Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 388
Filter
1.
Int J Biol Macromol ; 273(Pt 1): 132746, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821310

ABSTRACT

The aim of this work was to evaluate the potentials of porous starch (PS) and its octenyl succinic anhydride modified product (OSAPS) as efficient carriers for loading naringin (NA), focusing on encapsulation efficiency (EE, the percentage of adsorbed naringin relative to its initial amount), drug loading (DL, the percentage of naringin in the complex), structural alterations, solubilization and in vitro release of NA using unmodified starch (UMS) and NA as controls. Both the pore diameter and SBET value of PS decreased after esterification with OSA, and a thinner strip-shaped NA (∼145 nm) was observed in the OSAPS-NA complex and (∼150 nm) in the PS-NA complex. OSAPS exhibited reduced short-range ordered structure, as indicated by a lower R1047/1022 (0.73) compared to PS (0.77). Meanwhile, lowest crystallinity (12.81 %) of NA was found in OSAPS-NA. OSAPS-NA exhibited higher EE and DL for NA than PS-NA and a significant increase in NA saturated solubility in deionized water (by 11.63-fold) and simulated digestive fluids (by 24.95-fold) compared to raw NA. OSAPS contained higher proportions of slowly digestible starch and exhibited a lower digestion rate compared to PS, resulting in a longer time for NA release from its complex during the digestion.


Subject(s)
Flavanones , Solubility , Starch , Starch/chemistry , Starch/analogs & derivatives , Porosity , Flavanones/chemistry , Drug Liberation , Drug Carriers/chemistry , Succinic Anhydrides/chemistry , Drug Compounding/methods
2.
Food Chem ; 454: 139742, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795623

ABSTRACT

This study investigated the effects of octenyl succinic anhydride (OSA)-starch-fatty acid (FA) interactions on the structural, digestibility and release characteristics of high amylose corn starch (HAS). FTIR and XRD analysis showed that the hydrophobic interaction between HAS and FA promoted the covalent binding between OSA and HAS. With the increasing of the FA chain length, the complex index, degree of substitution, R1047/1022 and relative crystallinity of OSA-HAS-FA increased first and then decreased, whereas the first-order rate coefficient and percentage of digested in infinite time showed an opposite trend. Structural changes and the molecular interactions of OSA-HAS-FA with 12­carbon FA resulted in highest resistant starch content (45.43%) and encapsulation efficiency of curcumin (Cur) (47.98%). In vitro release test revealed that Cur could be gradually released from OSA-HAS-FA in simulated gastric, intestinal and colonic fluids. Results provided novel insights into HAS-FA complex grafted with OSA as carrier for colon-specific of functional materials.


Subject(s)
Amylose , Digestion , Fatty Acids , Starch , Zea mays , Amylose/chemistry , Amylose/metabolism , Starch/chemistry , Starch/metabolism , Starch/analogs & derivatives , Fatty Acids/chemistry , Fatty Acids/metabolism , Zea mays/chemistry , Zea mays/metabolism , Succinic Anhydrides/chemistry , Humans
3.
Food Chem ; 453: 139571, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761741

ABSTRACT

The traditional strategies of chemical catalysis and biocatalysis for producing octenyl succinic anhydride modified starch can only randomly graft hydrophobic groups on the surface of starch, resulting in unsatisfactory emulsification performance. In this work, a lipase-inorganic hybrid catalytic system with multi-scale flower like structure is designed and applied to spatially selective catalytic preparation of ocenyl succinic anhydride modified starch. With the appropriate floral morphology and petal density, lipases distributed in the "flower center" can selectively catalyze the grafting of hydrophobic groups in a spatial manner, the hydrophobic groups are concentrated on one side of starch particles. The obtaining OSA starch exhibits excellent emulsifying property, and the pickering emulsion has good protective effect on the embedded curcumin. This work provides a direction for the development of high-performance starch-based emulsifiers for the food and pharmaceutical industries, which is of great significance for improving the preparation and emulsification theory research of modified starch.


Subject(s)
Emulsions , Lipase , Starch , Starch/chemistry , Starch/analogs & derivatives , Emulsions/chemistry , Lipase/chemistry , Lipase/metabolism , Emulsifying Agents/chemistry , Catalysis , Hydrophobic and Hydrophilic Interactions , Succinic Anhydrides/chemistry , Particle Size , Biocatalysis
4.
Int J Biol Macromol ; 267(Pt 2): 131557, 2024 May.
Article in English | MEDLINE | ID: mdl-38614171

ABSTRACT

In this study, emulsions stabilized by octenyl succinic anhydride-modified broken japonica rice starch (OSA-BJRS) were prepared at different ultrasonic power intensities for the delivery, controlled release, and improved bioavailability of quercetin. The OSA-BJRS emulsions ultrasonicated at 400 W exhibited the highest encapsulation efficiency (89.37 %) and loading efficiency (58.34 %) of quercetin, the smallest volume-average droplet diameter (0.51 µm) and polydispersity index (0.19), the highest absolute value of the ζ-potential (26.73 mV), and the highest apparent viscosity and viscoelasticity. The oxidation stability, storage stability, thermal stability, and salt ion stability of the emulsions were also notably improved by the ultrasonication treatment. In addition, the results of the simulated in vitro digestion demonstrated that the ultrasonicated OSA-BJRS emulsions had an enhanced quercetin delivery performance and could stably transport quercetin to the small intestine for digestion. The OSA-BJRS emulsion ultrasonicated at 400 W exhibited the highest cumulative release rate (95.91 %) and the highest bioavailability (30.48 %) of quercetin. This suggests that OSA-BJRS emulsions prepared by ultrasonication can be considered effective delivery systems for hydrophobic functional components.


Subject(s)
Emulsions , Oryza , Quercetin , Starch , Emulsions/chemistry , Quercetin/chemistry , Quercetin/analogs & derivatives , Oryza/chemistry , Starch/chemistry , Starch/analogs & derivatives , Succinic Anhydrides/chemistry , Ultrasonic Waves , Viscosity , Drug Liberation , Biological Availability , Drug Delivery Systems
5.
Int J Biol Macromol ; 264(Pt 2): 130570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462096

ABSTRACT

Starchy materials with good antioxidant, emulsification and adsorption properties have potential applications in industry. To improve these properties, a Dual-functional porous starch was prepared through one-pot synthesis. In this case, octenyl succinic anhydride (OSA) and syringic acid (SA) were selected to modify the porous starch (PS) by esterification, with subsequent signals recorded by 1H NMR at 1.2 ppm and FT-IR at 1743 cm-1, indicating the formation of Dual-functional porous starch grafted by OSA and SA. N2 adsorption analysis further proved that the porous structure (2.9 m2g-1) was still maintained after modification. This was followed by measurements of droplet size distribution (34.18 ± 3.80 µm), zeta potential (-39.62 ± 1.89 mV) and emulsion index (85.10 ± 1.76 %), all of which indicated good emulsifying capacity. Meanwhile, results of radical scavenging assay proved that the Dual-functional porous starch had considerable antioxidant properties due to the introduction of SA groups. Besides, the Dual-functional porous starch also showed good resistance to digestion. These findings not only provide a novel strategy for constructing multi-functionalized starchy materials, but also open up potential applications of starch in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Starch , Starch/chemistry , Spectroscopy, Fourier Transform Infrared , Porosity , Emulsions/chemistry , Succinic Anhydrides/chemistry
6.
Biomater Sci ; 12(9): 2369-2380, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38498344

ABSTRACT

Advances in cell immunotherapy underscore the need for effective methods to produce large populations of effector T cells, driving growing interest in T-cell bioprocessing and immunoengineering. Research suggests that T cells demonstrate enhanced expansion and differentiation on soft matrices in contrast to rigid ones. Nevertheless, the influence of antibody conjugation chemistry on these processes remains largely unexplored. In this study, we examined the effect of antibody conjugation chemistry on T cell activation, expansion and differentiation using a soft and biocompatible polydimethylsiloxane (PDMS) platform. We rigorously evaluated three distinct immobilization methods, beginning with the use of amino-silane (PDMS-NH2-Ab), followed by glutaraldehyde (PDMS-CHO-Ab) or succinic acid anhydride (PDMS-COOH-Ab) activation, in addition to the conventional physical adsorption (PDMS-Ab). By employing both stable amide bonds and reducible Schiff bases, antibody conjugation significantly enhanced antibody loading and density compared to physical adsorption. Furthermore, we discovered that the PDMS-COOH-Ab surface significantly promoted IL-2 secretion, CD69 expression, and T cell expansion compared to the other groups. Moreover, we observed that both PDMS-COOH-Ab and PDMS-NH2-Ab surfaces exhibited a tendency to induce the differentiation of naïve CD4+ T cells into Th1 cells, whereas the PDMS-Ab surface elicited a Th2-biased immunological response. These findings highlight the importance of antibody conjugation chemistry in the design and development of T cell culture biomaterials. They also indicate that PDMS holds promise as a material for constructing culture platforms to modulate T cell activation, proliferation, and differentiation.


Subject(s)
Antibodies, Immobilized , Cell Differentiation , Dimethylpolysiloxanes , Succinic Anhydrides , Surface Properties , T-Lymphocytes , Dimethylpolysiloxanes/chemistry , T-Lymphocytes/immunology , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Cell Differentiation/drug effects , Animals , Lymphocyte Activation/drug effects , Cell Proliferation/drug effects , Interleukin-2/metabolism , Interleukin-2/chemistry , Mice , Cells, Cultured , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Differentiation, T-Lymphocyte/chemistry , Adsorption
7.
Int J Biol Macromol ; 260(Pt 2): 129614, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246468

ABSTRACT

The potential application of succinylated chickpea protein (SCP) as a wall material for spray-dried microencapsulated probiotics was investigated. The results showed that succinylation increased the surface charge of chickpea proteins (CP) and reduced the particle size of the proteins. Meanwhile, succinylated modification decreased the solubility of protein under acidic conditions and increased the solubility in alkaline conditions. The effects of spray drying and in vitro gastrointestinal digestion on probiotics were investigated by microencapsulating chickpea protein with different degrees of N-succinylation. The results showed that all microcapsules had similar morphology, particle size and low water content. The microcapsules prepared by succinylated chickpea protein showed better stability and viability during spray drying and gastrointestinal digestion. The protective effect of probiotics was better as the degree of N-succinylation increased. In particular, the SCP-3-P sample (10 % succinic anhydride modified CP and maltodextrin) lost only 0.29 Log CFU/g throughout gastrointestinal digestion. The superior protective effect provided by succinylated CP in simulated gastric fluid (SGF) was mainly attributed to the reaction of succinic anhydride with protein to cause protein aggregation under gastric acidic conditions, reducing the infiltration of gastric acid and pepsin and maintaining the structural integrity of the microcapsules. Therefore, these findings provide a new strategy for probiotic intestinal delivery and application of chickpea protein.


Subject(s)
Cicer , Probiotics , Succinic Anhydrides , Drug Compounding/methods , Capsules/chemistry , Probiotics/chemistry , Digestion , Microbial Viability
8.
Int J Biol Macromol ; 260(Pt 2): 129594, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253147

ABSTRACT

Octenyl succinic anhydride (OSA)-modified starches have gained widespread interest, but the modification can produce two starches with different states ignored. Herein, the two types of starches, esterified starch (ES) and pregelatinized esterified starch (PES), prepared by OSA modification were separated, and their structural and functional characteristics were comprehensively explored. Results showed that compared with native starch (NS), ES and PES exhibited high water-holding capacity, solubility, and swelling power and significantly decreased pasting temperature and thermal stability. Dynamic rheological tests illustrated that OSA modification changed the rheological behavior of starches. Fourier transform infrared spectroscopy confirmed that PES with higher degree of substitution showed more obvious ester carbonyl and carboxylate groups than ES. Laser confocal micro-Raman spectroscopy revealed that the short-range molecular order of ES, especially PES, decreased after modification. X-ray diffraction indicated that OSA modification disrupted the crystalline structure of starch, and that more amylose-lipid complex was formed in PES. Scanning electron microscopy showed that OSA modification eroded starchs surface and reduced its smoothness, and significantly disrupted PES integrity. ES and PES could be developed as food additives for retrogradation inhibition of dough. These results provide new insights into OSA modification and expand its functional application in foods.


Subject(s)
Starch , Succinic Anhydrides , Succinic Anhydrides/chemistry , Starch/chemistry , Amylose/chemistry , X-Ray Diffraction
9.
Int J Biol Macromol ; 259(Pt 1): 129243, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199535

ABSTRACT

This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.


Subject(s)
Hordeum , Starch , Starch/chemistry , Succinic Anhydrides/chemistry , Freezing
10.
Int J Biol Macromol ; 259(Pt 2): 129288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38211926

ABSTRACT

Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.


Subject(s)
Antioxidants , Succinic Anhydrides , Humans , Emulsions/chemistry , Antioxidants/pharmacology , Resveratrol , Hypromellose Derivatives , Succinic Anhydrides/chemistry , Caco-2 Cells , Starch/chemistry , Digestion
11.
Int J Biol Macromol ; 258(Pt 2): 128993, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163505

ABSTRACT

Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.


Subject(s)
Curcumin , Nanoparticles , Succinic Anhydrides , Emulsions/chemistry , Starch/chemistry , Curcumin/chemistry , Fermentation , Digestion , Particle Size
12.
Food Chem ; 441: 138289, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38176141

ABSTRACT

Octenyl succinic anhydride-modified chitosan (OSA-CS) was synthesized and applied as a coating material to enhance the stability of docosahexaenoic acid (DHA)-loaded nanoemulsion. Due to the presence of the positively charged OSA-CS coating, the nanoemulsion exhibited a high positive zeta potential and two different layers. Compared with natural CS-coated nanoemulsion, OSA-CS-coated nanoemulsion showed improved storage stability (physical and chemical stability) and stability against environmental stresses (ionic strengths, temperatures and pH). Besides, OSA-CS-coated nanoemulsion protected encapsulated DHA from simulated gastric fluid damage better than that of natural CS-coated nanoemulsion, suggesting that OSA-CS-coated nanoemulsion had the potential to deliver more DHA into the small intestine. In conclusion, based on the comparison of two coating materials, natural chitosan and OSA-CS, it was found that the encapsulated nutrient was better protected by the OSA-CS coating. Such a finding will provide insights to broaden the application of modified chitosan in food delivery systems.


Subject(s)
Chitosan , Starch , Docosahexaenoic Acids , Succinic Anhydrides , Emulsions
13.
Food Chem ; 439: 138152, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38070232

ABSTRACT

Fish gelatin (FG) and octenyl succinic anhydride starch (OSAS) composite films loaded with 1, 2, 3 and 4 wt% bacterial nanocellulose (BNC) and Satureja Khuzestanica Jamzad essential oil (SKEO) were achieved successfully and their physicochemical and release properties were investigated. The results revealed that incorporation of BNC improved the tensile strength which was associated with FE-SEM, FTIR and XRD. Moreover, this study focused on the release modeling of SKEO in 4, 25 and 37 °C from nanocomposite films using different release kinetic and Arrhenius models. Also, analysis of variance-simultaneous component analysis (ASCA) and exploratory data visualization by principal component analysis (PCA) were carried out to investigate the effects of two controlled factors. Consequently, the Peleg model showed the best fitting of experimental data. The activation energies decreased by increasing the BNC concentration. This research demonstrated the nanocomposite film containing SKEO would be a suitable candidate for active food packaging.


Subject(s)
Nanocomposites , Oils, Volatile , Satureja , Animals , Oils, Volatile/chemistry , Starch/chemistry , Satureja/chemistry , Gelatin , Temperature , Succinic Anhydrides
14.
Int J Biol Macromol ; 258(Pt 2): 128992, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151085

ABSTRACT

The emulsifying properties of emulsions are significantly influenced by the structural properties of octenyl succinic anhydride (OSA) starch. The purpose of this work was to elucidate the effect of the structure of OSA starch on its performance as an emulsifier to stabilize Pickering high-internal-phase emulsions (HIPEs). The degrees of substitution (DS) of the three OSA starches were 0.0137, 0.0177 and 0.0236, and their degrees of branching (DB) were 13.96 %, 14.20 % and 14.32 % measured by 1H NMR, which were sequentially labeled as OSA1, OSA2, and OSA3. The OSA3 starch with higher DS and DB had a lower critical micelle concentration (CMC) (0.11 mg/mL). Its emulsification activity (EAI) and emulsion stability (ES) were 61.8 m2/g and 72.5 min, respectively, which were higher than OSA1 and OSA2 starches. The contact angle of the three OSA starches increased from 45.35° to 80.03° with increasing DS and DB. Therefore, it is hypothesized that OSA3 starches have better emulsification properties. The results of physical stability of HIPEs confirmed the above results. These results indicated that DS and DB have a synergistic effect on emulsion properties, and OSA starch with higher DS and DB values were more conducive to the construction of stable HIPEs systems.


Subject(s)
Starch , Succinic Anhydrides , Emulsions/chemistry , Succinic Anhydrides/chemistry , Particle Size , Starch/chemistry
15.
J Sci Food Agric ; 104(2): 892-904, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37707173

ABSTRACT

BACKGROUND: In the present study, the insoluble fraction of Persian gum (IFPG) was modified with octenyl succinic anhydride (OSA) and its various properties were assessed. In addition, the effect of OSA-IFPG on the rheological and textural properties of dairy cream was investigated. RESULTS: Suitable conditions for achieving a degree of substitution (DS) of 0.023 were found at pH 9, IFPG concentration 4 wt%, OSA concentration 10 wt% and a temperature of 40 °C, within 120 min. The carbonyl group attachment in OSA-IFPG was also confirmed via Fourier transform infrared and H-nuclear magnetic resonance spectroscopy (1 H-NMR). While the X-ray diffraction test indicated no significant changes in the structure of the IFPG after modification with OSA, esterification increased the negative charge density, decreased thermal decomposition temperature and increased the emulsifying capacity to 100%, which was obtained for the first time. The use of OSA-modified IFPG in creams augmented the complex viscosity, loss and storage modulus, while also demonstrating the creation of a pseudo-gel network. The hardness and adhesiveness of the texture increased, which can be explained by the formation of a compact structure and reduced particle size. CONCLUSION: Overall, OSA-IFPG with hydrophilic and hydrophobic sections may function as an emulsifier and be recommended as a safe source of hydrocolloids for emulsion stability. It can also provide a positive physical structure when added to dairy cream, even if the fat concentration is lower than usual. © 2023 Society of Chemical Industry.


Subject(s)
Starch , Succinic Anhydrides , Succinic Anhydrides/chemistry , Starch/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry
16.
Int J Mol Sci ; 24(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958636

ABSTRACT

Recently, polyetheretherketone (PEEK) has shown promising dental applications. Surface treatment is essential for dental applications owing to its poor surface energy and wettability; however, no consensus on an effective treatment method has been achieved. In this study, we attempted to carboxylate PEEK sample surfaces via Friedel-Crafts acylation using succinic anhydride and AlBr3. The possibility of further chemical modifications using carboxyl groups was examined. The samples were subjected to dehydration-condensation reactions with 1H,1H-pentadecafluorooctylamine and N,N'-dicyclohexylcarbodiimide. Furthermore, the sample's surface properties at each reaction stage were evaluated. An absorption band in the 3300-3500 cm-1 wavenumber region was observed. Additionally, peak suggestive of COOH was observed in the sample spectra. Secondary modification diminished the absorption band in 3300-3500 cm-1 and a clear F1s signal was observed. Thus, Friedel-Crafts acylation with succinic anhydride produced carboxyl groups on the PEEK sample surfaces. Further chemical modification of the carboxyl groups by dehydration-condensation reactions is also possible. Thus, a series of reactions can be employed to impart desired chemical structures to PEEK surfaces.


Subject(s)
Dehydration , Succinic Anhydrides , Humans , Polyethylene Glycols/chemistry , Ketones/chemistry , Surface Properties , Acylation
17.
J Agric Food Chem ; 71(47): 18587-18600, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37963094

ABSTRACT

ß-cyclodextrin (ß-CD)-based emulsion gels encapsulated with nutrition for three-dimensional (3D) printing are promising, while obstacles such as low bioaccessibility of bioactive compounds and the molding process in food manufacturing hinder their application. This study intended to develop stable composite emulsion gels using the complexes of chitosan (CS) and octenyl succinic anhydride (OSA)-modified ß-CD (OCD) to conquer these challenges. The esterification of OSA generated more negatively charged OCD and ester groups, which aided in the combination of OCD and CS through enhanced electrostatic and hydrogen bonding interactions. The addition of CS improved the emulsification properties of the complexes and acted as a bridge link in the aqueous phase, thereby increasing the gel strength of the composite emulsion gels. Moreover, the encapsulation of ß-carotene destabilized the strength of the emulsion gels by lowering the interfacial tension. The emulsion gel stabilized by OCD3/CS-0.75% at an initial pH not only successfully encapsulated ß-carotene and presented the highest bioaccessibility of 41.88 ± 0.87% in the in vitro digestion but also showed excellent 3D printability. These results provided a promising strategy to enhance the viscoelasticity of ß-CD-based emulsion gels and accelerate their application in bioactive compound delivery systems and 3D food printing.


Subject(s)
Chitosan , beta-Cyclodextrins , Emulsions/chemistry , Succinic Anhydrides/chemistry , beta Carotene/chemistry , Chitosan/chemistry , beta-Cyclodextrins/chemistry , Digestion , Gels
18.
Biomolecules ; 13(11)2023 10 30.
Article in English | MEDLINE | ID: mdl-38002276

ABSTRACT

Although amphiphilic chitosan has been widely studied as a drug carrier for drug delivery, fewer studies have been conducted on the antimicrobial activity of amphiphilic chitosan. In this study, we successfully synthesized deoxycholic acid-modified chitosan (CS-DA) by grafting deoxycholic acid (DA) onto chitosan C2-NH2, followed by grafting succinic anhydride, to prepare a novel amphiphilic chitosan (CS-DA-SA). The substitution degree was 23.93% for deoxycholic acid and 29.25% for succinic anhydride. Both CS-DA and CS-DA-SA showed good blood compatibility. Notably, the synthesized CS-DA-SA can self-assemble to form nanomicelles at low concentrations in an aqueous environment. The results of CS, CS-DA, and CS-DA-SA against Escherichia coli and Staphylococcus aureus showed that CS-DA and CS-DA-SA exhibited stronger antimicrobial effects than CS. CS-DA-SA may exert its antimicrobial effect by disrupting cell membranes or forming a membrane on the cell surface. Overall, the novel CS-DA-SA biomaterials have a promising future in antibacterial therapy.


Subject(s)
Chitosan , Chitosan/pharmacology , Succinic Anhydrides , Micelles , Anti-Bacterial Agents/pharmacology , Deoxycholic Acid/pharmacology
19.
J Agric Food Chem ; 71(48): 19033-19044, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37997356

ABSTRACT

Starch-lipid-protein complexes are attracting increasing attention due to their unique structure and low enzymatic digestibility. However, the mechanisms underlying the formation of these ternary complexes, especially those with monoglycerides as the lipid component, remain unclear. In the present study, potato starch or octenyl succinic anhydride (OSA)-modified potato starch (OSAPS), various monoglycerides (MGs), and beta-lactoglobulin (ßLG) were used in model systems to characterize the formation, structure, and in vitro digestibility of the respective ternary complexes. Colorimetry and live/dead staining assays demonstrated that the OSAPS had good biocompatibility. Experimental data and molecular dynamics simulations showed that both unmodified potato starch and OSAPS formed starch-lipid-protein complexes with MGs and ßLG. Of the two types of starch, OSA formed a greater amount of the more stable type II V-crystallites in complexes, which had greater resistance to in vitro enzymic digestion. This study demonstrated for the first time that starch can interact with MGs and ßLG to form ternary complexes and that OSA esterification of starch promoted the formation of more complexes than unmodified starch.


Subject(s)
Monoglycerides , Succinic Anhydrides , Succinic Anhydrides/chemistry , Starch/chemistry , Esterification
20.
Int J Biol Macromol ; 253(Pt 3): 126895, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709233

ABSTRACT

In the present work, a dual-modified waxy rice starch (OOWRS) fabricated with OSA and ozone was successfully used to stabilize the O/W Pickering emulsion. The molecular structure, surface properties, and underlying stabilizing mechanism were systematically investigated. The results showed that oxidation occurring on the surface of OSA-modified waxy rice starch (OSAWRS) resulted in the presence of indentations and cracks. The relative crystallinity of starch was generally decreased with increasing degree of oxidation. Due to the introduction of carbonyl and the variation in surface structure, the hydrophobicity and acidity of OSAWRS were significantly enhanced after the ozone treatment. Remarkably, OOWRS stabilized Pickering emulsion exhibited a feature of typical O/W emulsion, and the 0.5 h and 1 h OOWRS emulsion exhibited a more uniform droplet size as well as a higher surface potential. We also noted that a weak-gel network was formed within the OOWRS emulsion system as the hydrophilic starch chains played a bridging role. Two reasons for the improved stability of the emulsion were the special gel structure and the enhanced electrical repulsion among the droplets. This research provides that ozone-conjugated OSA modification is a promising strategy for improving the emulsion ability of starch-based Pickering emulsions.


Subject(s)
Oryza , Emulsions/chemistry , Oryza/chemistry , Succinic Anhydrides/chemistry , Amylopectin , Starch/chemistry , Surface Properties , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...