Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.539
Filter
1.
Nat Commun ; 15(1): 5895, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003267

ABSTRACT

Autoimmune thyroid diseases (AITD) such as Graves' disease (GD) or Hashimoto's thyroiditis (HT) are organ-specific diseases that involve complex interactions between distinct components of thyroid tissue. Here, we use spatial transcriptomics to explore the molecular architecture, heterogeneity and location of different cells present in the thyroid tissue, including thyroid follicular cells (TFCs), stromal cells such as fibroblasts, endothelial cells, and thyroid infiltrating lymphocytes. We identify damaged antigen-presenting TFCs with upregulated CD74 and MIF expression in thyroid samples from AITD patients. Furthermore, we discern two main fibroblast subpopulations in the connective tissue including ADIRF+ myofibroblasts, mainly enriched in GD, and inflammatory fibroblasts, enriched in HT patients. We also demonstrate an increase of fenestrated PLVAP+ vessels in AITD, especially in GD. Our data unveil stromal and thyroid epithelial cell subpopulations that could play a role in the pathogenesis of AITD.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Graves Disease , Hashimoto Disease , Thyroid Gland , Humans , Graves Disease/pathology , Graves Disease/immunology , Graves Disease/genetics , Graves Disease/metabolism , Thyroid Gland/pathology , Thyroid Gland/metabolism , Hashimoto Disease/pathology , Hashimoto Disease/immunology , Hashimoto Disease/metabolism , Hashimoto Disease/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Transcriptome , Myofibroblasts/metabolism , Myofibroblasts/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Female , Macrophage Migration-Inhibitory Factors , Intramolecular Oxidoreductases
2.
Breast Cancer Res ; 26(1): 115, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978071

ABSTRACT

Various histopathological, clinical and imaging parameters have been evaluated to identify a subset of women diagnosed with lesions with uncertain malignant potential (B3 or BIRADS 3/4A lesions) who could safely be observed rather than being treated with surgical excision, with little impact on clinical practice. The primary reason for surgery is to rule out an upgrade to either ductal carcinoma in situ or invasive breast cancer, which occurs in up to 30% of patients. We hypothesised that the stromal immune microenvironment could indicate the presence of carcinoma associated with a ductal B3 lesion and that this could be detected in biopsies by counting lymphocytes as a predictive biomarker for upgrade. A higher number of lymphocytes in the surrounding specialised stroma was observed in upgraded ductal and papillary B3 lesions than non-upgraded (p < 0.01, negative binomial model, n = 307). We developed a model using lymphocytes combined with age and the type of lesion, which was predictive of upgrade with an area under the curve of 0.82 [95% confidence interval 0.77-0.87]. The model can identify some patients at risk of upgrade with high sensitivity, but with limited specificity. Assessing the tumour microenvironment including stromal lymphocytes may contribute to reducing unnecessary surgeries in the clinic, but additional predictive features are needed.


Subject(s)
Breast Neoplasms , Lymphocytes , Stromal Cells , Tumor Microenvironment , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Tumor Microenvironment/immunology , Middle Aged , Aged , Lymphocytes/immunology , Lymphocytes/pathology , Stromal Cells/pathology , Adult , Neoplasm Grading , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Intraductal, Noninfiltrating/immunology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/immunology , Biomarkers, Tumor
3.
BMC Cancer ; 24(1): 768, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926671

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a 'difficult-to-treat' entity. To forecast its prognosis, we introduced a new biomarker, SARIFA (stroma areactive invasion front areas), which are areas at the tumour invasion front lacking desmoplastic stroma reaction upon malignant invasion in the surrounding tissue, leading to direct contact between tumour cells and adipocytes. SARIFA showed its significance in gastric and colorectal carcinoma, revealing lipid metabolism alternations that promote tumour progression. METHODS: We reviewed the SARIFA status of 166 PDAC cases on all available H&E-stained tumour slides from archival Whipple-resection specimens. SARIFA positivity was defined as SARIFA detection in at least 66% of the available slides. To investigate alterations in tumour metabolism and microenvironment, we performed immunohistochemical staining for FABP4, CD36 and CD68. To verify and quantify a supposed delipidation of adipocytes, adipose tissue was digitally morphometrised. RESULTS: In total, 53 cases (32%) were classified as SARIFA positive and 113 (68%) as SARIFA negative. Patients with SARIFA-positive PDAC showed a significantly worse overall survival compared with SARIFA-negative cases (median overall survival: 11.0 months vs. 22.0 months, HR: 1.570 (1.082-2.278), 95% CI, p = 0.018), which was independent from other prognostic markers (p = 0.014). At the invasion front of SARIFA-positive PDAC, we observed significantly higher expression of FABP4 (p < 0.0001) and higher concentrations of CD68+ macrophages (p = 0.031) related to a higher risk of tumour progression. CD36 staining showed no significant expression differences. The adipocyte areas at the invasion front were significantly smaller, with mean values of 4021 ± 1058 µm2 and 1812 ± 1008 µm2 for the SARIFA-negative and -positive cases, respectively (p < 0.001). CONCLUSIONS: SARIFA is a promising prognostic biomarker for PDAC. Its assessment is characterised by simplicity and low effort. The mechanisms behind SARIFA suggest a tumour-promoting increased lipid metabolism and altered immune background, both showing new therapeutic avenues.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Fatty Acid-Binding Proteins , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/mortality , Female , Male , Biomarkers, Tumor/metabolism , Prognosis , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Aged , Middle Aged , Fatty Acid-Binding Proteins/metabolism , Neoplasm Invasiveness , Tumor Microenvironment , Lipid Metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , CD36 Antigens/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adult , Aged, 80 and over , CD68 Molecule
4.
Biofabrication ; 16(3)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934608

ABSTRACT

Breast cancer develops in close proximity to mammary adipose tissue and interactions with the local adipose environment have been shown to drive tumor progression. The specific role, however, of this complex tumor microenvironment in cancer cell migration still needs to be elucidated. Therefore, in this study, a 3D bioprinted breast cancer model was developed that allows for a comprehensive analysis of individual tumor cell migration parameters in dependence of adjacent adipose stroma. In this co-culture model, a breast cancer compartment with MDA-MB-231 breast cancer cells embedded in collagen is surrounded by an adipose tissue compartment consisting of adipose-derived stromal cell (ASC) or adipose spheroids in a printable bioink based on thiolated hyaluronic acid. Printing parameters were optimized for adipose spheroids to ensure viability and integrity of the fragile lipid-laden cells. Preservation of the adipogenic phenotype after printing was demonstrated by quantification of lipid content, expression of adipogenic marker genes, the presence of a coherent adipo-specific extracellular matrix, and cytokine secretion. The migration of tumor cells as a function of paracrine signaling of the surrounding adipose compartment was then analyzed using live-cell imaging. The presence of ASC or adipose spheroids substantially increased key migration parameters of MDA-MB-231 cells, namely motile fraction, persistence, invasion distance, and speed. These findings shed new light on the role of adipose tissue in cancer cell migration. They highlight the potential of our 3D printed breast cancer-stroma model to elucidate mechanisms of stroma-induced cancer cell migration and to serve as a screening platform for novel anti-cancer drugs targeting cancer cell dissemination.


Subject(s)
Adipose Tissue , Bioprinting , Breast Neoplasms , Cell Movement , Printing, Three-Dimensional , Spheroids, Cellular , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Cell Movement/drug effects , Adipose Tissue/cytology , Female , Cell Line, Tumor , Stromal Cells/pathology , Stromal Cells/metabolism , Stromal Cells/cytology , Coculture Techniques , Tumor Microenvironment
5.
J Pathol Clin Res ; 10(4): e12386, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38890810

ABSTRACT

Evidence for the tumour-supporting capacities of the tumour stroma has accumulated rapidly in colorectal cancer (CRC). Tumour stroma is composed of heterogeneous cells and components including cancer-associated fibroblasts (CAFs), small vessels, immune cells, and extracellular matrix proteins. The present study examined the characteristics of CAFs and collagen, major components of cancer stroma, by immunohistochemistry and Sirius red staining. The expression status of five independent CAF-related or stromal markers, decorin (DCN), fibroblast activation protein (FAP), podoplanin (PDPN), alpha-smooth muscle actin (ACTA2), and collagen, and their association with clinicopathological features and clinical outcomes were analysed. Patients with DCN-high tumours had a significantly worse 5-year survival rate (57.3% versus 79.0%; p = 0.044). Furthermore, hierarchical clustering analyses for these five markers identified three groups that showed specific characteristics: a solid group (cancer cell-rich, DCNLowPDPNLow); a PDPN-dominant group (DCNMidPDPNHigh); and a DCN-dominant group (DCNHighPDPNLow), with a significant association with patient survival (p = 0.0085). Cox proportional hazards model identified the PDPN-dominant group (hazard ratio = 0.50, 95% CI = 0.26-0.96, p = 0.037) as a potential favourable factor compared with the DCN-dominant group. Of note, DCN-dominant tumours showed the most advanced pT stage and contained the lowest number of CD8+ and FOXP3+ immune cells. This study has revealed that immunohistochemistry and special staining of five stromal factors with hierarchical clustering analyses could be used for the prognostication of patients with CRC. Cancer stroma-targeting therapies may be candidate treatments for patients with CRC.


Subject(s)
Biomarkers, Tumor , Cancer-Associated Fibroblasts , Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/metabolism , Male , Female , Biomarkers, Tumor/analysis , Cancer-Associated Fibroblasts/pathology , Cancer-Associated Fibroblasts/metabolism , Aged , Middle Aged , Cluster Analysis , Immunohistochemistry , Tumor Microenvironment , Prognosis , Membrane Glycoproteins/analysis , Membrane Glycoproteins/metabolism , Stromal Cells/pathology , Stromal Cells/metabolism , Decorin/analysis , Decorin/metabolism , Adult , Aged, 80 and over , Kaplan-Meier Estimate
6.
J Transl Med ; 22(1): 561, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867256

ABSTRACT

BACKGROUND: Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-ß (TGF-ß), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-ß remain poorly understood. METHODS: The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-ß-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS: KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-ß-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-ß-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-ß treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION: Our results shed light on KAT14 as a key effector of TGF-ß-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.


Subject(s)
Endometriosis , Fibrosis , Serum Response Factor , Transforming Growth Factor beta , Adult , Animals , Female , Humans , Mice , Endometriosis/pathology , Endometriosis/metabolism , Endometrium/metabolism , Endometrium/pathology , Histone Acetyltransferases/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Serum Response Factor/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Transforming Growth Factor beta/metabolism , Up-Regulation/drug effects , Adaptor Proteins, Signal Transducing/metabolism
7.
Nat Neurosci ; 27(7): 1285-1298, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849523

ABSTRACT

Fibrotic scar tissue formation occurs in humans and mice. The fibrotic scar impairs tissue regeneration and functional recovery. However, the origin of scar-forming fibroblasts is unclear. Here, we show that stromal fibroblasts forming the fibrotic scar derive from two populations of perivascular cells after spinal cord injury (SCI) in adult mice of both sexes. We anatomically and transcriptionally identify the two cell populations as pericytes and perivascular fibroblasts. Fibroblasts and pericytes are enriched in the white and gray matter regions of the spinal cord, respectively. Both cell populations are recruited in response to SCI and inflammation. However, their contribution to fibrotic scar tissue depends on the location of the lesion. Upon injury, pericytes and perivascular fibroblasts become activated and transcriptionally converge on the generation of stromal myofibroblasts. Our results show that pericytes and perivascular fibroblasts contribute to the fibrotic scar in a region-dependent manner.


Subject(s)
Cicatrix , Fibroblasts , Fibrosis , Pericytes , Spinal Cord Injuries , Animals , Fibroblasts/pathology , Fibroblasts/metabolism , Fibrosis/pathology , Spinal Cord Injuries/pathology , Mice , Pericytes/pathology , Pericytes/metabolism , Male , Female , Cicatrix/pathology , Mice, Inbred C57BL , Stromal Cells/pathology
8.
Clin Sci (Lond) ; 138(14): 851-862, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38884602

ABSTRACT

The high-grade serous ovarian cancer (HG-SOC) tumor microenvironment (TME) is constellated by cellular elements and a network of soluble constituents that contribute to tumor progression. In the multitude of the secreted molecules, the endothelin-1 (ET-1) has emerged to be implicated in the tumor/TME interplay; however, the molecular mechanisms induced by the ET-1-driven feed-forward loops (FFL) and associated with the HG-SOC metastatic potential need to be further investigated. The tracking of the patient-derived (PD) HG-SOC cell transcriptome by RNA-seq identified the vascular endothelial growth factor (VEGF) gene and its associated signature among those mostly up-regulated by ET-1 and down-modulated by the dual ET-1R antagonist macitentan. Within the ligand-receptor pairs concurrently expressed in PD-HG-SOC cells, endothelial cells and activated fibroblasts, we discovered two intertwined FFL, the ET-1/ET-1R and VEGF/VEGF receptors, concurrently activated by ET-1 and shutting-down by macitentan, or by the anti-VEGF antibody bevacizumab. In parallel, we observed that ET-1 fine-tuned the tumoral and stromal secretome toward a pro-invasive pattern. Into the fray of the HG-SOC/TME double and triple co-cultures, the secretion of ET-1 and VEGF, that share a common co-regulation, was inhibited upon the administration of macitentan. Functionally, macitentan, mimicking the effect of bevacizumab, interfered with the HG-SOC/TME FFL-driven communication that fuels the HG-SOC invasive behavior. The identification of ET-1 and VEGF FFL as tumor and TME actionable vulnerabilities, reveals how ET-1R blockade, targeting the HG-SOC cells and the TME simultaneously, may represent an effective therapeutic option for HG-SOC patients.


Subject(s)
Endothelin-1 , Ovarian Neoplasms , Tumor Microenvironment , Vascular Endothelial Growth Factor A , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Endothelin-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Sulfonamides/pharmacology , Pyrimidines/pharmacology , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/drug therapy , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Cell Line, Tumor , Receptors, Vascular Endothelial Growth Factor/metabolism , Neoplasm Grading , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics
9.
Cell Rep Med ; 5(6): 101606, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38866016

ABSTRACT

Leptomeningeal disease (LMD) remains a rapidly lethal complication for late-stage melanoma patients. Here, we characterize the tumor microenvironment of LMD and patient-matched extra-cranial metastases using spatial transcriptomics in a small number of clinical specimens (nine tissues from two patients) with extensive in vitro and in vivo validation. The spatial landscape of melanoma LMD is characterized by a lack of immune infiltration and instead exhibits a higher level of stromal involvement. The tumor-stroma interactions at the leptomeninges activate tumor-promoting signaling, mediated through upregulation of SERPINA3. The meningeal stroma is required for melanoma cells to survive in the cerebrospinal fluid (CSF) and promotes MAPK inhibitor resistance. Knocking down SERPINA3 or inhibiting the downstream IGR1R/PI3K/AKT axis results in tumor cell death and re-sensitization to MAPK-targeting therapy. Our data provide a spatial atlas of melanoma LMD, identify the tumor-promoting role of meningeal stroma, and demonstrate a mechanism for overcoming microenvironment-mediated drug resistance in LMD.


Subject(s)
Melanoma , Meningeal Neoplasms , Stromal Cells , Tumor Microenvironment , Melanoma/genetics , Melanoma/pathology , Humans , Tumor Microenvironment/genetics , Meningeal Neoplasms/genetics , Meningeal Neoplasms/pathology , Stromal Cells/metabolism , Stromal Cells/pathology , Animals , Cell Line, Tumor , Mice , Gene Expression Regulation, Neoplastic , Transcriptome/genetics , Gene Expression Profiling , Meninges/pathology , Meninges/metabolism , Drug Resistance, Neoplasm/genetics , Signal Transduction , Female
10.
Sci Rep ; 14(1): 14250, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902361

ABSTRACT

Carcinogenesis and tumor proliferation are characterized by a complex interaction of cancer cells with the tumor microenvironment. In particular, a tumor-promoting effect can be assumed for the stroma and its fibroblasts. An influence of the immune system on non small cell lung cancer (NSCLC) is now also suspected. In our study, we examined 309 sections of squamous cell carcinoma (SCC), a subtype of NSCLC. We determined the cell densities and areas of the different tissues in SCC using the software QuPath. Spearman rank correlation showed a significant positive correlation between the different tumor cell densities and stromal cell densities, and between tumor cell densities and immune cell densities. Overall survival curves by the Kaplan-Meier method revealed a prominent negative curve in cases of low immune cell density. Based on our results, we can assume a positive influence of the tumor microenvironment, especially the stromal cells, on tumor proliferation in SCC. We have also revealed that low density of immune cells is prognostically unfavorable.


Subject(s)
Carcinoma, Squamous Cell , Lung Neoplasms , Tumor Microenvironment , Humans , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Tumor Microenvironment/immunology , Male , Female , Aged , Prognosis , Middle Aged , Stromal Cells/pathology , Stromal Cells/immunology , Kaplan-Meier Estimate , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Count
11.
Clin Exp Med ; 24(1): 99, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748269

ABSTRACT

Current clinical guidelines limit surgical intervention to patients with cT1-2N0M0 small cell lung cancer (SCLC). Our objective was to reassess the role of surgery in SCLC management, and explore novel prognostic indicators for surgically resected SCLC. We reviewed all patients diagnosed with SCLC from January 2011 to April 2021 in our institution. Survival analysis was conducted using the Kaplan-Meier method, and independent prognostic factors were assessed through the Cox proportional hazard model. In addition, immunohistochemistry (IHC) staining was performed to evaluate the predictive value of selected indicators in the prognosis of surgically resected SCLC patients. In the study, 177 SCLC patients undergoing surgical resection were ultimately included. Both univariate and multivariate Cox analysis revealed that incomplete postoperative adjuvant therapy emerged as an independent risk factor for adverse prognosis (p < 0.001, HR 2.96). Survival analysis revealed significantly superior survival among pN0-1 patients compared to pN2 patients (p < 0.0001). No significant difference in postoperative survival was observed between pN1 and pN0 patients (p = 0.062). Patients with postoperative stable disease (SD) exhibited lower levels of tumor inflammatory cells (TIC) (p = 0.0047) and IFN-γ expression in both area and intensity (p < 0.0001 and 0.0091, respectively) compared to those with postoperative progressive disease (PD). Conversely, patients with postoperative SD showed elevated levels of stromal inflammatory cells (SIC) (p = 0.0453) and increased counts of CD3+ and CD8+ cells (p = 0.0262 and 0.0330, respectively). Survival analysis indicated that high levels of SIC, along with low levels of IFN-γ+ cell area within tumor tissue, may correlate positively with improved prognosis in surgically resected SCLC (p = 0.017 and 0.012, respectively). In conclusion, the present study revealed that the patients with pT1-2N1M0 staging were a potential subgroup of SCLC patients who may benefit from surgery. Complete postoperative adjuvant therapy remains an independent factor promoting a better prognosis for SCLC patients undergoing surgical resection. Moreover, CD3, CD8, IFN-γ, TIC, and SIC may serve as potential indicators for predicting the prognosis of surgically resected SCLC.


Subject(s)
CD3 Complex , Immunohistochemistry , Interferon-gamma , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Male , Female , Retrospective Studies , Middle Aged , Prognosis , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lung Neoplasms/mortality , Interferon-gamma/metabolism , Aged , Small Cell Lung Carcinoma/surgery , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/metabolism , CD3 Complex/metabolism , CD8 Antigens/metabolism , CD8 Antigens/analysis , Adult , Biomarkers, Tumor/analysis , Survival Analysis , Aged, 80 and over , Kaplan-Meier Estimate , Stromal Cells/pathology , Stromal Cells/metabolism
12.
PLoS One ; 19(5): e0301969, 2024.
Article in English | MEDLINE | ID: mdl-38771787

ABSTRACT

PURPOSE: This study aims to introduce an innovative multi-step pipeline for automatic tumor-stroma ratio (TSR) quantification as a potential prognostic marker for pancreatic cancer, addressing the limitations of existing staging systems and the lack of commonly used prognostic biomarkers. METHODS: The proposed approach involves a deep-learning-based method for the automatic segmentation of tumor epithelial cells, tumor bulk, and stroma from whole-slide images (WSIs). Models were trained using five-fold cross-validation and evaluated on an independent external test set. TSR was computed based on the segmented components. Additionally, TSR's predictive value for six-month survival on the independent external dataset was assessed. RESULTS: Median Dice (inter-quartile range (IQR)) of 0.751(0.15) and 0.726(0.25) for tumor epithelium segmentation on internal and external test sets, respectively. Median Dice of 0.76(0.11) and 0.863(0.17) for tumor bulk segmentation on internal and external test sets, respectively. TSR was evaluated as an independent prognostic marker, demonstrating a cross-validation AUC of 0.61±0.12 for predicting six-month survival on the external dataset. CONCLUSION: Our pipeline for automatic TSR quantification offers promising potential as a prognostic marker for pancreatic cancer. The results underscore the feasibility of computational biomarker discovery in enhancing patient outcome prediction, thus contributing to personalized patient management.


Subject(s)
Biomarkers, Tumor , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/mortality , Prognosis , Female , Stromal Cells/pathology , Male , Deep Learning , Aged , Middle Aged , Image Processing, Computer-Assisted/methods
13.
Cell Commun Signal ; 22(1): 257, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711089

ABSTRACT

Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor ß (TGF-ß)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-ß/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-ß/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.


Subject(s)
Mesenchymal Stem Cells , Prostatic Hyperplasia , Transforming Growth Factor beta , rho-Associated Kinases , rho-Associated Kinases/metabolism , Male , Prostatic Hyperplasia/pathology , Prostatic Hyperplasia/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Prostate/pathology , Prostate/metabolism , Cell Movement , Mice , Stromal Cells/metabolism , Stromal Cells/pathology
14.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38749443

ABSTRACT

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Subject(s)
Adipose Tissue , Ethanol , Hepatocytes , Liver Diseases, Alcoholic , Organoids , Humans , Organoids/pathology , Organoids/drug effects , Ethanol/pharmacology , Ethanol/adverse effects , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Hepatocytes/metabolism , Adipose Tissue/pathology , Adipose Tissue/cytology , Alcohol Dehydrogenase/metabolism , Oxidative Stress/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/pathology , Models, Biological , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Stromal Cells/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism , Thioredoxins/metabolism
15.
IEEE J Transl Eng Health Med ; 12: 413-434, 2024.
Article in English | MEDLINE | ID: mdl-38765886

ABSTRACT

Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells' motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells' and their microenvironment's biophysical properties as the indicator of a tumor's malignancy state. Our objective is to investigate and quantify the correlation between a tumor's malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM's biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of 40 µm when the cancer cell is surrounded by fibroblasts and 12 µm for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.


Subject(s)
Extracellular Matrix , Models, Biological , Stromal Cells , Humans , Stromal Cells/pathology , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Neoplasms/pathology , Neoplasms/physiopathology , Tumor Microenvironment , Stress, Mechanical , Female
16.
Oncogene ; 43(27): 2092-2103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769192

ABSTRACT

Androgen Receptor (AR) activity in prostate stroma is required to maintain prostate homeostasis. This is mediated through androgen-dependent induction and secretion of morphogenic factors that drive epithelial cell differentiation. However, stromal AR expression is lost in aggressive prostate cancer. The mechanisms leading to stromal AR loss and morphogen production are unknown. We identified TGFß1 and TNFα as tumor-secreted factors capable of suppressing AR mRNA and protein expression in prostate stromal fibroblasts. Pharmacological and RNAi approaches identified NF-κB as the major signaling pathway involved in suppressing AR expression by TNFα. In addition, p38α- and p38δ-MAPK were identified as suppressors of AR expression independent of TNFα. Two regions of the AR promoter were responsible for AR suppression through TNFα. FGF10 and Wnt16 were identified as androgen-induced morphogens, whose expression was lost upon TNFα treatment and enhanced upon p38-MAPK inhibition. Wnt16, through non-canonical Jnk signaling, was required for prostate basal epithelial cell survival. These findings indicate that stromal AR loss is mediated by secreted factors within the TME. We identified TNFα/TGFß as two possible factors, with TNFα mediating its effects through NF-κB or p38-MAPK to suppress AR mRNA transcription. This leads to loss of androgen-regulated stromal morphogens necessary to maintain normal epithelial homeostasis.


Subject(s)
NF-kappa B , Prostatic Neoplasms , Receptors, Androgen , Stromal Cells , p38 Mitogen-Activated Protein Kinases , Male , Humans , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , NF-kappa B/metabolism , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Tumor Necrosis Factor-alpha/metabolism , MAP Kinase Signaling System/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Signal Transduction , Prostate/pathology , Prostate/metabolism
17.
Nat Commun ; 15(1): 4139, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755155

ABSTRACT

The natural history of multiple myeloma is characterized by its localization to the bone marrow and its interaction with bone marrow stromal cells. The bone marrow stromal cells provide growth and survival signals, thereby promoting the development of drug resistance. Here, we show that the interaction between bone marrow stromal cells and myeloma cells (using human cell lines) induces chromatin remodeling of cis-regulatory elements and is associated with changes in the expression of genes involved in the cell migration and cytokine signaling. The expression of genes involved in these stromal interactions are observed in extramedullary disease in patients with myeloma and provides the rationale for survival of myeloma cells outside of the bone marrow microenvironment. Expression of these stromal interaction genes is also observed in a subset of patients with newly diagnosed myeloma and are akin to the transcriptional program of extramedullary disease. The presence of such adverse stromal interactions in newly diagnosed myeloma is associated with accelerated disease dissemination, predicts the early development of therapeutic resistance, and is of independent prognostic significance. These stromal cell induced transcriptomic and epigenomic changes both predict long-term outcomes and identify therapeutic targets in the tumor microenvironment for the development of novel therapeutic approaches.


Subject(s)
Chromatin Assembly and Disassembly , Gene Expression Regulation, Neoplastic , Mesenchymal Stem Cells , Multiple Myeloma , Tumor Microenvironment , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Humans , Tumor Microenvironment/genetics , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Transcription, Genetic , Bone Marrow Cells/metabolism , Cell Movement/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Female , Male
18.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709925

ABSTRACT

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Drug Resistance, Neoplasm , Glycocalyx , Quinolines , Receptor, ErbB-2 , Stromal Cells , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Glycocalyx/metabolism , Animals , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Quinolines/pharmacology , Mice , Cell Communication , Coculture Techniques , Mucin-1/metabolism , Mucin-1/genetics , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors
19.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724995

ABSTRACT

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Subject(s)
Epithelial Cells , Exosomes , MicroRNAs , Prostatitis , Stromal Cells , Animals , Humans , Male , Mice , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Exosomes/metabolism , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System , MicroRNAs/genetics , MicroRNAs/metabolism , Pelvic Pain/genetics , Pelvic Pain/metabolism , Prostate/pathology , Prostate/metabolism , Prostatitis/genetics , Prostatitis/pathology , Prostatitis/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism
20.
Transl Res ; 271: 40-51, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38734064

ABSTRACT

The presence of abundant tumor stroma is a prominent characteristic of pancreatic ductal adenocarcinomas (PDAC) that potentially influences disease progression and therapy response. This study aims to investigate immune cell infiltration and epigenetic profiles in tumor cell enriched ("Tumor") and stroma cell enriched ("Stroma") regions within human PDAC tissue samples. By comparing those regions, we identified 25,410 differentially methylated positions (DMPs) distributed across 6,963 unique genes. Pathway enrichment analysis using the top 2,000 DMPs that were either hyper- or hypomethylated indicated that immune response pathways and the estrogen receptor pathway are epigenetically dysregulated in Tumor and Stroma regions, respectively. In terms of immune cell infiltration, we observed overall low levels of T cells in both regions. In Tumor regions however, occurrence of tumor-associated macrophages (TAMs) was higher than in Stroma regions (p = 0.02) concomitant with a dualistic distribution that stratifies PDAC patients into those with high and low TAM infiltration. By categorizing TAM levels into quartiles, our analysis revealed that PDAC patients with more than 1,515 TAMs per mm² exhibited significantly shorter overall survival (p = 0.036). Our data suggest that variations in inflammatory characteristics between the Tumor and Stroma defined compartments of PDAC may primarily stem from the presence of macrophages rather than lymphocytes. The abundance of TAMs within regions enriched with tumor cells correlates with patient survival, underscoring the potential significance of exploring therapeutic interventions targeting TAMs. Furthermore, directing attention towards the estrogen receptor pathway may represent a promising strategy to address the stroma cell component within the PDAC tumor microenvironment.


Subject(s)
Carcinoma, Pancreatic Ductal , DNA Methylation , Pancreatic Neoplasms , Stromal Cells , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Female , Male , Stromal Cells/metabolism , Stromal Cells/pathology , Middle Aged , Aged , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor Microenvironment , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...