Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.547
Filter
1.
Malar J ; 23(1): 201, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970076

ABSTRACT

BACKGROUND: Intermittent preventive treatment in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) reduces malaria-attributable adverse pregnancy outcomes and may also prevent low birth weight (< 2,500 g) through mechanisms independent of malaria. Malaria transmission in Papua New Guinea (PNG) is highly heterogeneous. The impact of IPTp-SP on adverse birth outcomes in settings with little or no malaria transmission, such as PNG's capital city Port Moresby, is unknown. METHODS: A retrospective cohort study was conducted amongst HIV-negative women with a singleton pregnancy who delivered at Port Moresby General Hospital between 18 July and 21 August 2022. The impact of IPTp-SP doses on adverse birth outcomes and anaemia was assessed using logistic and linear regression models, as appropriate. RESULTS: Of 1,140 eligible women amongst 1,228 consecutive births, 1,110 had a live birth with a documented birth weight. A total of 156 women (13.7%) did not receive any IPTp-SP, 347 women (30.4%) received one, 333 (29.2%) received two, and 304 (26.7%) received the recommended ≥ 3 doses of IPTp-SP. A total of 65 of 1,110 liveborn babies (5.9%) had low birth weight and there were 34 perinatal deaths (3.0%). Anaemia (haemoglobin < 100 g/L) was observed in 30.6% (243/793) of women, and 14 (1.2%) had clinical malaria in pregnancy. Compared to women receiving 0-1 dose of IPTp-SP, women receiving ≥ 2 doses had lower odds of LBW (adjusted odds ratio [aOR] 0.50; 95% confidence interval [CI] 0.26, 0.96), preterm birth (aOR 0.58; 95% CI 0.32, 1.04), perinatal death (aOR 0.49; 95% CI 0.18, 1.38), LBW/perinatal death (aOR 0.55; 95% CI 0.27, 1.12), and anaemia (OR 0.50; 95% CI 0.36, 0.69). Women who received 2 doses versus 0-1 had 45% lower odds of LBW (aOR 0.55, 95% CI 0.27, 1.10), and a 16% further (total 61%) reduction with ≥ 3 doses (aOR 0.39, 95% CI 0.14, 1.05). Birth weights for women who received 2 or ≥ 3 doses versus 0-1 were 81 g (95% CI -3, 166) higher, and 151 g (58, 246) higher, respectively. CONCLUSIONS: Provision of IPTp-SP in a low malaria-transmission setting in PNG appears to translate into substantial health benefits, in a dose-response manner, supporting the strengthening IPTp-SP uptake across all transmission settings in PNG.


Subject(s)
Antimalarials , Drug Combinations , Malaria , Pregnancy Outcome , Pyrimethamine , Sulfadoxine , Humans , Female , Pregnancy , Sulfadoxine/therapeutic use , Sulfadoxine/administration & dosage , Pyrimethamine/therapeutic use , Pyrimethamine/administration & dosage , Retrospective Studies , Papua New Guinea/epidemiology , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Adult , Young Adult , Malaria/prevention & control , Pregnancy Complications, Parasitic/prevention & control , Infant, Low Birth Weight , Infant, Newborn , Adolescent , Cohort Studies
2.
PLoS One ; 19(7): e0304337, 2024.
Article in English | MEDLINE | ID: mdl-38968216

ABSTRACT

BACKGROUND: Plasmodium vivax has become the predominant species in the border regions of Thailand. The emergence and spread of antimalarial drug resistance in P. vivax is one of the significant challenges for malaria control. Continuous surveillance of drug resistance is therefore necessary for monitoring the development of drug resistance in the region. This study aims to investigate the prevalence of the mutation in the P. vivax multidrug resistant 1 (Pvmdr1), dihydrofolate reductase (Pvdhfr), and dihydropteroate synthetase (Pvdhps) genes conferred resistance to chloroquine (CQ), pyrimethamine (P) and sulfadoxine (S), respectively. METHOD: 100 P. vivax isolates were obtained between January to May 2023 from a Kanchanaburi province, western Thailand. Nucleotide sequences of Pvmdr1, Pvdhfr, and Pvdhps genes were amplified and sequenced. The frequency of single nucleotide polymorphisms (SNPs)-haplotypes of drug-resistant alleles was assessed. The linkage disequilibrium (LD) tests were also analyzed. RESULTS: In Pvmdr1, T958M, Y976F, and F1076L, mutations were detected in 100%, 21%, and 23% of the isolates, respectively. In Pvdhfr, the quadruple mutant allele (I57R58M61T117) prevailed in 84% of the samples, followed by (L57R58M61T117) in 11%. For Pvdhps, the double mutant allele (G383G553) was detected (48%), followed by the triple mutant allele (G383M512G553) (47%) of the isolates. The most prevalent combination of Pvdhfr (I57R58M61T117) and Pvdhps (G383G553) alleles was sextuple mutated haplotypes (48%). For LD analysis, the association in the SNPs pairs was found between the intragenic and intergenic regions of the Pvdhfr and Pvdhps genes. CONCLUSION: The study has recently updated the high prevalence of three gene mutations associated with CQ and SP resistance. Genetic monitoring is therefore important to intensify in the regions to further assess the spread of drug resistant. Our data also provide evidence on the distribution of drug resistance for the early warning system, thereby threatening P. vivax malaria treatment policy decisions at the national level.


Subject(s)
Antimalarials , Drug Resistance , Malaria, Vivax , Plasmodium vivax , Polymorphism, Single Nucleotide , Plasmodium vivax/genetics , Plasmodium vivax/drug effects , Plasmodium vivax/isolation & purification , Thailand/epidemiology , Drug Resistance/genetics , Humans , Antimalarials/pharmacology , Malaria, Vivax/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy , Tetrahydrofolate Dehydrogenase/genetics , Linkage Disequilibrium , Mutation , Protozoan Proteins/genetics , Chloroquine/pharmacology , Dihydropteroate Synthase/genetics , Sulfadoxine/pharmacology , Pyrimethamine/pharmacology , Multidrug Resistance-Associated Proteins/genetics , Haplotypes , Male , Female , Adult
3.
J Glob Health ; 14: 04112, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38939971

ABSTRACT

Background: Malaria infection during pregnancy is associated with an increased risk of maternal death, as well as adverse birth outcomes. Intermittent preventive treatment in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is known to improve pregnancy outcomes. However, the coverage of IPTp-SP in antenatal care (ANC) in sub-Saharan Africa remains well below the target. This study aims to estimate to what extent malaria service readiness affects the uptake of IPTp-SP during ANC visits in sub-Saharan African countries. Methods: This study included 3267 pregnant women attending ANC for the first time and 2797 pregnant women who had attended ANC more than a month ago in six sub-Saharan African countries. The readiness of malaria services at each institution includes four indicators: the presence of IPTp-SP guidelines, SP availability, integration of IPTp-SP service into ANC, and provider training on IPTp-SP. The outcome variable indicates whether a pregnant woman received IPTp-SP at her current ANC visit. A modified Poisson regression model estimated the associations between malaria service readiness and IPTp-SP uptake for women eligible for the first and subsequent doses. Results: For women eligible for their first dose, visiting an institution with available SP was associated with an increased probability of receiving IPTp-SP (risk ratio (RR) = 1.43; 95% confidence interval (CI) = 1.22 to 1.67, P < 0.001). For women who were eligible for their next dose, the availability of SP (RR = 1.17; 95% CI = 1.04 to 1.32, P = 0.008) and integration of IPTp-SP service into ANC (RR = 1.82; 95% CI = 1.21 to 2.74, P = 0.004) in the institution were associated with increased likelihood of IPTp-SP uptake. Counterfactual predictions indicated that enhanced provider training could boost IPTp-SP uptake in high-uptake countries, while better SP availability and IPTp-SP integration into ANC would significantly impact low-uptake countries. Conclusions: For better IPTp-SP coverage, strategies should be customised. High uptake countries should focus on provider training, while low uptake ones should ensure IPTp-SP availability and service integration.


Subject(s)
Antimalarials , Drug Combinations , Malaria , Pregnancy Complications, Parasitic , Prenatal Care , Pyrimethamine , Sulfadoxine , Humans , Female , Pregnancy , Antimalarials/therapeutic use , Africa South of the Sahara , Pyrimethamine/therapeutic use , Pyrimethamine/administration & dosage , Sulfadoxine/therapeutic use , Sulfadoxine/administration & dosage , Malaria/prevention & control , Pregnancy Complications, Parasitic/prevention & control , Adult , Prenatal Care/statistics & numerical data , Young Adult , Adolescent , Patient Acceptance of Health Care/statistics & numerical data
4.
BMC Pregnancy Childbirth ; 24(1): 379, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769513

ABSTRACT

BACKGROUND: Malaria during pregnancy is associated with poor maternal, foetal, and neonatal outcomes. To prevent malaria infection during pregnancy, the World Health Organization recommended the use of intermittent preventive therapy with sulfadoxine-pyrimethamine (IPTp-SP) in addition to vector control strategies. Although Ghana's target is to ensure that all pregnant women receive at least three (optimal) doses of SP, the uptake of SP has remained low; between 2020 and 2022, only 60% of pregnant women received optimal SP during their most recent pregnancy. This study sought to map the geospatial distribution and identify factors associated with SP uptake during pregnancy in Ghana. METHODS: Secondary data analysis was conducted using the 2019 Ghana Malaria Indicator Survey dataset. The data analysed were restricted to women aged 15-49 years who reported having a live birth within the two years preceding the survey. A modified Poisson regression model was used to determine factors associated with SP uptake during pregnancy. Geospatial analysis was employed to map the spatial distribution of optimal SP uptake across the ten regions of Ghana using R software. RESULTS: The likelihood that pregnant women received optimal SP correlated with early initiation of first antenatal care (ANC), number of ANC contacts, woman's age, region of residence, and family size. Overall, the greater the number of ANC contacts, the more likely for pregnant women to receive optimal SP. Women with four or more ANC contacts were 2 times (aPR: 2.16; 95% CI: [1.34-3.25]) more likely to receive optimal SP than pregnant women with fewer than four ANC contacts. In addition, early initiation and a high number of ANC contacts were associated with a high number of times a pregnant woman received SP. Regarding spatial distribution, a high uptake of optimal SP was significantly observed in the Upper East and Upper West Regions, whereas the lowest was observed in the Eastern Region of Ghana. CONCLUSIONS: In Ghana, there were regional disparities in the uptake of SP during pregnancy, with the uptake mainly correlated with the provision of ANC services. To achieve the country's target for malaria control during pregnancy, there is a need to strengthen intermittent preventive treatment for malaria during pregnancy by prioritizing comprehensive ANC services.


Subject(s)
Antimalarials , Drug Combinations , Malaria , Pregnancy Complications, Parasitic , Prenatal Care , Pyrimethamine , Spatial Analysis , Sulfadoxine , Humans , Female , Pregnancy , Ghana/epidemiology , Adult , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Sulfadoxine/administration & dosage , Antimalarials/therapeutic use , Adolescent , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/epidemiology , Malaria/prevention & control , Malaria/epidemiology , Young Adult , Prenatal Care/statistics & numerical data , Middle Aged , Data Analysis , Secondary Data Analysis
5.
Malar J ; 23(1): 157, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773567

ABSTRACT

BACKGROUND: Perennial malaria chemoprevention (PMC) aims to protect children at risk from severe malaria by the administration of anti-malarial drugs to children of defined ages throughout the year. Sulfadoxine-pyrimethamine (SP) has been widely used for chemoprevention in Africa and a child-friendly dispersible tablet formulation has recently become available. METHODS: This qualitative non-interventional observational study was conducted in Benin, Côte d'Ivoire, and Mozambique between February and June 2022. Prototype blister packs, dispensing boxes and job aids designed to support dispersible SP deployment for PMC were evaluated using focus group discussions (FGD) and semi-structured in-depth individual interviews (IDI) with health authorities, health personnel, community health workers (CHWs) and caregivers. The aim was to evaluate knowledge and perceptions of malaria and chemoprevention, test understanding of the tools and identify gaps in understanding, satisfaction, user-friendliness and acceptability, and assess the potential role of CHWs in PMC implementation. Interviews were transcribed and imported to ATLAS.ti for encoding and categorization. Thematic content analysis used deductive and inductive coding with cross-referencing of findings between countries and participants to enrich data interpretation. Continuous comparison across the IDI and FGD permitted iterative, collaborative development of materials. RESULTS: Overall, 106 participants completed IDIs and 70 contributed to FGDs. Malaria was widely recognised as the most common disease affecting children, and PMC was viewed as a positive intervention to support child health. The role of CHWs was perceived differently by the target groups, with caregivers appreciating their trusted status in the community, whereas health authorities preferred clinic-based deployment of PMC by health professionals. Empirical testing of the prototype blister packs, dispensing boxes and job aids highlighted the context-specific expectations of respondents, such as familiar situations and equipment, and identified areas of confusion or low acceptance. A key finding was the need for a clear product identity reflecting malaria. CONCLUSION: Simple modifications profoundly affected the perception of PMC and influenced acceptability. Iterative quantitative investigation resulted in PMC-specific materials suited to the local context and socio-cultural norms of the target population with the aim of increasing access to chemoprevention in children most at risk of severe malaria.


Subject(s)
Antimalarials , Chemoprevention , Drug Combinations , Malaria , Pyrimethamine , Mozambique , Benin , Malaria/prevention & control , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Chemoprevention/methods , Chemoprevention/statistics & numerical data , Humans , Cote d'Ivoire , Pyrimethamine/administration & dosage , Pyrimethamine/therapeutic use , Sulfadoxine/administration & dosage , Sulfadoxine/therapeutic use , Child, Preschool , Female , Male , Drug Packaging/methods , Infant , Child , Adult
6.
Lancet Microbe ; 5(7): 633-644, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705163

ABSTRACT

BACKGROUND: Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS: In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS: Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION: These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Amodiaquine , Antimalarials , Artemether, Lumefantrine Drug Combination , Drug Combinations , Fluorenes , Malaria, Falciparum , Plasmodium falciparum , Primaquine , Pyrimethamine , Sulfadoxine , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Pyrimethamine/therapeutic use , Pyrimethamine/administration & dosage , Amodiaquine/therapeutic use , Amodiaquine/administration & dosage , Sulfadoxine/therapeutic use , Sulfadoxine/administration & dosage , Male , Adult , Female , Adolescent , Child , Malaria, Falciparum/transmission , Malaria, Falciparum/prevention & control , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Single-Blind Method , Middle Aged , Primaquine/therapeutic use , Primaquine/administration & dosage , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemether, Lumefantrine Drug Combination/administration & dosage , Young Adult , Fluorenes/administration & dosage , Fluorenes/therapeutic use , Mali/epidemiology , Plasmodium falciparum/drug effects , Artemisinins/administration & dosage , Artemisinins/therapeutic use , Aminoquinolines/administration & dosage , Aminoquinolines/therapeutic use , Aminoquinolines/adverse effects , Ethanolamines/administration & dosage , Ethanolamines/therapeutic use , Animals , Drug Therapy, Combination
7.
Am J Trop Med Hyg ; 111(1): 43-47, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38806022

ABSTRACT

Increasing antimicrobial resistance (AMR) is a global public health emergency. Although chemoprevention has improved malaria-related pregnancy outcomes, the downstream effects on AMR have not been characterized. We compared the abundance of 10 AMR genes in stool samples from pregnant women receiving sulfadoxine-pyrimethamine (SP) as intermittent preventive treatment against malaria in pregnancy (IPTp) to that in samples from women receiving dihydroartemisinin-piperaquine (DP) for IPTp. All participants had at least one AMR gene at baseline. Mean quantities of the antifolate gene dfrA17 were increased after two or more doses of SP (mean difference = 1.6, 95% CI: 0.4-2.7, P = 0.008). Antimicrobial resistance gene abundance tended to increase from baseline in SP recipients compared with a downward trend in the DP group. Overall, IPTp-SP had minimal effects on the abundance of antifolate resistance genes (except for dfrA17), potentially owing to a high starting prevalence. However, the trend toward increasing AMR in SP recipients warrants further studies.


Subject(s)
Antimalarials , Artemisinins , Drug Combinations , Feces , Pyrimethamine , Quinolines , Sulfadoxine , Humans , Female , Pyrimethamine/therapeutic use , Pyrimethamine/administration & dosage , Pyrimethamine/pharmacology , Sulfadoxine/therapeutic use , Sulfadoxine/administration & dosage , Sulfadoxine/pharmacology , Pregnancy , Antimalarials/therapeutic use , Antimalarials/pharmacology , Antimalarials/administration & dosage , Quinolines/therapeutic use , Quinolines/administration & dosage , Artemisinins/therapeutic use , Artemisinins/pharmacology , Artemisinins/administration & dosage , Adult , Feces/microbiology , Young Adult , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/drug therapy , Drug Resistance/genetics , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Piperazines
8.
BMC Health Serv Res ; 24(1): 484, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637742

ABSTRACT

BACKGROUND: Malaria in pregnancy remains a major global public health problem. Intermittent prophylaxis treatment of malaria in pregnancy with Sulphadoxine-pyrimethamine and co-trimoxazole is efficacious for prevention of malaria in pregnancy HIV negative and positive women, respectively. However, uptake of the recommended doses of therapies has remained suboptimal in Uganda, majorly due to inadequate knowledge among pregnant women. Therefore, this study aimed to explore attitudes and perceptions towards developing an educational video for malaria preventive therapy. METHODS: We conducted an exploratory study with qualitative methods among pregnant women attending antenatal care at Kisenyi Health Center IV (KHCIV), health workers from KHCIV, and officials from the Ministry of Health. The study was conducted at KHCIV from October 2022 to March 2023. Focus group discussions (FGD) were conducted among purposively selected pregnant women and key informant interviews (KII) among health workers and Ministry of Health officials. Data were analyzed using inductive and deductive thematic methods in atlas ti.8. RESULTS: A total of five FGDs comprising of 7-10 pregnant women were conducted; and KIIs were conducted among four mid-wives, two obstetricians, and two Ministry of Health officials. Generally, all respondents mentioned a need for interventions to improve malaria preventive knowledge among pregnant women; were positive about developing an educative video for malaria preventive therapy in pregnancy; and suggested a short, concise, and edutaining video focusing both the benefits of taking and risks of not taking malaria preventive therapy. They proposed that women may be encouraged to view the video as soon as they conceive and throughout the pregnancy. It also was suggested that the video may be viewed on television sets in maternal and reproductive health clinics and homes, and on smart phones. CONCLUSION: Pregnant women, health workers, and Ministry of Health officials were positive about the development of a short edutaining video on malaria preventive therapy that focuses on both benefits of taking and risks of not taking the malaria preventive therapy in pregnancy. This information guided the video development and therefore, in the development of health educative videos, client and stakeholder inputs may always be solicited.


Subject(s)
Antimalarials , Malaria , Female , Pregnancy , Humans , Pregnant Women , Uganda , Health Knowledge, Attitudes, Practice , Malaria/prevention & control , Malaria/drug therapy , Sulfadoxine/therapeutic use , Pyrimethamine/therapeutic use , Prenatal Care/methods , Drug Combinations , Antimalarials/therapeutic use
9.
J Vector Borne Dis ; 61(1): 81-89, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38648409

ABSTRACT

BACKGROUND OBJECTIVES: Malaria due to Plasmodium falciparum (Pf) remains a major public threat in India. Artemisinin-based combination therapy (ACT) has been the country's first-line drug for uncomplicated Pf malaria. In 2013-2014, Artesunate plus sulfadoxine (AS+SP) was replaced by Artemether Lumefantrine (AL) as the first- line antimalarial in North East (NE) states of the country which are endemic for Pf malaria. Regular monitoring of antimalarial drugs is of utmost importance to achieve the goal of elimination. This study aimed to assess the efficacy and safety of ACT for treating uncomplicated Pf malaria in the NE states of India. METHODS: A prospective study of 28-day follow-up was conducted to monitor the efficacy and safety of AL from 2018-2019 in four districts, Udalgiri, Meghalaya, Lawngtlai, and Dhalai of NE, India. The clinical and parasitological response and the polymorphism analysis of the Pfdhps, P/dhfr, and Pfkelch 13 gene were evaluated. RESULTS: A total of 234 patients were enrolled in the study out of 216 patients who completed the follow-up to 28 days. One-hundred percent adequate clinical and parasitological responses (ACPR) were observed with polymerase chain reaction (PCR) correction. The genotype results suggest no recrudescence in the treatment-failure patients. The classical single nucleotide polymorphisms (SNP) in the Pfdhfr gene was S108N (94.9%), followed by C59R (91.5%), whereas, in the Pfdhps gene, the common SNP was A437G (79.6%), followed by S3436A. No associated or validated mutations were found in the propeller region of the PfKelch13 gene. INTERPRETATION CONCLUSION: AL was efficacious and safe in uncomplicated P. falciparum malaria in North East India. In contrast, mutations in the genes responsible for sulfadoxine and pyrimethamine resistance have been fixed in northeast India's population.


Subject(s)
Antimalarials , Artemisinins , Drug Therapy, Combination , Malaria, Falciparum , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , India , Humans , Artemisinins/therapeutic use , Artemisinins/adverse effects , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Female , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Prospective Studies , Adult , Young Adult , Adolescent , Middle Aged , Treatment Outcome , Child , Child, Preschool , Artemether, Lumefantrine Drug Combination/therapeutic use , Sulfadoxine/therapeutic use , Drug Combinations
10.
Acta Trop ; 255: 107218, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636585

ABSTRACT

One of the major challenges for malaria control and elimination is the spread and emergence of antimalarial drug resistance. Mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) field isolates for five drug resistance genes viz. crt, mdr1, dhps, dhfr and kelch known to confer resistance to choloroquine (CQ), sulfadoxine-pyrimethamine (SP) and artemisinin (ART) and its derivatives were analyzed. A total of 342 symptomatic isolates of P. falciparum (Pf) and P. vivax (Pv) from 1993 to 2014 were retrieved from malaria parasite repository at National Institute of Malaria Research (NIMR). Sample DNA was extracted from dried blood spots and various targeted single nucleotide polymorphisms (SNPs) associated with antimalarial drug resistance were analysed for these isolates. 72S (67.7%) and 76T (83.8%) mutations along with SVMNT haplotype (67.7%) predominated the study population for Pfcrt. The most prevalent SNPs were 108N (73.2%) and 437G (24.8%) and the most prevalent haplotypes were ACNRNI (51.9%) and SAKAA (74.5%) in Pfdhfr and Pfdhps respectively. Only two mutations in Pfmdr1, 86Y (26.31%) and 184F (56.26%), were seen frequently in our study population. No mutations associated with Pfk13 were observed. For Pv, all the studied isolates showed two Pvdhps mutations, 383G and 553G, and two Pfdhfr mutations, 58R and 117N. Similarly, three mutations, viz. 958M, 908L and 1076L were found in Pvmdr1. No variations were observed in Pvcrt-o and Pvk12 genes. Overall, our study demonstrates an increase in mutations associated with SP resistance in both Pf and Pv, however, no single nucleotide polymorphisms (SNPs) associated with ART resistance have been observed for either species. Various SNPs associated with CQ resistance were seen in Pf; whereas only Pvmdr1 associated resistant SNPs were observed in Pv. Therefore, molecular characterization of drug resistance genes is essential for timely monitoring and prevention of malaria by identifying the circulating drug resistant parasites in the country.


Subject(s)
Antimalarials , Drug Resistance , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Polymorphism, Single Nucleotide , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Drug Resistance/genetics , Antimalarials/pharmacology , Plasmodium vivax/genetics , Plasmodium vivax/drug effects , Plasmodium vivax/isolation & purification , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Protozoan Proteins/genetics , Malaria, Vivax/parasitology , India , Pyrimethamine/pharmacology , Mutation , Tetrahydrofolate Dehydrogenase/genetics , DNA, Protozoan/genetics , Sulfadoxine/pharmacology , Artemisinins/pharmacology , Male , Drug Combinations
11.
Am J Trop Med Hyg ; 110(5): 910-920, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574550

ABSTRACT

Surveillance for genetic markers of resistance can provide valuable information on the likely efficacy of antimalarials but needs to be targeted to ensure optimal use of resources. We conducted a systematic search and review of publications in seven databases to compile resistance marker data from studies in India. The sample collection from the studies identified from this search was conducted between 1994 and 2020, and these studies were published between 1994 and 2022. In all, Plasmodium falciparum Kelch13 (PfK13), P. falciparum dihydropteroate synthase, and P. falciparum dihydrofolate reductase (PfDHPS) genotype data from 2,953, 4,148, and 4,222 blood samples from patients with laboratory-confirmed malaria, respectively, were extracted from these publications and uploaded onto the WorldWide Antimalarial Resistance Network molecular surveyors. These data were fed into hierarchical geostatistical models to produce maps with a predicted prevalence of the PfK13 and PfDHPS markers, and of the associated uncertainty. Zones with a predicted PfDHPS 540E prevalence of >15% were identified in central, eastern, and northeastern India. The predicted prevalence of PfK13 mutants was nonzero at only a few locations, but were within or adjacent to the zones with >15% prevalence of PfDHPS 540E. There may be a greater probability of artesunate-sulfadoxine-pyrimethamine failures in these regions, but these predictions need confirmation. This work can be applied in India and elsewhere to help identify the treatments most likely to be effective for malaria elimination.


Subject(s)
Antimalarials , Artemisinins , Drug Combinations , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Pyrimethamine , Sulfadoxine , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Pyrimethamine/therapeutic use , Pyrimethamine/pharmacology , Sulfadoxine/therapeutic use , Sulfadoxine/pharmacology , India/epidemiology , Drug Resistance/genetics , Antimalarials/therapeutic use , Antimalarials/pharmacology , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Artemisinins/therapeutic use , Artemisinins/pharmacology , Tetrahydrofolate Dehydrogenase/genetics , Genetic Markers , Dihydropteroate Synthase/genetics , Protozoan Proteins/genetics
12.
J Infect ; 88(5): 106144, 2024 May.
Article in English | MEDLINE | ID: mdl-38574776

ABSTRACT

OBJECTIVE: The effectiveness of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is threatened by increasing SP-resistance in Africa. We assessed the level of SP-resistance markers, and the clinical and parasitological effectiveness of IPTp-SP in southern Mozambique. METHODS: P. falciparum infection, antimalarial antibodies and dhfr/dhps SP-resistance mutants were detected by quantitative polymerase chain reaction (qPCR), suspension array technology and targeted deep sequencing, respectively, among 4016 HIV-negative women in Maputo province (2016-2019). Univariate and multivariate regression models were used to assess the association between taking the recommended three or more IPTp-SP doses (IPTp3+) and parasitological and clinical outcomes. RESULTS: 84.3% (3385/4016) women received three or more IPTp-SP doses. The prevalence of quintuple mutants at first antenatal care (ANC) visit was 94.2%. IPTp3+ was associated with a higher clearance rate of qPCR-detected infections from first ANC visit to delivery (adjusted odds ratio [aOR]=5.9, 95% CI: 1.5-33.3; p = 0.012), lower seroprevalence at delivery of antibodies against the pregnancy-specific antigen VAR2CSADBL34 (aOR=0.72, 95% CI: 0.54-0.95; p = 0.022), and lower prevalence of low birth weight deliveries (aOR: 0.61, 95% CI: 0.41-0.90; p = 0.013). CONCLUSION: A sustained parasitological effect of IPTp-SP contributes to the clinical effectiveness of IPTp3+ in areas with high prevalence of SP-resistance markers.


Subject(s)
Antimalarials , Drug Combinations , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Pyrimethamine , Sulfadoxine , Humans , Female , Sulfadoxine/therapeutic use , Sulfadoxine/administration & dosage , Pyrimethamine/therapeutic use , Pyrimethamine/administration & dosage , Pregnancy , Antimalarials/therapeutic use , Adult , Malaria, Falciparum/prevention & control , Malaria, Falciparum/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Mozambique/epidemiology , Young Adult , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/drug therapy , Adolescent , Chemoprevention/methods
13.
Article in English | MEDLINE | ID: mdl-38309043

ABSTRACT

To support the pharmacokinetic study of sulfadoxine (SD) and pyrimethamine (PM) in pregnant women and children, sensitive methods with small sample volume are desirable. Here we report a method to determine SD and PM with microvolume plasma samples: 5 µL plasma samples were cleaned up by protein precipitation with acetonitrile. The deuterated analytes were used as the internal standards. The samples after cleanup were injected onto an ACE Excel SuperC18 column (50 × 2.1 mm, 1.7 µm, Hichrom Limited) connected to a Waters I class UPLC coupled with a Sciex Triple Quad 6500+ Mass Spectrometer and eluted with water and acetonitrile both containing 0.1% formic acid in a gradient mode at 0.8mL/min. Detection utilized ESI+ as the ion source and MRM as the quantification mode. The precursor-to-product ion transitions m/z 311→245 for SD and 249→233 for PM were selected for quantification. The ion transitions for the corresponding internal standards were 315→249 for SD-d4 and 254→235 for PM-d3. The simplest linear regression weighted by 1/x was used for the calibration curves. The calibration ranges were 1-200 µg/mL SD and 2 - 1000ng/mL PM. The mean (± standard deviation) recoveries were 94.3±3.2% (SD) and 97.0±1.5% (PM). The validated method was applied to analysis of 1719 clinical samples, demonstrating the method is suitable for the pharmacokinetic study with samples collected up to day 28 post-dose.


Subject(s)
Pyrimethamine , Tandem Mass Spectrometry , Pregnancy , Child , Humans , Female , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Sulfadoxine , Acetonitriles
14.
Am J Trop Med Hyg ; 110(2): 214-219, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38167431

ABSTRACT

Despite marked progress in Senegal, three regions in the southeast part continue to have a high burden of malaria, but there have been no recent studies assessing the prevalence of malaria associated with pregnancy. This study aimed to determine the prevalence of malaria infection in pregnant women attending antenatal clinics in Senegal. During the malaria transmission season of 2019, pregnant women attending 11 health care facilities for a scheduled visit and those presenting unwell with signs of malaria were invited to participate in a malaria screening study. A finger prick blood sample was taken for malaria diagnosis by rapid diagnosis test (RDT) and polymerase chain reaction (PCR). A total of 877 pregnant women were enrolled, 787 for a scheduled antenatal consultation and 90 for an unscheduled consultation with signs of malaria. The prevalence of Plasmodium falciparum among the first group was 48% by PCR and 20% by RDT, and that among the second group was 86% by PCR and 83% by RDT. RDT sensitivity in capturing asymptomatic, PCR-positive infections was 9.2% but ranged from 83% to 94% among febrile women. The prevalence of infection by PCR in women who reported having received at least three doses of sulfadoxine pyrimethamine (SP) was 41.9% compared with 58.9% in women who reported they had not received any SP doses (prevalence ratio adjusted for gravidity and gestational age, 0.54; 95% CI, 0.41-0.73). The burden of P. falciparum infections remains high among pregnant women, the majority of which are not captured by RDT. More effective measures to prevent malaria infection in pregnancy are needed.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Female , Pregnancy , Infant , Antimalarials/therapeutic use , Pregnant Women , Prevalence , Senegal/epidemiology , Sulfadoxine/therapeutic use , Pyrimethamine/therapeutic use , Malaria/drug therapy , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/drug therapy , Drug Combinations , Asymptomatic Infections/epidemiology , Ambulatory Care Facilities
15.
Malar J ; 23(1): 6, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178125

ABSTRACT

BACKGROUND: Approximately 32 million pregnant women are at risk of malaria with up to 10,000 maternal deaths and 200,000 neonates at risk annually. Intermittent Preventive Treatment (IPT) with sulfadoxine-pyrimethamine (SP) is recommended by the World Health Organization (WHO) to reduce disease in pregnancy and adverse maternal and newborn outcomes. At least three doses of SP should be taken by pregnant women during antenatal consultation (ANC) beginning from the thirteenth week of pregnancy till parturition. The aim of this study was to assess uptake of IPT during pregnancy and risk factors for maternal anaemia and infant birth weight in Dschang, West region of Cameroon. METHODS: A total of 380 consenting pregnant women at delivery were recruited in a cross- sectional prospective survey between January to December 2021. Data on ANC attendance, total dose of IPT and history of malaria were abstracted from hospital ANC records while socio-demographic characteristics, bed net use and obstetrics history of each participant were also recorded through an interview. Further, blood samples were collected from the intervillous space for assessment of maternal anaemia and microscopic parasitology. Nested PCR based on amplification of the Plasmodium 18S sRNA was carried out to detect submicroscopic infection. IPTp coverage was calculated per WHO recommendation and the prevalence of anaemia and low birth weight were estimated as proportions in the total sample of pregnant women and live births, respectively. Crude and adjusted odds ratios and their 95% confidence intervals were used to estimate associations between pregnancy outcomes considered and risk factors in specific and general models. A p < 0.05 was considered significant. The R software (V4.1.4) was used for all analyses. RESULTS: A majority of pregnant women was aged between 24 and 34 years old (59.2%) and had secondary education (58.8%). Uptake of ≥ 3 IPTp was 64.99% with 77.20% of all who received at least one IPTp doses taking a mix of SP and DP or DP alone in successive ANC contacts. Those with four or more ANC contacts (73.42%) were more likely to have received at least one IPTp. Furthermore, 13.9% of live births had low birthweights (BW < 2500 g) and one in four parturient women with moderate anaemia by WHO criteria. Microscopy (blood smear examination) and PCR-based diagnosis revealed between 0% and 1.57% of parasite-infected placental samples, respectively. Reported malaria in pregnancy predicted maternal anaemia at birth but not birth weight. Only gestational age (< 37 weeks) and bed net use (< 5 months) significantly predicted infant birth weight at delivery. CONCLUSION: The uptake of WHO recommended IPT doses during pregnancy was moderately high. Reported malaria in pregnancy, poor bed net coverage, gestational age less than 37 weeks adversely affect maternal haemoglobin levels at birth and infant birth weight. Asymptomatic and submicroscopic placental parasite infections was found at low prevalence. Together these results highlight the importance of maintaining aggressive measures to prevent malaria in pregnancy and protect the health of mother and baby.


Subject(s)
Anemia , Antimalarials , HIV Infections , Malaria , Pregnancy Complications, Parasitic , Infant, Newborn , Female , Humans , Pregnancy , Young Adult , Adult , Infant , Antimalarials/therapeutic use , Birth Weight , Cross-Sectional Studies , Mothers , Cameroon/epidemiology , Prospective Studies , Placenta , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Infant, Low Birth Weight , Risk Factors , Drug Combinations , Pregnancy Outcome , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/prevention & control , Pregnancy Complications, Parasitic/drug therapy , Anemia/parasitology , HIV Infections/drug therapy
16.
BMC Public Health ; 24(1): 43, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166711

ABSTRACT

BACKGROUND: The uptake of Intermittent Preventive Treatment of malaria in pregnancy using Sulfadoxine-Pyrimethamine (IPTp-SP) remains unacceptably low, with more than two-thirds of pregnant women in sub-Saharan Africa still not accessing the three or more doses recommended by the World Health Organisation (WHO). In contrast, the coverage of Seasonal Malaria Chemoprevention (SMC), a more recent strategy recommended by the WHO for malaria prevention in children under five years living in Sahelian countries with seasonal transmission, including Mali and Burkina-Faso, is high (up to 90%). We hypothesized that IPTp-SP delivery to pregnant women through SMC alongside antenatal care (ANC) will increase IPTp-SP coverage, boost ANC attendance, and increase public health impact. This protocol describes the approach to assess acceptability, feasibility, effectiveness, and cost-effectiveness of the integrated strategy. METHODS AND ANALYSIS: This is a multicentre, cluster-randomized, implementation trial of IPTp-SP delivery through ANC + SMC vs ANC alone in 40 health facilities and their catchment populations (20 clusters per arm). The intervention will consist of monthly administration of IPTp-SP through four monthly rounds of SMC during the malaria transmission season (July to October), for two consecutive years. Effectiveness of the strategy to increase coverage of three or more doses of IPTp-SP (IPTp3 +) will be assessed using household surveys and ANC exit interviews. Statistical analysis of IPT3 + and four or more ANC uptake will use a generalized linear mixed model. Feasibility and acceptability will be assessed through in-depth interviews and focus group discussions with health workers, pregnant women, and women with a child < 12 months. DISCUSSION: This multicentre cluster randomized implementation trial powered to detect a 45% and 22% increase in IPTp-SP3 + uptake in Mali and Burkina-Faso, respectively, will generate evidence on the feasibility, acceptability, effectiveness, and cost-effectiveness of IPTp-SP delivered through the ANC + SMC channel. The intervention is designed to facilitate scalability and translation into policy by leveraging existing resources, while strengthening local capacities in research, health, and community institutions. Findings will inform the local national malaria control policies. TRIAL REGISTRATION: Retrospectively registered on August 11th, 2022; registration # PACTR202208844472053. Protocol v4.0 dated September 04, 2023. Trail sponsor: University of Sciences Techniques and Technologies of Bamako (USTTB), Mali.


Subject(s)
Antimalarials , Malaria , Pregnancy Complications, Parasitic , Child , Female , Pregnancy , Humans , Child, Preschool , Seasons , Antimalarials/therapeutic use , Burkina Faso , Mali , Sulfadoxine/therapeutic use , Pyrimethamine/therapeutic use , Malaria/prevention & control , Malaria/drug therapy , Drug Combinations , Pregnancy Complications, Parasitic/prevention & control , Chemoprevention , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
17.
Chemosphere ; 351: 141225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242518

ABSTRACT

Sulfadoxine (SDX) is a broad-spectrum veterinary antibiotic, which was used alone for the treatment of various infections in the past, and detected ubiquitously in the aqueous environment. However, understanding SDX's photo- and microbial degradation within the environment, especially in marine matrixes, remains limited. This research hones in on SDX's degradation dynamics in seawater. Photodegradation emerges as the dominant process, surpassing microbial degradation in speed and efficiency. Notably, 90% of SDX is photo-degraded within 12 h, while only 52% is removed via microbial degradation over two weeks. Time-of-flight mass spectrometry provides high-resolution molecular mass information on degradation products. The molecular structures of hydrolysis, photo-, and microbial degradation products are deduced from accurate precursor and fragment ion masses, alongside an integrated data processing workflow. Six hydrolysis products arise from the treatment, and photodegradation and microbial degradation yield nine and eighteen products, respectively. Molecular insights from these products inform plausible degradation pathways involving hydrolysis, photodegradation, and microbial degradation. Processes like bond cleavage, methylation, hydroxylation, oxidation, reduction, and methoxylation are identified and associated with degradation. This study presents a comprehensive workflow for acquiring and processing degradation product data linked to emerging organic pollutants. Moreover, it contributes to our comprehension of the environmental fate of veterinary drugs in marine ecosystems.


Subject(s)
Ecosystem , Sulfadoxine , Mass Spectrometry , Chromatography, Liquid/methods , Seawater , Photolysis , Kinetics
18.
J Infect Dis ; 229(1): 189-197, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37682871

ABSTRACT

BACKGROUND: Owing to the increased cases of malaria in older children, the World Health Organization has recently recommended extending seasonal malaria chemoprevention (SMC) to children >5 years of age and using other effective drugs for malaria. In this study, we report the safety and efficacy of dihydroartemisinin-piperaquine (DHA-PQ) for SMC in school-aged children in Mali. METHOD: This randomized, controlled trial included 345 participants aged 6-15 years randomized to receive DHA-PQ, sulfadoxine-pyrimethamine plus amodiaquine (SP-AQ), or no chemoprevention (albendazole) at a 1:1:1 ratio. Four rounds of SMC were conducted from September to December 2021. The participants were assessed 7 days after each round for safety and efficacy of the interventions. RESULTS: Abdominal pain (11.8% vs 29.2%), headache (11.2% vs 19.2%), and vomiting (5.7% vs 15.2%) were frequently reported in the DHA-PQ and SP-AQ arms. On Day 120 of follow up, the incidence of clinical malaria was 0.01 episodes/person-month in the DHA-PQ and SP-AQ arms and 0.17 episodes/person-month in the control arm (P < .0001). Gametocytes were detected in 37 participants in all arms. CONCLUSIONS: Children in DHA-PQ arm reported less adverse events compared to the SP-AQ arm. Both drugs were effective against clinical malaria and infection.


Subject(s)
Antimalarials , Artemisinins , Malaria , Piperazines , Quinolines , Child , Humans , Infant , Child, Preschool , Antimalarials/adverse effects , Mali/epidemiology , Seasons , Malaria/epidemiology , Sulfadoxine/adverse effects , Amodiaquine/adverse effects , Drug Combinations , Chemoprevention/adverse effects
19.
Am J Trop Med Hyg ; 110(1): 20-31, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38081050

ABSTRACT

Seasonal malaria chemoprevention (SMC) for children under 5 years of age for up to four monthly cycles during malaria transmission season was recommended by the WHO in 2012 and has been implemented in 13 countries in the Sahel, reaching more than 30 million children annually. Malaria control programs implementing SMC have asked the WHO to consider expanding the age range or number of monthly cycles. We conducted a systematic review and meta-analysis of SMC among children up to 15 years of age and up to six monthly cycles. Twelve randomized studies were included, with outcomes stratified by age (< 5/≥ 5 years), by three or four versus five or six cycles, and by drug where possible. Drug regimens included sulfadoxine-pyrimethamine + amodiaquine, amodiaquine-artesunate, and sulfadoxine-pyrimethamine + artesunate. Included studies were all conducted in Sahelian countries in which high-grade resistance to sulfadoxine-pyrimethamine was rare and in zones with parasite prevalence ranging from 1% to 79%. Seasonal malaria chemoprevention resulted in substantial reductions in uncomplicated malaria incidence measured during that transmission season (rate ratio: 0.27, 95% CI: 0.25-0.29 among children < 5 years; rate ratio: 0.27, 95% CI: 0.25-0.30 among children ≥ 5 years) and in the prevalence of malaria parasitemia measured within 4-6 weeks from the final SMC cycle (risk ratio: 0.38, 95% CI: 0.34-0.43 among children < 5 years; risk ratio: 0.23, 95% CI: 0.11-0.48 among children ≥ 5 years). In high-transmission zones, SMC resulted in a moderately reduced risk of any anemia (risk ratio: 0.77, 95% CI: 0.72-0.83 among children < 5 years; risk ratio: 0.70, 95% CI: 0.52-0.95 among children ≥ 5 years [one study]). Children < 10 years of age had a moderate reduction in severe malaria (risk ratio: 0.53, 95% CI: 0.37-0.76) but no evidence of a mortality reduction. The evidence suggests that in areas in which sulfadoxine-pyrimethamine and amodiaquine remained efficacious, SMC effectively reduced malaria disease burden among children both < 5 and ≥ 5 years old and that the number of cycles should be commensurate with the length of the transmission season, up to six cycles.


Subject(s)
Antimalarials , Malaria , Child , Child, Preschool , Humans , Amodiaquine/therapeutic use , Antimalarials/therapeutic use , Artesunate/therapeutic use , Chemoprevention/methods , Drug Combinations , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Pyrimethamine/therapeutic use , Seasons , Sulfadoxine/therapeutic use , Adolescent
20.
Infect Disord Drug Targets ; 24(2): e201023222469, 2024.
Article in English | MEDLINE | ID: mdl-37881078

ABSTRACT

BACKGROUND: The concern about the global spread of resistant malaria has made the researchers not focus only on the treatment of established infections but relatively more on the prevention of the disease. OBJECTIVE: This study evaluates the chemopreventive activity of ketoconazole in a murine malarial model. METHOD: Five out of seven groups of mice were pretreated for five days with proguanil (PRG), sulfadoxine/ pyrimethamine (SP), 10, 20, and 40 mg/kg body weight (b.w) of ketoconazole (KET10, KET20, and KET40), before being infected (on the sixth day) with Plasmodium berghei. Two other groups were infected-not-treated (INT) and not-infected-nor-treated (NINT). At 72 hours postinfection, five out of ten mice in each group were sacrificed to assess parasitemia, chemoprevention, hematologic, hepatic, and renal parameters. The remaining mice were observed for 28 days to determine their mean survival day post-infection (SDPI). RESULTS: All ketoconazole groups, except KET10, demonstrated 100% chemoprevention and significantly higher mean SDPI (p<0.001) in relation to INT (negative control). There was no significant difference in the mean SDPI observed in KET20 in relation to PRG or NINT (healthy control). A dose-related increase (p<0.01) in the mean plasma urea was observed when ketoconazole groups were compared to one another: KET10 versus KET20 (p<0.01) and KET20 versus KET40 (p<0.01). Sulfadoxine/pyrimethamine demonstrated significantly reduced mean plasma urea (p<0.001) and creatinine (p<0.05) in relation to INT and NINT, respectively. While PRG demonstrated significantly higher mean red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) in relation to INT. CONCLUSION: Ketoconazole possesses prophylactic antimalarial activity with associated dose-related renal impairment. Sulfadoxine/pyrimethamine demonstrated renoprotective potentials, while PRG prevented malaria-associated anemia.


Subject(s)
Anemia , Antimalarials , Malaria, Falciparum , Malaria , Animals , Mice , Pyrimethamine/therapeutic use , Proguanil/therapeutic use , Sulfadoxine/therapeutic use , Ketoconazole/therapeutic use , Antimalarials/therapeutic use , Malaria/complications , Malaria/drug therapy , Malaria/prevention & control , Anemia/drug therapy , Anemia/prevention & control , Kidney , Urea/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...