Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.942
Filter
1.
Chem Pharm Bull (Tokyo) ; 72(7): 700-710, 2024.
Article in English | MEDLINE | ID: mdl-39069473

ABSTRACT

We report two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s), without use of a protecting group for the sulfate moiety. The first was based on direct thioesterification using carbodiimide on a fully protected peptide acid, prepared on a 2-chlorotrityl (Clt) resin with fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase peptide synthesis (Fmoc-SPPS). Subsequent deprotection of the protecting groups with trifluoroacetic acid (TFA) (0 °C, 4 h) yielded peptide thioesters containing Tyr(SO3H) residue(s). Peptide thioesters containing one to three Tyr(SO3H) residue(s), prepared by this method, were used as building blocks for the synthesis of the Nα-Fmoc-protected N-terminal part of P-selectin glycoprotein ligand 1 (PSGL-1) (Fmoc-PSGL-1(43-74)) via silver-ion mediated thioester segment condensation. The other method was based on the thioesterification of peptide azide, derived from a peptide hydrazide prepared on a NH2NH-Clt-resin with Fmoc-SPPS. Peptide thioester containing two Tyr(SO3H) residues, prepared via this alternative method, was used as a building block for the one-pot synthesis of the N-terminal extracellular portion of CC-chemokine receptor 5 (CCR5(9-26)) by native chemical ligation (NCL). The two methods for the preparation of peptide thioesters containing Tyr(SO3H) residue(s) described herein are applicable to the synthesis of various types of sulfopeptides.


Subject(s)
Esters , Peptides , Solid-Phase Synthesis Techniques , Peptides/chemistry , Peptides/chemical synthesis , Esters/chemistry , Esters/chemical synthesis , Sulfates/chemistry , Tyrosine/chemistry , Tyrosine/chemical synthesis , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/chemical synthesis , Molecular Structure , Membrane Glycoproteins
2.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063017

ABSTRACT

Non-enzyme-catalyzed thiol addition onto the α,ß-unsaturated carbonyl system is associated with several biological effects. Kinetics and diastereoselectivity of non-enzyme catalyzed nucleophilic addition of reduced glutathione (GSH) and N-acetylcysteine (NAC) to the six-membered cyclic chalcone analogs 2a and 2b were investigated at different pH values (pH 3.2, 7.4 and 8.0). The selected compounds displayed in vitro cancer cell cytotoxicity (IC50) of different orders of magnitude. The chalcones intrinsically reacted with both thiols under all incubation conditions. The initial rates and compositions of the final mixtures depended both on the substitution and the pH. The stereochemical outcome of the reactions was evaluated using high-pressure liquid chromatography with UV detection (HPLC-UV). The structures of the formed thiol-conjugates and the retro-Michael products (Z)-2a and (Z)-2b were confirmed by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Frontier molecular orbitals and the Fukui function calculations were carried out to investigate their effects on the six-membered cyclic analogs. Data were compared with those obtained with the open-chain (1) and the seven-membered (3) analogs. The observed reactivities do not directly relate to the difference in in vitro cancer cell cytotoxicity of the compounds.


Subject(s)
Chalcones , Sulfhydryl Compounds , Humans , Chalcones/chemistry , Chalcones/pharmacology , Sulfhydryl Compounds/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chromatography, High Pressure Liquid , Glutathione/metabolism , Glutathione/chemistry , Kinetics , Benzylidene Compounds/chemistry
3.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062760

ABSTRACT

A small molecule disulfide unit technology platform based on dynamic thiol exchange chemistry at the cell membrane has the potential for drug delivery. However, the alteration of the CSSC dihedral angle of the disulfide unit caused by diverse substituents directly affects the effectiveness of this technology platform as well as its own chemical stability. The highly stable open-loop relaxed type disulfide unit plays a limited role in drug delivery due to its low dihedral angle. Here, we have built a novel disulfide unit starship based on the 3,4,5-trihydroxyphenyl skeleton through trigonometric bundling. The intracellular delivery results showed that the trigonometric bundling of the disulfide unit starship effectively promoted cellular uptake without any toxicity, which is far more than 100 times more active than that of equipment with a single disulfide unit in particular. Then, the significant reduction in cell uptake capacity (73-93%) using thiol erasers proves that the trigonometric bundling of the disulfide starship is an endocytosis-independent internalization mechanism via a dynamic covalent disulfide exchange mediated by thiols on the cell surface. Furthermore, analysis of the molecular dynamics simulations demonstrated that trigonometric bundling of the disulfide starship can significantly change the membrane curvature while pushing lipid molecules in multiple directions, resulting in a significant distortion in the membrane structure and excellent membrane permeation performance. In conclusion, the starship system we built fully compensates for the inefficiency deficiencies induced by poor dihedral angles.


Subject(s)
Disulfides , Disulfides/chemistry , Humans , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Endocytosis , Cell Membrane/metabolism , Molecular Dynamics Simulation
4.
Anal Chim Acta ; 1316: 342818, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969402

ABSTRACT

Interdigitated electrodes (IDEs) enable electrochemical signal enhancement through repeated reduction and oxidation of the analyte molecule. Porosity on these electrodes is often used to lower the impedance background. However, their high capacitive current and signal interferences with oxygen reduction limit electrochemical detection ability. We present utilization of alkanethiol modification on nanoporous gold (NPG) electrodes to lower their background capacitance and chemically passivate them from interferences due to oxygen reduction, while maintaining their fast electron transfer rates, as validated by lower separation between anodic and cathodic peaks (ΔE) and lower charge transfer resistance (Rct) values in comparison to planar gold electrodes. Redox amplification based on this modification enables sensitive detection of various small molecules, including pyocyanin, p-aminophenol, and selective detection of dopamine in the presence of ascorbic acid. Alkanethiol NPG arrays are applied as a multiplexed sensor testbed within a well plate to screen binding of various peptide receptors to the SARS COV2 S-protein by using a sandwich assay for conversion of PAPP (4-aminophenyl phosphate) to PAP (p-aminophenol), by the action of AP (alkaline phosphatase), which is validated against optical ELISA screens of the peptides. Such arrays are especially of interest in small volume analytical settings with complex samples, wherein optical methods are unsuitable.


Subject(s)
Aminophenols , Electrochemical Techniques , Gold , Microelectrodes , Nanopores , Oxidation-Reduction , Gold/chemistry , Electrochemical Techniques/instrumentation , Aminophenols/chemistry , Sulfhydryl Compounds/chemistry , Dopamine/analysis , Dopamine/chemistry , Biosensing Techniques , Limit of Detection , SARS-CoV-2/isolation & purification , Humans
5.
Environ Sci Pollut Res Int ; 31(32): 44669-44690, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963632

ABSTRACT

Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.


Subject(s)
Gases , Sulfhydryl Compounds , Sulfhydryl Compounds/chemistry , Waste Management/methods , Air Pollutants
6.
Nat Commun ; 15(1): 5535, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951545

ABSTRACT

The conversion of a soluble protein into polymeric amyloid structures is a process that is poorly understood. Here, we describe a fully redox-regulated amyloid system in which cysteine oxidation of the tumor suppressor protein p16INK4a leads to rapid amyloid formation. We identify a partially-structured disulfide-bonded dimeric intermediate species that subsequently assembles into fibrils. The stable amyloid structures disassemble when the disulfide bond is reduced. p16INK4a is frequently mutated in cancers and is considered highly vulnerable to single-point mutations. We find that multiple cancer-related mutations show increased amyloid formation propensity whereas mutations stabilizing the fold prevent transition into amyloid. The complex transition into amyloids and their structural stability is therefore strictly governed by redox reactions and a single regulatory disulfide bond.


Subject(s)
Amyloid , Cyclin-Dependent Kinase Inhibitor p16 , Cysteine , Oxidation-Reduction , Amyloid/metabolism , Amyloid/chemistry , Humans , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cysteine/metabolism , Cysteine/chemistry , Disulfides/metabolism , Disulfides/chemistry , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/chemistry , Mutation , Polymerization
7.
Anal Chem ; 96(28): 11353-11365, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38970480

ABSTRACT

Biothiols play essential roles in maintaining normal physiological functions, resisting oxidative stress, and protecting cell health. Establishing an effective and reliable sensor array for the accurate quantification and discrimination of diverse biothiols is extremely meaningful. In this work, Ag/Mn3O4, Ag3PO4, and Ag3Cit with excellent oxidase-mimetic activity and surface-enhanced Raman scattering (SERS)-enhanced features have been prepared and loaded onto Whatman filter paper (WFP) to build SERS paper chips as three sensing channels, which can induce 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to SERS-active reporters (TMBox) and concurrently generate prominent SERS signals. Nevertheless, the addition of biothiols can suppress conversion from TMB to TMBox, which can cause the reduction of the SERS signal from TMBox. Interestingly, each SERS sensing channel can generate different TMBox signals' variations due to differences in the oxidative inhibition abilities of diverse biothiols and exclusive properties of each paper chip, which can be plotted as specific fingerprint patterns of each biothiol and further translated into intuitive two-dimensional (2D) clustering profiles through linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA) techniques for precise identification of these six biothiols with the minimum concentration of 1 µM. More importantly, this SERS sensor array is exploited for the precise quantification of intracellular glutathione (GSH), and can differentiate between normal and cancer cells based on different intracellular GSH contents and even identify different types of tumor cells, demonstrating its powerful application prospects in disease diagnosis.


Subject(s)
Paper , Silver , Spectrum Analysis, Raman , Sulfhydryl Compounds , Spectrum Analysis, Raman/methods , Humans , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Surface Properties , Nanostructures/chemistry , Oxidation-Reduction , Benzidines/chemistry , Cell Line, Tumor
8.
Nat Commun ; 15(1): 5855, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997298

ABSTRACT

Plasmonic materials can generate strong electromagnetic fields to boost the Raman scattering of surrounding molecules, known as surface-enhanced Raman scattering. However, these electromagnetic fields are heterogeneous, with only molecules located at the 'hotspots', which account for ≈ 1% of the surface area, experiencing efficient enhancement. Herein, we propose patterned plasmonic trimers, consisting of a pair of plasmonic dimers at the bilateral sides and a trap particle positioned in between, to address this challenge. The trimer configuration selectively directs probe molecules to the central traps where 'hotspots' are located through chemical affinity, ensuring a precise spatial overlap between the probes and the location of maximum field enhancement. We investigate the Raman enhancement of the Au@Al2O3-Au-Au@Al2O3 trimers, achieving a detection limit of 10-14 M of 4-methylbenzenethiol, 4-mercaptopyridine, and 4-aminothiophenol. Moreover, single-molecule SERS sensitivity is demonstrated by a bi-analyte method. Benefiting from this sensitivity, our approach is employed for the early detection of lung tumors using fresh tissues. Our findings suggest that this approach is sensitive to adenocarcinoma but not to squamous carcinoma or benign cases, offering insights into the differentiation between lung tumor subtypes.


Subject(s)
Gold , Lung Neoplasms , Metal Nanoparticles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Lung Neoplasms/diagnosis , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Aniline Compounds/chemistry , Adenocarcinoma/diagnosis , Limit of Detection , Pyridines/chemistry
9.
Nat Commun ; 15(1): 6124, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033137

ABSTRACT

Insulin icodec is a once-weekly insulin analogue that has a long half-life of approximately 7 days, making it suitable for once weekly dosing. The Insulin icodec molecule was developed based on the hypothesis that lowering insulin receptor affinity and introducing a strong albumin-binding moiety would result in a long insulin half-life, provided that non-receptor-mediated clearance is diminished. Here, we report an insulin clearance mechanism, resulting in the splitting of insulin molecules into its A-chain and B-chain by a thiol-disulphide exchange reaction. Even though the substitutions in insulin icodec significantly stabilise insulin against such degradation, some free B-chain is observed in plasma samples from minipigs and people with type 2 diabetes. In summary, we identify thiol-disulphide exchange reactions to be an important insulin clearance mechanism and find that stabilising insulin icodec towards this reaction significantly contributes to its long pharmacokinetic/pharmacodynamic profile.


Subject(s)
Diabetes Mellitus, Type 2 , Disulfides , Insulin , Swine, Miniature , Animals , Swine , Disulfides/chemistry , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/blood , Insulin/administration & dosage , Insulin/metabolism , Insulin/chemistry , Insulin/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/chemistry , Half-Life , Receptor, Insulin/metabolism , Male , Sulfhydryl Compounds/chemistry
10.
Anal Chim Acta ; 1317: 342903, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030023

ABSTRACT

BACKGROUND: Precise localized printing of plasmonic nanoparticles at desired locations can find a plethora of applications in diverse areas, including nanophotonics, nanomedicine, and microelectronics. The focused laser beam-assisted optical printing technique has illustrated its potential for the localized printing of differently shaped plasmonic particles. However, the technique is either time-consuming or often requires focused optical radiation, limiting its practical applications. While the optothermal printing technique has recently emerged as a promising technique for the direct and rapid printing of plasmonic nanoparticles onto transparent substrates at lower laser intensities, its potential to print the plasmonic nanoparticles to the core of the optical fiber platforms and utilize it for biological cell trapping as well as an analytical platform remains unexplored. RESULTS: Herein, we demonstrate the thermal-convection-assisted printing of the Ag plasmonic nanoparticles from the plasmonic colloidal solution onto the core of single-mode optical fiber and its multi-functional applications. The direct printing of plasmonic structure on the fiber core via the thermal-convection mechanism is devoid of the requirement of any additional chemical ligand to the fiber core. Further, we demonstrated the potential of the developed plasmonic fiber probe as a multifunctional surface-enhanced Raman spectroscopic (SERS) platform for sensing, chemical reaction monitoring, and single-cell studies. The developed SERS fiber probe is found to detect crystal violet in an aqueous solution as low as 100 pM, with a plasmonic enhancement of 107. Additionally, the capability of the fiber-tip platform to monitor the surface plasmon-driven chemical reaction of 4-nitrothiophenol (4NTP) dimerizing into p, p'-dimercaptoazobenzene (DMAB) is demonstrated. Further, the versatility of the fiber probe as an effective platform for opto-thermophoretic trapping of single biological cells such as yeast, along with its Raman spectroscopic studies, is also shown here. SIGNIFICANCE: In this study, we illustrate for the first time the optothermal direct printing of plasmonic nanoparticles onto the core of a single-mode fiber. Further, the study demonstrates that such plasmonic nanoparticle printed fiber tip can act as a multi-functional analytical platform for optothermally trap biological particles as well as monitoring plasmon-driven chemical reactions. In addition, the plasmonic fiber tip can be used as a cost-effective SERS analytical platform and is thus expected to find applications in diverse areas.


Subject(s)
Metal Nanoparticles , Optical Fibers , Silver , Single-Cell Analysis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Sulfhydryl Compounds/chemistry , Phenols/analysis , Phenols/chemistry , Humans , Printing
11.
Methods Mol Biol ; 2839: 249-259, 2024.
Article in English | MEDLINE | ID: mdl-39008259

ABSTRACT

Thiol-disulfide interconversions are pivotal in the intricate chemistry of biological systems. They play a vital role in governing cellular redox potential and shielding against oxidative harm. These interconversions can also act as molecular switches within an expanding array of redox-regulated proteins, facilitating dynamic and responsive processes. Furthermore, metal-binding proteins often use thiols for coordination. Reverse thiol trapping is a valuable analytical tool to study the redox state of cysteines in biological systems. By selectively capturing and stabilizing free thiol species with an alkylating agent, reverse thiol trapping allows for their subsequent identification and quantification. Various methods can be employed to analyze the trapped thiol adducts, including electrophoresis-based methods, mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatographic techniques. In this chapter, we will focus on describing a simple and sensitive method to sequentially block thiols in their cellular state with a cell-permeant agent (iodoacetamide), and following reduction and denaturation of the samples, trap the native disulfides with a second blocker that shifts the apparent molecular weight of the protein. The oxidation status of proteins for which suitable antibodies are available can then be analyzed by immunoblotting. We present examples of mitochondrial proteins that use cysteine thiols to coordinate metal factors such as iron-sulfur clusters, zinc, and copper.


Subject(s)
Mitochondrial Proteins , Oxidation-Reduction , Sulfhydryl Compounds , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/chemistry , Humans , Iodoacetamide/chemistry , Disulfides/chemistry , Disulfides/metabolism , Metals/chemistry , Metals/metabolism , Cysteine/chemistry , Cysteine/metabolism
12.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000305

ABSTRACT

Nitrosyl iron complexes are remarkably multifactorial pharmacological agents. These compounds have been proven to be particularly effective in treating cardiovascular and oncological diseases. We evaluated and compared the antioxidant activity of tetranitrosyl iron complexes (TNICs) with thiosulfate ligands and dinitrosyl iron complexes (DNICs) with glutathione (DNIC-GS) or phosphate (DNIC-PO4-) ligands in hemoglobin-containing systems. The studied effects included the production of free radical intermediates during hemoglobin (Hb) oxidation by tert-butyl hydroperoxide, oxidative modification of Hb, and antioxidant properties of nitrosyl iron complexes. Measuring luminol chemiluminescence revealed that the antioxidant effect of TNICs was higher compared to DNIC-PO4-. DNIC-GS either did not exhibit antioxidant activity or exerted prooxidant effects at certain concentrations, which might have resulted from thiyl radical formation. TNICs and DNIC-PO4- efficiently protected the Hb heme group from decomposition by organic hydroperoxides. DNIC-GS did not exert any protective effects on the heme group; however, it abolished oxoferrylHb generation. TNICs inhibited the formation of Hb multimeric forms more efficiently than DNICs. Thus, TNICs had more pronounced antioxidant activity than DNICs in Hb-containing systems.


Subject(s)
Antioxidants , Hemoglobins , Iron , Phosphates , Thiosulfates , Thiosulfates/pharmacology , Thiosulfates/chemistry , Hemoglobins/metabolism , Hemoglobins/chemistry , Iron/metabolism , Iron/chemistry , Phosphates/chemistry , Phosphates/metabolism , Ligands , Antioxidants/pharmacology , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Oxidation-Reduction/drug effects , Nitrogen Oxides/chemistry , Nitrogen Oxides/pharmacology , Nitrogen Oxides/metabolism , Glutathione/metabolism , Animals
13.
Analyst ; 149(15): 3989-4001, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38948950

ABSTRACT

Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (Q2 values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.


Subject(s)
Odorants , Spectrum Analysis, Raman , Sulfhydryl Compounds , Spectrum Analysis, Raman/methods , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Humans , Odorants/analysis , Limit of Detection , Least-Squares Analysis , Axilla
14.
Anal Chim Acta ; 1312: 342768, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834271

ABSTRACT

A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.


Subject(s)
Chemical and Drug Induced Liver Injury , Fluorescent Dyes , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/toxicity , Chemical and Drug Induced Liver Injury/diagnostic imaging , Mice , Humans , Infrared Rays , Optical Imaging , Glutathione/analysis , Sulfhydryl Compounds/analysis , Sulfhydryl Compounds/chemistry , Cysteine/analysis , Rhodamines/chemistry , Rhodamines/toxicity , Homocysteine/analysis , Luminescence
15.
Chem Commun (Camb) ; 60(55): 7025-7028, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38888299

ABSTRACT

We describe a versatile and tuneable thiol responsive linker system using thiovinylketones, which relies on the conjugate addition-elimination mechanism of Michael acceptors for the traceless release of therapeutics. In a proof-of-principle study, we translate our findings to exhibit potent thiol-cleavable antibiotic prodrugs and antibody-drug conjugates.


Subject(s)
Drug Liberation , Immunoconjugates , Prodrugs , Sulfhydryl Compounds , Prodrugs/chemistry , Sulfhydryl Compounds/chemistry , Humans , Immunoconjugates/chemistry , Anti-Bacterial Agents/chemistry , Molecular Structure , Ketones/chemistry
16.
Molecules ; 29(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930937

ABSTRACT

Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.


Subject(s)
Antioxidants , Catechin , Persea , Proanthocyanidins , Persea/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology , Proanthocyanidins/chemical synthesis , Proanthocyanidins/isolation & purification , Catechin/chemistry , Catechin/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Sulfhydryl Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/isolation & purification , Phenols/chemistry , Phenols/pharmacology , Phenols/isolation & purification , Phenols/chemical synthesis
17.
Langmuir ; 40(23): 12117-12123, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38826127

ABSTRACT

Electrochemical aptamer-based (E-AB) sensors are a promising class of biosensors which use structure-switching redox-labeled oligonucleotides (aptamers) codeposited with passivating alkanethiol monolayers on electrode surfaces to specifically bind and detect target analytes. Signaling in E-AB sensors is an outcome of aptamer conformational changes upon target binding, with the sequence of the aptamer imparting specificity toward the analyte of interest. The change in conformation translates to a change in electron transfer between the redox label attached to the aptamer and the underlying electrode and is related to analyte concentration, allowing specific electrochemical detection of nonelectroactive analytes. E-AB sensor measurements are reagentless with time resolutions of seconds or less and may be miniaturized into the submicron range. Traditionally these sensors are fabricated using thiol-on-gold chemistry. Here we present an alternate immobilization chemistry, gold-alkyne binding, which results in an increase in sensor lifetimes under ideal conditions by up to ∼100%. We find that gold-alkyne binding is spontaneous and supports efficient E-AB sensor signaling with analytical performance characteristics similar to those of thiol generated monolayers. The surface modification differs from gold-thiol binding only in the time and aptamer concentration required to achieve similar aptamer surface coverages. In addition, alkynated aptamers differ from their thiolated analogues only by their chemical handle for surface attachment, so any existing aptamers can be easily adapted to utilize this attachment strategy.


Subject(s)
Alkynes , Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Aptamers, Nucleotide/chemistry , Gold/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Alkynes/chemistry , Electrodes , Sulfhydryl Compounds/chemistry
18.
Methods Mol Biol ; 2832: 99-113, 2024.
Article in English | MEDLINE | ID: mdl-38869790

ABSTRACT

Redox modulation is a common posttranslational modification to regulate protein activity. The targets of oxidizing agents are cysteine residues (Cys), which have to be exposed at the surface of the proteins and are characterized by an environment that favors redox modulation. This includes their protonation state and the neighboring amino acids. The Cys redox state can be assessed experimentally by redox titrations to determine the midpoint redox potential in the protein. Exposed cysteine residues and putative intramolecular disulfide bonds can be predicted by alignments with structural data using dedicated software tools and information on conserved cysteine residues. Labeling with light and heavy reagents, such as N-ethylmaleimide (NEM), followed by mass spectrometric analysis, allows for the experimental determination of redox-responsive cysteine residues. This type of thiol redox proteomics is a powerful approach to assessing the redox state of the cell, e.g., in dependence on environmental conditions and, in particular, under abiotic stress.


Subject(s)
Cysteine , Oxidation-Reduction , Proteomics , Sulfhydryl Compounds , Cysteine/metabolism , Cysteine/chemistry , Proteomics/methods , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/chemistry , Stress, Physiological , Protein Processing, Post-Translational , Mass Spectrometry/methods , Proteins/chemistry , Proteins/metabolism
19.
Org Lett ; 26(23): 5021-5026, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38842216

ABSTRACT

We describe a simple and robust oxidation strategy for preparing N-terminal thiazolidine-containing peptide thioesters from peptide hydrazides. We find for the first time that l-thioproline can be used as a protective agent to prevent the nitrosation of N-terminal thiazolidine during peptide hydrazide oxidation. The thioproline-based oxidation strategy has been successfully applied to the chemical synthesis of CC chemokine ligand-2 (69aa) and omniligase-C (113aa), thereby demonstrating its utility in hydrazide-based native chemical ligation.


Subject(s)
Oxidation-Reduction , Peptides , Thiazolidines , Thiazolidines/chemistry , Thiazolidines/chemical synthesis , Molecular Structure , Peptides/chemistry , Peptides/chemical synthesis , Hydrazines/chemistry , Proline/chemistry , Esters/chemistry , Sulfhydryl Compounds/chemistry
20.
Dalton Trans ; 53(26): 10947-10960, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38895770

ABSTRACT

The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Phosphines , Ruthenium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Phosphines/chemistry , Phosphines/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Cell Line, Tumor , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL