Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.448
Filter
1.
J Neuroinflammation ; 21(1): 251, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369253

ABSTRACT

Neuroinflammation has been implicated in the pathogenesis of several neurologic and psychiatric disorders. Microglia are key drivers of neuroinflammation and, in response to different inflammatory stimuli, overexpress a proinflammatory signature of genes. Among these, Ch25h is a gene overexpressed in brain tissue from Alzheimer's disease as well as various mouse models of neuroinflammation. Ch25h encodes cholesterol 25-hydroxylase, an enzyme upregulated in activated microglia under conditions of neuroinflammation, that hydroxylates cholesterol to form 25-hydroxycholesterol (25HC). 25HC can be further metabolized to 7α,25-dihydroxycholesterol, which is a potent chemoattractant of leukocytes. We have previously shown that 25HC increases the production and secretion of the proinflammatory cytokine, IL-1ß, by primary mouse microglia treated with lipopolysaccharide (LPS). In the present study, wildtype (WT) and Ch25h-knockout (KO) mice were peripherally administered LPS to induce an inflammatory state in the brain. In LPS-treated WT mice, Ch25h expression and 25HC levels increased in the brain relative to vehicle-treated WT mice. Among LPS-treated WT mice, females produced significantly higher levels of 25HC and showed transcriptomic changes reflecting higher levels of cytokine production and leukocyte migration than WT male mice. However, females were similar to males among LPS-treated KO mice. Ch25h-deficiency coincided with decreased microglial activation in response to systemic LPS. Proinflammatory cytokine production and intra-parenchymal infiltration of leukocytes were significantly lower in KO compared to WT mice. Amounts of IL-1ß and IL-6 in the brain strongly correlated with 25HC levels. Our results suggest a proinflammatory role for 25HC in the brain following peripheral administration of LPS.


Subject(s)
Brain , Cytokines , Disease Models, Animal , Hydroxycholesterols , Leukocytes , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Knockout , Neuroinflammatory Diseases , Animals , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Mice , Cytokines/metabolism , Male , Brain/metabolism , Brain/drug effects , Brain/pathology , Female , Leukocytes/drug effects , Leukocytes/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology , Steroid Hydroxylases/metabolism , Steroid Hydroxylases/genetics , Microglia/metabolism , Microglia/drug effects , Cells, Cultured
2.
World J Surg Oncol ; 22(1): 251, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289693

ABSTRACT

BACKGROUND: Endometrial cancer (EC) tissues express CYP7B1, but its association with prognosis needs to be investigated. METHODS: Immunohistochemistry and image analysis software were used to assess CYP7B1 protein expression in paraffin-embedded endometrial tumor sections. Associations between CYP7B1 and clinical factors were tested with the Wilcoxon rank-sum test. Kaplan-Meier curves were employed to describe survival, and differences were assessed using the log-rank test. Cox regression analysis was used to assess the association between CYP7B1 expression and the prognosis of patients with EC. RESULTS: A total of 307 patients were enrolled with an average age of 52.6 ± 8.0 years at diagnosis. During the period of follow-up, 46 patients (15.0%) died, and 29 (9.4%) suffered recurrence. The expression of CYP7B1 protein is significantly higher in the cytoplasm than in the nucleus (P < 0.001). Patients aged < 55 years (P = 0.040), ER-positive patients (P = 0.028) and PR-positive patients (P < 0.001) report higher levels of CYP7B1 protein. Both univariate (HR = 0.41, 95% CI: 0.18-0.90, P = 0.025) and multivariate (HR = 0.35, 95%CI:0.16-0.79, P = 0.011) Cox regression analyses demonstrate that high CYP7B1 protein expression predicts longer overall survival (OS). When considering only ER-positive patients (n = 265), CYP7B1 protein expression is more strongly associated with OS (HR = 0.20,95%CI:0.08-0.52, P = 0.001). The 3-year OS and 5-year OS in the low-CYP7B1 subgroup are 81.6% and 76.8%, respectively; while in the high-CYP7B1 subgroup are 93.0% and 92.0%, respectively (P = 0.021). CONCLUSIONS: High CYP7B1 protein expression predicted longer OS, suggesting that it may serve as an important molecular marker for EC prognosis.


Subject(s)
Biomarkers, Tumor , Cytochrome P450 Family 7 , Endometrial Neoplasms , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/mortality , Middle Aged , Prognosis , Retrospective Studies , Biomarkers, Tumor/metabolism , Follow-Up Studies , Survival Rate , Cytochrome P450 Family 7/metabolism , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Adult , Neoplasm Staging , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Aged , Steroid Hydroxylases
3.
Zhonghua Er Ke Za Zhi ; 62(9): 877-882, 2024 Sep 02.
Article in Chinese | MEDLINE | ID: mdl-39192447

ABSTRACT

Objective: To summarize the clinical features and genetic characteristics of Congenital bile acid synthetic disorder type 3 (BASD3) disorder caused by CYP7B1 gene variation. Methods: This was a case series study. Clinical data and genetic results of 2 cases of congenital bile acid synthetic disorder type 3 caused by CYP7B1 gene variations in the Department of Infectious Diseases, Children's Hospital of Fudan University at Xiamen and Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University from January 2021 to December 2023 were retrospectively collected and analyzed. Literature up to December 2023 was searched from electronic databases of China National Knowledge Infrastructure (CNKI), Wanfang Data and PubMed with the combined keywords of " Congenital bile acid synthetic disorder type 3""Oxysterol 7-alpha-hydroxylase""Oxysterol 7α-Hydroxylase Deficiency""BASD3" and "CYP7B1 liver" both in Chinese and English. The main clinical features and genetic characteristics of BASD3 disorder caused by CYP7B1 gene variations were summarized. Results: Two BASD3 patients, 1 male and 1 female, were admitted at the ages of 3 months and 18 days, and 2 months and 7 days, respectively. Both patients presented with neonatal cholestasis and hepatomegaly. Biochemical evidence indicated direct hyper-bilirubinemia with elevated aminotransferase levels, while gamma-glutamyltransferase (GGT) and total bile acid levels were normal or nearly normal. Patient 1 was a compound heterozygotes of the CYP7B1 gene variants c.525-526insCAAGTTGG(p.Asp176GInfs*15) and c.334C>T(p.Arg112Ter). Patient 1 jaundice resolved and liver function tests normalized after oral administration of chenodeoxycholic acid (CDCA). Patient 2 was homozygous for variant c.334C>T(p.Arg112Ter) in CYP7B1 gene. Patient 2 was in liver failure status already and not reactive to oral CDCA administration. Patient 2 received living-related liver transplantation for enhanced abdominal CT revealed a liver tumor likely vascular origin. Literature review revealed no cases of BASD3 reported in Chinese literature, including 2 patients in this study, while 12 patients (9 males and 3 females) were reported in 9 English literatures. All of the 12 manifested jaundice and hepatosplenomegaly in infancy, with cirrhosis, liver failure, kidney enlargement, hypoglycemia, and spontaneous bleeding in some cases, polycystic kidney disease was demonstrated in 5 cases of them. The c.334C>T (p.Arg112Ter) of the CYP7B1 gene was homozygous in 4 cases and compound heterozygous in 2 cases. Among the 12 children, 6 cases received CDCA treatment, while 6 cases not. Four survived with their native liver in the 6 cases who received CDCA therapy, while none in the 6 cases not received CDCA therapy. Conclusions: BASD3 is a rare hereditary cholestatic disorder. Markedly elevated levels of conjugated bilirubin and aminotransferases, with normal or nearly normal GGT and total bile acid levels can serve as diagnostic clue. c.334C>T is the most common pathogenic variant of the CYP7B1 gene. Timely administration of CDCA may save the liver.


Subject(s)
Cholestasis , Cytochrome P450 Family 7 , Mutation , Steroid Metabolism, Inborn Errors , Female , Humans , Infant , Infant, Newborn , Male , Bile Acids and Salts/metabolism , Bile Acids and Salts/blood , Cytochrome P450 Family 7/genetics , Liver/metabolism , Retrospective Studies , Steroid Hydroxylases , Cholestasis/diagnosis , Cholestasis/drug therapy , Cholestasis/genetics , Steroid Metabolism, Inborn Errors/diagnosis , Steroid Metabolism, Inborn Errors/drug therapy , Steroid Metabolism, Inborn Errors/genetics
4.
Toxicol Lett ; 397: 79-88, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734220

ABSTRACT

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.


Subject(s)
Cell Proliferation , Hepatocytes , Hepatomegaly , Liver , PPAR alpha , Pregnane X Receptor , Pyrimidines , YAP-Signaling Proteins , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/metabolism , Aryl Hydrocarbon Hydroxylases , beta Catenin/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP4A/metabolism , Cytochrome P-450 CYP4A/genetics , Cytochrome P450 Family 2 , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatomegaly/chemically induced , Hepatomegaly/metabolism , Hepatomegaly/pathology , Ki-67 Antigen/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Membrane Proteins , Mice, Inbred C57BL , Phosphoproteins/metabolism , Phosphoproteins/genetics , PPAR alpha/agonists , PPAR alpha/metabolism , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Pyrimidines/pharmacology , Signal Transduction/drug effects , Steroid Hydroxylases , YAP-Signaling Proteins/metabolism
5.
Adv Sci (Weinh) ; 11(29): e2309642, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816950

ABSTRACT

Cholesterol 25-hydroxylase (CH25H), an enzyme involved in cholesterol metabolism, regulates inflammatory responses and lipid metabolism. However, its role in kidney disease is not known.  The author found that CH25H transcript is expressed mostly in glomerular and peritubular endothelial cells and that its expression increased in human and mouse diabetic kidneys.  Global deletion of Ch25h in Leprdb/db mice aggravated diabetic kidney disease (DKD), which is associated with increased endothelial cell apoptosis. Treatment of 25-hydroxycholesterol (25-HC), the product of CH25H, alleviated kidney injury in Leprdb/db mice. Mechanistically, 25-HC binds to GTP-binding protein ADP-ribosylation factor 4 (ARF4), an essential protein required for maintaining protein transport in the Golgi apparatus. Interestingly, ARF4's GTPase-activating protein ASAP1 is also predominantly expressed in endothelial cells and its expression increased in DKD. Suppression of ARF4 activity by deleting ARF4 or overexpressing ASAP1 results in endothelial cell death. These results indicate that 25-HC binds ARF4 to inhibit its interaction with ASAP1, and thereby resulting in enhanced ARF4 activity to confer renoprotection. Therefore, treatment of 25-HC improves kidney injury in DKD in part by restoring ARF4 activity to maintain endothelial cell survival. This study provides a novel mechanism and a potential new therapy for DKD.


Subject(s)
ADP-Ribosylation Factors , Diabetic Nephropathies , Steroid Hydroxylases , Animals , Humans , Male , Mice , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Disease Models, Animal , Hydroxycholesterols , Mice, Inbred C57BL , Steroid Hydroxylases/metabolism , Steroid Hydroxylases/genetics
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731981

ABSTRACT

We aimed to analyze the association between CYP7B1 and prostate cancer, along with its association with proteins involved in cancer and metabolic processes. A retrospective analysis was performed on 390 patients with prostate cancer (PC) or benign prostatic hyperplasia (BPH). We investigated the interactions between CYP7B1 expression and proteins associated with PC and metabolic processes, followed by an analysis of the risk of biochemical recurrence based on CYP7B1 expression. Of the 139 patients with elevated CYP7B1 expression, 92.8% had prostate cancer. Overall, no increased risk of biochemical recurrence was associated with CYP7B1 expression. However, in a non-diabetic subgroup analysis, higher CYP7B1 expression indicated a higher risk of biochemical recurrence, with an HR of 1.78 (CI: 1.0-3.2, p = 0.05). PC is associated with elevated CYP7B1 expression. In a subgroup analysis of non-diabetic patients, elevated CYP7B1 expression was associated with an increased risk of biochemical recurrence, suggesting increased cancer aggressiveness.


Subject(s)
Biomarkers, Tumor , Cytochrome P450 Family 7 , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Biomarkers, Tumor/metabolism , Aged , Cytochrome P450 Family 7/metabolism , Cytochrome P450 Family 7/genetics , Middle Aged , Disease Progression , Retrospective Studies , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Immunohistochemistry , Tissue Array Analysis , Neoplasm Recurrence, Local/metabolism , Steroid Hydroxylases
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167158, 2024 06.
Article in English | MEDLINE | ID: mdl-38588780

ABSTRACT

OBJECTIVES: Diabetic cardiomyopathy (DCM) is the leading cause of mortality in type 2 diabetes mellitus (T2DM) patients, with its underlying mechanisms still elusive. This study aims to investigate the role of cholesterol-25-monooxygenase (CH25H) in T2DM induced cardiomyopathy. METHODS: High fat diet combined with streptozotocin (HFD/STZ) were used to establish a T2DM model. CH25H and its product 25-hydroxycholesterol (25HC) were detected in the hearts of T2DM model. Gain- or loss-of-function of CH25H were performed by receiving AAV9-cTNT-CH25H or CH25H knockout (CH25H-/-) mice with HFD/STZ treatment. Cardiac function was evaluated using echocardiography, and cardiac tissues were collected for immunoblot analysis, histological assessment and quantitative polymerase chain reaction (qPCR). Mitochondrial morphology and function were evaluated using transmission electron microscopy (TEM) and Seahorse XF Cell Mito Stress Test Kit. RNA-sequence analysis was performed to determine the molecular changes associated with CH25H deletion. RESULTS: CH25H and 25HC were significantly decreased in the hearts of T2DM mice. CH25H-/- mice treated with HFD/STZ exhibited impaired mitochondrial function and structure, increased lipid accumulation, and aggregated cardiac dysfunction. Conversely, T2DM mice receiving AAV9-CH25H displayed cardioprotective effects. Mechanistically, RNA sequencing and qPCR analysis revealed that CH25H deficiency decreased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and its target gene expression. Additionally, administration of ZLN005, a potent PGC-1α activator, partially protected against high glucose and palmitic acid induced mitochondria dysfunction and lipid accumulation in vitro. CONCLUSION: Our study provides compelling evidence supporting the protective role of CH25H in T2DM-induced cardiomyopathy. Furthermore, the regulation of PGC-1α may be intricately involved in this cardioprotective process.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Mice, Knockout , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Mice , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Steroid Hydroxylases/metabolism , Steroid Hydroxylases/genetics , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Hydroxycholesterols/metabolism , Myocardium/metabolism , Myocardium/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
8.
J Exp Med ; 221(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38442267

ABSTRACT

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles, in addition to neuroinflammation and changes in brain lipid metabolism. 25-Hydroxycholesterol (25-HC), a known modulator of both inflammation and lipid metabolism, is produced by cholesterol 25-hydroxylase encoded by Ch25h expressed as a "disease-associated microglia" signature gene. However, whether Ch25h influences tau-mediated neuroinflammation and neurodegeneration is unknown. Here, we show that in the absence of Ch25h and the resultant reduction in 25-HC, there is strikingly reduced age-dependent neurodegeneration and neuroinflammation in the hippocampus and entorhinal/piriform cortex of PS19 mice, which express the P301S mutant human tau transgene. Transcriptomic analyses of bulk hippocampal tissue and single nuclei revealed that Ch25h deficiency in PS19 mice strongly suppressed proinflammatory signaling in microglia. Our results suggest a key role for Ch25h/25-HC in potentiating proinflammatory signaling to promote tau-mediated neurodegeneration. Ch25h may represent a novel therapeutic target for primary tauopathies, AD, and other neuroinflammatory diseases.


Subject(s)
Steroid Hydroxylases , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Disease Models, Animal , Neuroinflammatory Diseases , Steroid Hydroxylases/metabolism , Tauopathies/metabolism , Tauopathies/pathology
9.
Cell Chem Biol ; 31(7): 1277-1289.e7, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38382532

ABSTRACT

Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.


Subject(s)
Cytochrome P450 Family 7 , Hydroxycholesterols , Mesenchymal Stem Cells , Mice, Inbred C57BL , Mice, Knockout , Animals , Humans , Male , Mice , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Cells, Cultured , Cytochrome P450 Family 7/metabolism , Hydroxycholesterols/metabolism , Hydroxycholesterols/pharmacology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Signal Transduction/drug effects , Steroid Hydroxylases , Transcription Factor RelA/metabolism
11.
Pathol Res Pract ; 251: 154875, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37820439

ABSTRACT

Oxysterols and oxysterol-metabolizing enzymes have been implicated in the pathogenesis of various cancers. However, the distinct function of the oxysterol-metabolizing enzyme cytochrome P450 family 39 Subfamily A Member 1 (CYP39A1) in colorectal cancer (CRC) remains unclear. The aims of the current study were to evaluate whether CYP39A1 affects the oncogenic behaviors of CRC cells and to investigate the prognostic value of its expression in CRC. A CYP39A1 small-interfering RNA was used to block CYP39A1 gene expression in DLD1 and SW480 cells. The expression of CYP39A1 in CRC tissues was investigated by immunohistochemistry. Tumor angiogenesis and lymphangiogenesis were assessed by CD34 and D2-40 immunohistochemical staining, respectively. CYP39A1 knockdown inhibited tumor cell migration and invasion in DLD1 and SW480 cells. Angiogenesis was also inhibited through the decreased expression of vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor (HIF)-1α, and angiostatin and endostatin expression increased. In addition, CYP39A1 knockdown inhibited the lymphangiogenesis by decreasing the expression of VEGF-C. CYP39A1 expression was increased in CRC tissues compared with normal colorectal mucosa. CYP39A1 expression was associated with tumor stage, depth of invasion, lymph node metastasis, distant metastasis, and poor survival. The microvessel and lymphatic vessel density values of CYP39A1-positive tumors were significantly higher than those of CYP39A1-negative tumors. These results indicate that CYP39A1 is associated with tumor progression by influencing tumor cell angiogenesis and lymphangiogenesis in CRC.


Subject(s)
Colorectal Neoplasms , Lymphatic Vessels , Oxysterols , Humans , Vascular Endothelial Growth Factor A/metabolism , Oxysterols/metabolism , Prognosis , Lymphatic Vessels/pathology , Lymphangiogenesis , Colorectal Neoplasms/pathology , Steroid Hydroxylases/metabolism
12.
Pathol Res Pract ; 249: 154783, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37660656

ABSTRACT

Viral infections pose significant threats to human health, causing various diseases with varying severity. The intricate interactions between viruses and host cells determine the outcome of infection, including viral replication, immune responses, and disease progression. Cholesterol 25-hydroxylase (CH25H) is an enzyme that catalyzes the conversion of cholesterol to 25-hydroxycholesterol (25HC), a potent antiviral molecule. In recent years, increasing evidence has highlighted the critical involvement of CH25H in modulating immune responses and influencing viral infections. Notably, the review discusses the implications of CH25H in viral pathogenesis and the development of therapeutic strategies. It examines the interplay between CH25H and viral immune evasion mechanisms, highlighting the potential of viral antagonism of CH25H to enhance viral replication and pathogenesis. Furthermore, it explores the therapeutic potential of targeting CH25H or modulating its downstream signaling pathways as a strategy to control viral infections and enhance antiviral immune responses. This comprehensive review demonstrates the crucial role of CH25H in viral infections, shedding light on its mechanisms of action in viral entry, replication, and immune modulation. Understanding the complex interplay between CH25H and viral infections may pave the way for novel therapeutic approaches and the development of antiviral strategies aimed at exploiting the antiviral properties of CH25H and enhancing host immune responses against viral pathogens. In the current review, we tried to provide an overview of the antiviral activity and importance of CH25H in viral pathogenesis.


Subject(s)
Steroid Hydroxylases , Virus Diseases , Humans , Disease Progression
13.
J Steroid Biochem Mol Biol ; 234: 106387, 2023 11.
Article in English | MEDLINE | ID: mdl-37648096

ABSTRACT

The oxysterol 27-hydroxycholesterol (27OHC) is produced by the enzyme sterol 27-hydroxylase (Cyp27A1) and is mainly catabolized to 7α-Hydroxy-3-oxo-4-cholestenoic acid (7-HOCA) by the enzyme cytochrome P-450 oxysterol 7α-hydroxylase (Cyp7B1). 27OHC is mostly produced in the liver and can reach the brain by crossing the blood-brain barrier. A large body of evidence shows that CYP27A1 overexpression and high levels of 27OHC have a detrimental effect on the brain, causing cognitive and synaptic dysfunction together with a decrease in glucose uptake in mice. In this work, we analyzed two mouse models with high levels of 27OHC: Cyp7B1 knock-out mice and CYP27A1 overexpressing mice. Despite the accumulation of 27OHC in both models, Cyp7B1 knock-out mice maintained intact learning and memory capacities, neuronal morphology, and brain glucose uptake over time. Neurons treated with the Cyp7B1 metabolite 7-HOCA did not show changes in synaptic genes and 27OHC-treated Cyp7B1 knock-out neurons could not counteract 27OHC detrimental effects. This suggests that 7-HOCA and Cyp7B1 deletion in neurons do not mediate the neuroprotective effects observed in Cyp7B1 knock-out animals. RNA-seq of neuronal nuclei sorted from Cyp7B1 knock-out brains revealed upregulation of genes likely to confer neuroprotection to these animals. Differently from Cyp7B1 knock-out mice, transcriptomic data from CYP27A1 overexpressing neurons showed significant downregulation of genes associated with synaptic function and several metabolic processes. Our results suggest that the differences observed in the two models may be mediated by the higher levels of Cyp7B1 substrates such as 25-hydroxycholesterol and 3ß-Adiol in the knock-out mice and that CYP27A1 overexpressing mice may be a more suitable model for studying 27-OHC-specific signaling. We believe that future studies on Cyp7B1 and Cyp27A1 will contribute to a better understanding of the pathogenic mechanisms of neurodegenerative diseases like Alzheimer's disease and may lead to potential new therapeutic approaches.


Subject(s)
Oxysterols , Steroid Hydroxylases , Animals , Mice , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism , Cytochrome P-450 Enzyme System/genetics , Hydroxycholesterols/metabolism , Oxysterols/metabolism , Cognition , Disease Models, Animal , Mice, Knockout , Glucose
14.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298459

ABSTRACT

Bile acids (BAs) are natural ligands for several receptors modulating cell activities. BAs are synthesized via the classic (neutral) and alternative (acidic) pathways. The classic pathway is initiated by CYP7A1/Cyp7a1, converting cholesterol to 7α-hydroxycholesterol, while the alternative pathway starts with hydroxylation of the cholesterol side chain, producing an oxysterol. In addition to originating from the liver, BAs are reported to be synthesized in the brain. We aimed at determining if the placenta potentially represents an extrahepatic source of BAs. Therefore, the mRNAs coding for selected enzymes involved in the hepatic BA synthesis machinery were screened in human term and CD1 mouse late gestation placentas from healthy pregnancies. Additionally, data from murine placenta and brain tissue were compared to determine whether the BA synthetic machinery is comparable in these organs. We found that CYP7A1, CYP46A1, and BAAT mRNAs are lacking in the human placenta, while corresponding homologs were detected in the murine placenta. Conversely, Cyp8b1 and Hsd17b1 mRNAs were undetected in the murine placenta, but these enzymes were found in the human placenta. CYP39A1/Cyp39a1 and cholesterol 25-hydroxylase (CH25H/Ch25h) mRNA expression were detected in the placentas of both species. When comparing murine placentas and brains, Cyp8b1 and Hsd17b1 mRNAs were only detected in the brain. We conclude that BA synthesis-related genes are placentally expressed in a species-specific manner. The potential placentally synthesized BAs could serve as endocrine and autocrine stimuli, which may play a role in fetoplacental growth and adaptation.


Subject(s)
Bile Acids and Salts , Steroid 12-alpha-Hydroxylase , Humans , Mice , Animals , Pregnancy , Female , Bile Acids and Salts/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Liver/metabolism , Cholesterol/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Placenta/metabolism , Gene Expression , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism
15.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835391

ABSTRACT

Angiotensin II (AngII) is a vasoactive peptide hormone, which, under pathological conditions, contributes to the development of cardiovascular diseases. Oxysterols, including 25-hydroxycholesterol (25-HC), the product of cholesterol-25-hydroxylase (CH25H), also have detrimental effects on vascular health by affecting vascular smooth muscle cells (VSMCs). We investigated AngII-induced gene expression changes in VSMCs to explore whether AngII stimulus and 25-HC production have a connection in the vasculature. RNA-sequencing revealed that Ch25h is significantly upregulated in response to AngII stimulus. The Ch25h mRNA levels were elevated robustly (~50-fold) 1 h after AngII (100 nM) stimulation compared to baseline levels. Using inhibitors, we specified that the AngII-induced Ch25h upregulation is type 1 angiotensin II receptor- and Gq/11 activity-dependent. Furthermore, p38 MAPK has a crucial role in the upregulation of Ch25h. We performed LC-MS/MS to identify 25-HC in the supernatant of AngII-stimulated VSMCs. In the supernatants, 25-HC concentration peaked 4 h after AngII stimulation. Our findings provide insight into the pathways mediating AngII-induced Ch25h upregulation. Our study elucidates a connection between AngII stimulus and 25-HC production in primary rat VSMCs. These results potentially lead to the identification and understanding of new mechanisms in the pathogenesis of vascular impairments.


Subject(s)
Angiotensin II , Muscle, Smooth, Vascular , Steroid Hydroxylases , Animals , Rats , Angiotensin II/metabolism , Cells, Cultured , Chromatography, Liquid , Gene Expression , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/metabolism , Tandem Mass Spectrometry , Steroid Hydroxylases/genetics
16.
Cells ; 12(4)2023 02 10.
Article in English | MEDLINE | ID: mdl-36831236

ABSTRACT

Alveolar macrophages (AM) are long-lived tissue-resident innate immune cells of the airways. AM are key effectors of recognition, initiation, and resolution of the host defense against microbes and play an essential role in mediating host responses to Streptococcus pneumoniae infection. Lipid metabolism in AM can significantly impact cellular function and biology. Dysregulated metabolism contributes to an accumulation of lipids, unfolded protein response induction, and inflammatory cytokine production. Our study was designed to investigate the impact of Ch25h on mediating innate immune responses by macrophages during S. pneumoniae infection. Using wild-type and Ch25-/- mice, we examined the role of cholesterol metabolism on inflammatory cytokine production and bacterial clearance. Our results demonstrate that Ch25h plays an important role in the initiation and intensity of cytokine and chemokine production in the lung during S. pneumoniae infection. In the absence of Ch25h, there was enhanced phagocytosis and bacterial clearance. Taken together, our findings demonstrate the important role of Ch25h in modulating host responsiveness to S. pneumoniae infection.


Subject(s)
Lung , Pneumococcal Infections , Steroid Hydroxylases , Animals , Mice , Cytokines/metabolism , Immunity, Innate , Lung/metabolism , Streptococcus pneumoniae/metabolism
17.
J Microbiol Biotechnol ; 33(3): 387-397, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36655276

ABSTRACT

Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11ß-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.


Subject(s)
Bacillus , Bacillus/metabolism , Cytochrome P-450 Enzyme System/metabolism , Steroid Hydroxylases/metabolism , Steroids/metabolism , Progesterone/metabolism , Substrate Specificity , Hydroxylation
18.
Mol Cancer Res ; 21(3): 228-239, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36378658

ABSTRACT

Cholesterol dependence is an essential characteristic of pancreatic ductal adenocarcinoma (PDAC). Cholesterol 25-hydroxylase (CH25H) catalyzes monooxygenation of cholesterol into 25-hydroxycholesterol, which is implicated in inhibiting cholesterol biosynthesis and in cholesterol depletion. Here, we show that, within PDAC cells, accumulation of cholesterol was facilitated by the loss of CH25H. Methylation of the CH25H gene and decreased levels of CH25H expression occurred in human pancreatic cancers and was associated with poor prognosis. Knockout of Ch25h in mice accelerated progression of Kras-driven pancreatic intraepithelial neoplasia. Conversely, restoration of CH25H expression in human and mouse PDAC cells decreased their viability under conditions of cholesterol deficit, and decelerated tumor growth in immune competent hosts. Mechanistically, the loss of CH25H promoted autophagy resulting in downregulation of MHC-I and decreased CD8+ T-cell tumor infiltration. Re-expression of CH25H in PDAC cells combined with immune checkpoint inhibitors notably inhibited tumor growth. We discuss additional benefits that PDAC cells might gain from inactivation of CH25H and the potential translational importance of these findings for therapeutic approaches to PDAC. IMPLICATIONS: Loss of CH25H by pancreatic cancer cells may stimulate tumor progression and interfere with immunotherapies.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Steroid Hydroxylases , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Mice, Knockout , Pancreatic Neoplasms/pathology , Steroid Hydroxylases/metabolism , Pancreatic Neoplasms
19.
J Steroid Biochem Mol Biol ; 227: 106236, 2023 03.
Article in English | MEDLINE | ID: mdl-36563764

ABSTRACT

Fungal hydroxylation of steroids is a key step in the industrial production of various steroid drugs. The main enzymes that enable these reactions are Cytochrome P450s (CYP), though very few industrially important CYPs have been identified and characterized. In this study, we identified a CYP enzyme (CYP-N2) and a cytochrome P450 reductase (CPRns) from Nigrospora sphaerica 722 by a combination of transcriptome sequencing and heterologous expression in Pichia pastoris. Gene CYP-N2 co-expressed with CPRns in Pichia pastoris GS115 showed 6ß- and 15α-hydroxylation activities on progesterone. Different hydroxylation specificity of CYP-N2 was observed on different steroid substrates. CYP-N2 showed 1α-hydroxylation on cortisone and 1α-hydroxylation and 6ß-hydroxylation activities on androstenedione (AD). With dehydroepiandrosterone (DHEA) as a substrate, the hydroxylated products of CYP-N2 included 7α-hydroxy-DHEA and 7α,15α-dihydroxy-DHEA. In order to precisely elucidate CYP-N2 biological function and find out the key amino acids influencing its hydroxylation capabilities in the binding pocket, new generation artificial intelligence technology AlphaFold 2 was used to predict the function-structure of CYP-N2 with high reliability. Through molecular docking, it was concluded that the residues almost binding all substrates were located in the same substrate binding pocket and the various hydroxylation abilities might be due to the different binding conformations of different substrates in the binding pocket. Alanine scanning mutagenesis was used to verify key amino acids identified by the molecular docking with steroid substrates. The 128 THR mutation resulted in conversion rate increase for substrates AD and cortisone by 2.6-fold and 2.1-fold respectively. The information obtained in this study is beneficial to facilitating the engineering of more efficient steroid hydroxylases for industrial applications.


Subject(s)
Cortisone , Hydroxylation , Molecular Docking Simulation , Artificial Intelligence , Reproducibility of Results , Steroid Hydroxylases/metabolism , Steroids/metabolism , Androstenedione/metabolism , Amino Acids , Dehydroepiandrosterone/metabolism , Substrate Specificity
20.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G488-G500, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36193897

ABSTRACT

Oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic pathway" of cholesterol metabolism. Previously, we demonstrated that an inability to upregulate CYP7B1 in the setting of insulin resistance leads to the accumulation of cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) that initiate and promote hepatocyte injury; followed by an inflammatory response. The current study demonstrates that dietary coffee improves insulin resistance and restores Cyp7b1 levels in a well-characterized Western diet (WD)-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Ingestion of a WD containing caffeinated (regular) coffee or decaffeinated coffee markedly reduced the serum ALT level and improved insulin resistance. Cyp7b1 mRNA and protein levels were preserved at normal levels in mice fed the coffee containing WD. Additionally, coffee led to upregulated steroid sulfotransferase 2b1 (Sult2b1) mRNA expression. In accordance with the response in these oxysterol metabolic genes, hepatocellular 26HC levels were maintained at physiologically low levels. Moreover, the current study provided evidence that hepatic Cyp7b1 and Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, hepatocyte nuclear factor (HNF)-4α. We conclude coffee achieves its beneficial effects through the modulation of insulin resistance. Both decaffeinated and caffeinated coffee had beneficial effects, demonstrating caffeine is not fundamental to this effect. The effects of coffee feeding on the insulin-HNF4α-Cyp7b1 signaling pathway, whose dysregulation initiates and contributes to the onset and progression of NASH as triggered by insulin resistance, offer mechanistic insight into approaches for the treatment of NAFLD.NEW & NOTEWORTHY This study demonstrated dietary coffee prevented the accumulation of hepatic oxysterols by maintaining Cyp7b1/Sult2b1 expression in a diet-induced NAFLD mice model. Lowering liver oxysterols markedly reduced inflammation in the coffee-ingested mice. Caffeine is not fundamental to this effect. In addition, this study showed Cyp7b1/Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, HNF4α. The insulin-HNF4α-Cyp7b1/Sult2b1 signaling pathway, which directly correlates to the onset of NASH triggered by insulin resistance, offers insight into approaches for NAFLD treatment.


Subject(s)
Hepatitis , Insulin Resistance , Insulins , Non-alcoholic Fatty Liver Disease , Oxysterols , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Oxysterols/metabolism , Coffee/metabolism , Caffeine/pharmacology , Caffeine/metabolism , Liver/metabolism , Disease Models, Animal , Cholesterol/metabolism , Hepatitis/metabolism , Hepatocyte Nuclear Factors/metabolism , RNA, Messenger/metabolism , Insulins/metabolism , Cytochrome P450 Family 7/metabolism , Steroid Hydroxylases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL