Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2018: 8561892, 2018.
Article in English | MEDLINE | ID: mdl-29721150

ABSTRACT

Programmed and damage aging theories have traditionally been conceived as stand-alone schools of thought. However, the p66Shc adaptor protein has demonstrated that aging-regulating genes and reactive oxygen species (ROS) are closely interconnected, since its absence modifies metabolic homeostasis by providing oxidative stress resistance and promoting longevity. p66Shc(-/-) mice are a unique opportunity to further comprehend the bidirectional relationship between redox homeostasis and the imbalance of mitochondrial biogenesis and dynamics during aging. This study shows that brain mitochondria of p66Shc(-/-) aged mice exhibit a reduced alteration of redox balance with a decrease in both ROS generation and its detoxification activity. We also demonstrate a strong link between reactive nitrogen species (RNS) and mitochondrial function, morphology, and biogenesis, where low levels of ONOO- formation present in aged p66Shc(-/-) mouse brain prevent protein nitration, delaying the loss of biological functions characteristic of the aging process. Sirt3 modulates age-associated mitochondrial biology and function via lysine deacetylation of target proteins, and we show that its regulation depends on its nitration status and is benefited by the improved NAD+/NADH ratio in aged p66Shc(-/-) brain mitochondria. Low levels of protein nitration and acetylation could cause the metabolic homeostasis maintenance observed during aging in this group, thus increasing its lifespan.


Subject(s)
Aging/metabolism , Brain/metabolism , Mitochondria/metabolism , Reactive Nitrogen Species/metabolism , Sirtuin 3/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Homeostasis , Mice , Mice, Knockout
2.
PLoS One ; 11(6): e0157561, 2016.
Article in English | MEDLINE | ID: mdl-27310006

ABSTRACT

Melatonin has been used as a supplement in culture medium to improve the efficiency of in vitro produced mammalian embryos. Through its ability to scavenge toxic oxygen derivatives and regulate cellular mRNA levels for antioxidant enzymes, this molecule has been shown to play a protective role against damage by free radicals, to which in vitro cultured embryos are exposed during early development. In vivo and in vitro studies have been performed showing that the use of nanocapsules as active substances carriers increases stability, bioavailability and biodistribution of drugs, such as melatonin, to the cells and tissues, improving their antioxidant properties. These properties can be modulated through the manipulation of formula composition, especially in relation to the supramolecular structures of the nanocapsule core and the surface area that greatly influences drug release mechanisms in biological environments. This study aimed to evaluate the effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures, polymeric (NC) and lipid-core (LNC) nanocapsules, on in vitro cultured bovine embryos. Embryonic development, apoptosis, reactive oxygen species (ROS) production, and mRNA levels of genes involved in cell apoptosis, ROS and cell pluripotency were evaluated after supplementation of culture medium with non-encapsulated melatonin (Mel), melatonin-loaded polymeric nanocapsules (Mel-NC) and melatonin-loaded lipid-core nanocapsules (Mel-LNC) at 10-6, 10-9, and 10-12 M drug concentrations. The highest hatching rate was observed in embryos treated with 10-9 M Mel-LNC. When compared to Mel and Mel-NC treatments at the same concentration (10-9 M), Mel-LNC increased embryo cell number, decreased cell apoptosis and ROS levels, down-regulated mRNA levels of BAX, CASP3, and SHC1 genes, and up-regulated mRNA levels of CAT and SOD2 genes. These findings indicate that nanoencapsulation with LNC increases the protective effects of melatonin against oxidative stress and cell apoptosis during in vitro embryo culture in bovine species.


Subject(s)
Antioxidants/pharmacology , Drug Carriers/pharmacology , Embryo, Mammalian/drug effects , Melatonin/pharmacology , Polyesters/chemistry , Polymethacrylic Acids/chemistry , Animals , Antioxidants/chemistry , Apoptosis/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Catalase/genetics , Catalase/metabolism , Cattle , Culture Media/chemistry , Drug Carriers/chemistry , Drug Compounding , Embryo, Mammalian/physiology , Embryonic Development/drug effects , Female , Fertilization in Vitro , Gene Expression Regulation, Developmental , Male , Melatonin/chemistry , Nanocapsules/chemistry , Pregnancy , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
3.
Steroids ; 106: 41-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26703444

ABSTRACT

Accumulating evidence indicates that apoptosis is activated in the aged skeletal muscle, contributing to sarcopenia. We have previously demonstrated that testosterone protects against hydrogen peroxide (H2O2)-induced apoptosis in C2C12 muscle cells, at different levels: morphological, physiological, biochemical and molecular. In the present study we observed that H2O2 induces the mitochondrial permeability transition pore (mPTP) opening and exerts p53 activation in a time-dependent way, with a maximum response after 1-2h of treatment. Testosterone treatment, prior to H2O2, reduces not only p53 phosphorylation but also p66Shc expression, activation and its mitochondrial localization, at the same time that it prevents the mPTP opening. Furthermore, testosterone diminishes JNK and PKCßI phosphorylation induced by H2O2 and probably contributing thus, to reduce the activation of p66Shc. Thus, the mPTP opening, p53, JNK and PKCßI activation, as well as p66Shc mRNA increase, induced by oxidative stress, were reduced by testosterone pretreatment. The data presented in this work show some of the components upstream of the classical apoptotic pathway, that are activated during oxidative stress and that are points where testosterone exerts its protective action against apoptosis, exposing some of the puzzle pieces of the intricate network that aged skeletal muscle apoptosis represents.


Subject(s)
Oxidative Stress/drug effects , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Testosterone/pharmacology , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis/drug effects , Cell Line , DNA Fragmentation/drug effects , Enzyme Activation/drug effects , Gene Expression Regulation/drug effects , Humans , Hydrogen Peroxide/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Muscle, Skeletal/cytology , Protein Conformation/drug effects , Protein Kinase C beta/metabolism , Protein Transport/drug effects , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL