/metabolism , Centrosome/metabolism , Sperm Tail/metabolism , Sperm Tail/ultrastructure , Mice , Spermatogenesis/genetics , Mice, Transgenic , Fertility , Axoneme/metabolism , Axoneme/ultrastructure , Spermatozoa/metabolism , Spermatozoa/ultrastructure
15.
J Cell Sci ; 137(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39166297

ABSTRACT

Proper connection between the sperm head and tail is critical for sperm motility and fertilization. Head-tail linkage is mediated by the head-tail coupling apparatus (HTCA), which secures the axoneme (tail) to the nucleus (head). However, the molecular architecture of the HTCA is poorly understood. Here, we use Drosophila to investigate formation and remodeling of the HTCA throughout spermiogenesis by visualizing key components of this complex. Using structured illumination microscopy, we demonstrate that key HTCA proteins Spag4 and Yuri form a 'centriole cap' that surrounds the centriole (or basal body) as it invaginates into the surface of the nucleus. As development progresses, the centriole is laterally displaced to the side of the nucleus while the HTCA expands under the nucleus, forming what we term the 'nuclear shelf'. We next show that the proximal centriole-like (PCL) structure is positioned under the nuclear shelf, functioning as a crucial stabilizer of centriole-nucleus attachment. Together, our data indicate that the HTCA is a complex, multi-point attachment site that simultaneously engages the PCL, the centriole and the nucleus to ensure proper head-tail connection during late-stage spermiogenesis.


Subject(s)
Cell Nucleus , Centrioles , Drosophila Proteins , Spermatogenesis , Spermatozoa , Centrioles/metabolism , Centrioles/ultrastructure , Male , Animals , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Spermatogenesis/physiology , Spermatozoa/metabolism , Spermatozoa/ultrastructure , Drosophila melanogaster/metabolism , Sperm Tail/metabolism , Sperm Tail/ultrastructure , Sperm Head/ultrastructure , Sperm Head/metabolism , Axoneme/metabolism , Axoneme/ultrastructure
16.
Am J Hum Genet ; 111(9): 1953-1969, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39116879

ABSTRACT

While it is widely thought that de novo mutations (DNMs) occur randomly, we previously showed that some DNMs are enriched because they are positively selected in the testes of aging men. These "selfish" mutations cause disorders with a shared presentation of features, including exclusive paternal origin, significant increase of the father's age, and high apparent germline mutation rate. To date, all known selfish mutations cluster within the components of the RTK-RAS-MAPK signaling pathway, a critical modulator of testicular homeostasis. Here, we demonstrate the selfish nature of the SMAD4 DNMs causing Myhre syndrome (MYHRS). By analyzing 16 informative trios, we show that MYHRS-causing DNMs originated on the paternally derived allele in all cases. We document a statistically significant epidemiological paternal age effect of 6.3 years excess for fathers of MYHRS probands. We developed an ultra-sensitive assay to quantify spontaneous MYHRS-causing SMAD4 variants in sperm and show that pathogenic variants at codon 500 are found at elevated level in sperm of most men and exhibit a strong positive correlation with donor's age, indicative of a high apparent germline mutation rate. Finally, we performed in vitro assays to validate the peculiar functional behavior of the clonally selected DNMs and explored the basis of the pathophysiology of the different SMAD4 sperm-enriched variants. Taken together, these data provide compelling evidence that SMAD4, a gene operating outside the canonical RAS-MAPK signaling pathway, is associated with selfish spermatogonial selection and raises the possibility that other genes/pathways are under positive selection in the aging human testis.


Subject(s)
Germ-Line Mutation , Intellectual Disability , Smad4 Protein , Humans , Male , Smad4 Protein/genetics , Intellectual Disability/genetics , Contracture/genetics , Adult , Facies , Spermatozoa/metabolism , Spermatozoa/pathology , Cryptorchidism/genetics , Growth Disorders/genetics , Hand Deformities, Congenital/genetics , Selection, Genetic , Alleles , Paternal Age , Testis/pathology , Testis/metabolism
17.
Theriogenology ; 229: 127-137, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39178614

ABSTRACT

BACKGROUND: Conservation of equine semen in the liquid state is a central procedure in horse breeding and constitutes the basis of associated reproductive technologies. The intense mitochondrial activity of the stallion spermatozoa increases oxidative stress along the storage period, leading to sperm demise within 24-48 h of storage, particularly when maintained at room temperature. Recently, the relationship between metabolism and oxidative stress has been revealed. The study aimed to extend the period of conservation of equine semen, at room temperature through modification of the metabolites present in the media. MATERIAL AND METHODS: Processed ejaculates (n = 9) by single-layer colloid centrifugation were split in different aliquots and extended in Tyrode's basal media, or modified Tyrode's consisting of 1 mM glucose, 1 mM glucose 10 mM pyruvate, 40 mM glucose, 40 mM Glucose 10 mM pyruvate, 67 mM glucose and 67 mM glucose 10 mM pyruvate. At time 0h, and after 24 and 96 h of storage, motility was evaluated by CASA, while mitochondrial production of Reactive oxygen species (ROS), and intracellular Ca2+ concentrations were determined via flow cytometry using Mitosox Red and Fluo-4 respectively. ROS and Ca2+ were estimated as Relative Fluorescence Units (RFU) in compensated, arcsin-transformed data in the live sperm population. RESULTS: After 48 h of incubation, motility was greater in all the 10 mM pyruvate-based media, with the poorest result in the 40 mM glucose (41 ± 1.1 %) while the highest motility was yielded in the 40 mM glucose 10 mM pyruvate aliquot (60.3 ± 3.5 %; P < 0.001); after 96 h of storage highest motility values were observed in the 40 mM glucose 10 mM pyruvate media (23.0 ± 6.2 %) while the lowest was observed in the 1 mM glucose media was 9.2 ± 2.0 % (P < 0.05). Mitochondrial ROS was lower in the 40 mM glucose 10 mM pyruvate group compared to the 40 mM glucose (P < 0.01). Over time Ca2+ increased in all treatment groups compared to time 0h. DISCUSSION AND CONCLUSION: Viable spermatozoa may experience oxidative stress and alterations in Ca2+ homeostasis during prolonged storage, however, these effects can be reduced by regulating metabolism. The 40 mM glucose- 10 mM pyruvate group yielded the highest sperm quality parameters.


Subject(s)
Calcium , Homeostasis , Oxidation-Reduction , Spermatozoa , Animals , Male , Horses/physiology , Spermatozoa/physiology , Spermatozoa/metabolism , Calcium/metabolism , Semen Preservation/veterinary , Reactive Oxygen Species/metabolism , Sperm Motility , Oxidative Stress , Mitochondria/metabolism , Semen Analysis/veterinary
18.
Proc Natl Acad Sci U S A ; 121(36): e2412185121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39190362

ABSTRACT

X chromosome inactivation (XCI) is an epigenetic process that results in the transcriptional silencing of one X chromosome in the somatic cells of females. This phenomenon is common to both eutherian and marsupial mammals, but there are fundamental differences. In eutherians, the X chosen for silencing is random. DNA methylation on the eutherian inactive X is high at transcription start sites (TSSs) and their flanking regions, resulting in universally high DNA methylation. This contrasts XCI in marsupials where the paternally derived X is always silenced, and in which DNA methylation is low at TSSs and flanking regions. Here, we examined the DNA methylation status of the tammar wallaby X chromosome during spermatogenesis to determine the DNA methylation profile of the paternal X prior to and at fertilization. Whole genome enzymatic methylation sequencing was carried out on enriched flow-sorted populations of premeiotic, meiotic, and postmeiotic cells. We observed that the X displayed a pattern of DNA methylation from spermatogonia to mature sperm that reflected the inactive X in female somatic tissue. Therefore, the paternal X chromosome arrives at the egg with a DNA methylation profile that reflects the transcriptionally silent X in adult female somatic tissue. We present this epigenetic signature as a candidate for the long sought-after imprint for paternal XCI in marsupials.


Subject(s)
DNA Methylation , X Chromosome Inactivation , X Chromosome , Animals , X Chromosome Inactivation/genetics , Male , Female , X Chromosome/genetics , Genomic Imprinting , Spermatogenesis/genetics , Macropodidae/genetics , Ovum/metabolism , Marsupialia/genetics , Spermatozoa/metabolism , Epigenesis, Genetic
19.
Reprod Fertil Dev ; 362024 Aug.
Article in English | MEDLINE | ID: mdl-39088693

ABSTRACT

Context Integrated omics studies hold a crucial role in improving our understanding of reproductive biology. However, the complex datasets so generated are often only accessible via supplementary data files, which lack the capacity for interactive features to allow users to readily interrogate and visualise data of interest. Aims The intent of this technical note was to develop an interactive web-based application that enables detailed interrogation of a representative sperm proteome, facilitating a deeper understanding of the proteins identified, their relative abundance, classifications, functions, and associated phenotypes. Methods We developed a Shiny web application, ShinySperm (https://reproproteomics.shinyapps.io/ShinySperm/ ), utilising R and several complementary libraries for data manipulation (dplyr), interactive tables (DT), and visualisation (ggplot2, plotly). ShinySperm features a responsive user interface, dynamic filtering options, interactive charts, and data export capabilities. Key results ShinySperm allows users to interactively search, filter, and visualise sperm proteomics data based on key features (e.g. protein classification, sperm cell domain, presence, or absence at different maturation stages). This application responds live to filtering options and enables the generation of interactive plots and tables, thus enhancing user engagement and understanding of the data. Conclusions ShinySperm provides a robust platform for the dynamic exploration of epididymal sperm proteome data. It significantly improves accessibility and interpretability of complex datasets, allowing for effective data-driven insights. Implications This technical note highlights the potential of interactive web applications in reproductive biology and provides a plug and play script for the field to produce applications for meaningful researcher interaction with complex omic datasets.


Subject(s)
Proteome , Proteomics , Spermatozoa , Male , Spermatozoa/metabolism , Proteome/metabolism , Proteomics/methods , Animals , Software , User-Computer Interface
20.
J Ovarian Res ; 17(1): 166, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143642

ABSTRACT

BACKGROUND: Accumulating studies have highlighted the significant role of circulating metabolomics in the etiology of reproductive system disorders. However, the causal effects between genetically determined metabolites (GDMs) and reproductive diseases, including primary ovarian insufficiency (POI), polycystic ovary syndrome (PCOS), and abnormal spermatozoa (AS), still await thorough clarification. METHODS: With the currently most comprehensive genome-wide association studies (GWAS) data of metabolomics, systematic two-sample Mendelian randomization (MR) analyses were conducted to disclose causal associations between 1,091 blood metabolites and 309 metabolite ratios with reproductive disorders. The inverse-variance weighted (IVW) method served as the primary analysis approach, and multiple effective MR methods were employed as complementary analyses including MR-Egger, weighted median, constrained maximum likelihood (cML-MA), contamination mixture method, robust adjusted profile score (MR-RAPS), and debiased inverse-variance weighted method. Heterogeneity and pleiotropy were assessed via MR-Egger intercept and Cochran's Q statistical analysis. Outliers were detected by Radial MR and MR-PRESSO methods. External replication and metabolic pathway analysis were also conducted. RESULTS: Potential causal associations of 63 GDMs with POI were unearthed, and five metabolites with strong causal links to POI were emphasized. Two metabolic pathways related to the pathogenesis of POI were pinpointed. Suggestive causal effects of 70 GDMs on PCOS were detected, among which 7 metabolites stood out for strong causality with elevated PCOS risk. Four metabolic pathways associated with PCOS mechanisms were recognized. For AS, 64 GDMs as potential predictive biomarkers were identified, particularly highlighting two metabolites for their strong causal connections with AS. Three pathways underneath the AS mechanism were identified. Multiple assessments were conducted to further confirm the reliability and robustness of our causal inferences. CONCLUSION: By extensively assessing the causal implications of circulating GDMs on reproductive system disorders, our study underscores the intricate and pivotal role of metabolomics in reproductive ill-health, laying a theoretical foundation for clinical strategies from metabolic insights.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Metabolome , Polycystic Ovary Syndrome , Primary Ovarian Insufficiency , Humans , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/metabolism , Female , Male , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/blood , Primary Ovarian Insufficiency/metabolism , Metabolomics/methods , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL