Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.438
Filter
1.
Cell Death Dis ; 15(8): 560, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097602

ABSTRACT

Spinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13+/- hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates. Moreover, analysis of the SYT13+/- transcriptome revealed a significant impairment in biological mechanisms involved in motoneuron specification and spinal cord differentiation. This transcriptional portrait also strikingly correlated with ALS signatures, displaying a significant convergence toward the expression of pro-apoptotic and pro-inflammatory genes, which are controlled by the transcription factor TP53. Our data show for the first time that the heterozygous loss of a single member of the synaptotagmin family, SYT13, is sufficient to trigger a series of abnormal alterations leading to MN sufferance, thus revealing novel insights into the selective vulnerability of this cell population.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neurons , Synaptotagmins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Synaptotagmins/metabolism , Synaptotagmins/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Heterozygote , Phenotype , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Cell Differentiation/genetics , Gene Knockout Techniques
2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000085

ABSTRACT

Fragile X syndrome (FXS) is an intellectual developmental disorder characterized, inter alia, by deficits in the short-term processing of neural information, such as sensory processing and working memory. The primary cause of FXS is the loss of fragile X messenger ribonucleoprotein (FMRP), which is profoundly involved in synaptic function and plasticity. Short-term synaptic plasticity (STSP) may play important roles in functions that are affected by FXS. Recent evidence points to the crucial involvement of the presynaptic calcium sensor synaptotagmin-7 (Syt-7) in STSP. However, how the loss of FMRP affects STSP and Syt-7 have been insufficiently studied. Furthermore, males and females are affected differently by FXS, but the underlying mechanisms remain elusive. The aim of the present study was to investigate possible changes in STSP and the expression of Syt-7 in the dorsal (DH) and ventral (VH) hippocampus of adult males and females in a Fmr1-knockout (KO) rat model of FXS. We found that the paired-pulse ratio (PPR) and frequency facilitation/depression (FF/D), two forms of STSP, as well as the expression of Syt-7, are normal in adult KO males, but the PPR is increased in the ventral hippocampus of KO females (6.4 ± 3.7 vs. 18.3 ± 4.2 at 25 ms in wild type (WT) and KO, respectively). Furthermore, we found no gender-related differences, but did find robust region-dependent difference in the STSP (e.g., the PPR at 50 ms: 50.0 ± 5.5 vs. 17.6 ± 2.9 in DH and VH of WT male rats; 53.1 ± 3.6 vs. 19.3 ± 4.6 in DH and VH of WT female rats; 48.1 ± 2.3 vs. 19.1 ± 3.3 in DH and VH of KO male rats; and 51.2 ± 3.3 vs. 24.7 ± 4.3 in DH and VH of KO female rats). AMPA receptors are similarly expressed in the two hippocampal segments of the two genotypes and in both genders. Also, basal excitatory synaptic transmission is higher in males compared to females. Interestingly, we found more than a twofold higher level of Syt-7, not synaptotagmin-1, in the dorsal compared to the ventral hippocampus in the males of both genotypes (0.43 ± 0.1 vs. 0.16 ± 0.02 in DH and VH of WT male rats, and 0.6 ± 0.13 vs. 0.23 ± 0.04 in DH and VH of KO male rats) and in the WT females (0.97 ± 0.23 vs. 0.31 ± 0.09 in DH and VH). These results point to the susceptibility of the female ventral hippocampus to FMRP loss. Importantly, the different levels of Syt-7, which parallel the higher score of the dorsal vs. ventral hippocampus on synaptic facilitation, suggest that Syt-7 may play a pivotal role in defining the striking differences in STSP along the long axis of the hippocampus.


Subject(s)
Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Hippocampus , Neuronal Plasticity , Synaptotagmins , Animals , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Male , Female , Rats , Hippocampus/metabolism , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Synaptotagmins/metabolism , Synaptotagmins/genetics
3.
Eur J Med Res ; 29(1): 338, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890718

ABSTRACT

BACKGROUND: Synaptotagmin 11 (SYT11) plays a pivotal role in neuronal vesicular trafficking and exocytosis. However, no independent prognostic studies have focused on various cancers. In this study, we aimed to summarize the clinical significance and molecular landscape of SYT11 in various tumor types. METHODS: Using several available public databases, we investigated abnormal SYT11 expression in different tumor types and its potential clinical association with prognosis, methylation profiling, immune infiltration, gene enrichment analysis, and protein-protein interaction analysis, and identified common pathways. RESULTS: TCGA and Genotype-Tissue Expression (GTEx) showed that SYT11 was widely expressed across tumor and corresponding normal tissues. Survival analysis showed that SYT11 expression correlated with the prognosis of seven cancer types. Additionally, SYT11 mRNA expression was not affected by promoter methylation, but regulated by certain miRNAs and associated with cancer patient prognosis. In vitro experiments further verified a negative correlation between the expression of SYT11 and miR-19a-3p in human colorectal, lung, and renal cancer cell lines. Moreover, aberrant SYT11 expression was significantly associated with immune infiltration. Pathway enrichment analysis revealed that the biological and molecular processes of SYT11 were related to clathrin-mediated endocytosis, Rho GTPase signaling, and cell motility-related functions. CONCLUSIONS: Our results provide a clear understanding of the role of SYT11 in various cancer types and suggest that SYT11 may be of prognostic and clinical significance.


Subject(s)
MicroRNAs , Neoplasms , Synaptotagmins , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , DNA Methylation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/metabolism , Prognosis , Synaptotagmins/genetics , Synaptotagmins/metabolism
4.
J Cell Biol ; 223(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38842573

ABSTRACT

Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Endosomal Sorting Complexes Required for Transport , Extracellular Vesicles , Motor Neurons , Signal Transduction , Synapses , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Extracellular Vesicles/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Synapses/metabolism , Motor Neurons/metabolism , Autophagy , Synaptotagmins/metabolism , Synaptotagmins/genetics , Neuroglia/metabolism
5.
Brain Res Bull ; 214: 110994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830486

ABSTRACT

Synaptotagmin-7 (SYT7) has been proposed as an innovative therapeutic strategy for treating cognitive impairment, while its contribution to Alzheimer's disease (AD) alleviation remains unclear. In this study, we investigated the role and potential mechanisms of SYT7 in AD. APP/PS1 mice were induced as an AD mouse model, and RNA-sequencing was conducted to analyze the transcriptomic differences between the brain tissues of AD mice and controls. SYT7, which was the most significantly differentially expressed gene in the RNA-sequencing, was found to be reduced in AD-like mice, and overexpression of SYT7 alleviated cognitive dysfunction and attenuated neuroinflammation and neuronal loss in the hippocampal tissues of mice with AD. Transcription factor double-strand-break repair protein rad21 homolog (RAD21) bound to the promoter of SYT7 to activate SYT7 transcription. SYT7 and RAD21 were expressed in microglia. SYT7 and RAD21 both promoted M2 polarization of microglia, while silencing of SYT7 repressed the M2 polarization of microglia in the presence of RAD21 overexpression. Overall, our results indicate that RAD21 mediated transcriptional activation of SYT7 to promote M2 polarization of microglia, thereby alleviating AD-like symptoms in mice, which might provide prospective cues for developing therapeutic strategies to improve cognitive impairment and AD course.


Subject(s)
Alzheimer Disease , Microglia , Synaptotagmins , Animals , Male , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Transgenic , Microglia/metabolism , Synaptotagmins/metabolism , Synaptotagmins/genetics
6.
EMBO Rep ; 25(6): 2610-2634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698221

ABSTRACT

GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.


Subject(s)
Mice, Knockout , Signal Transduction , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Mice , Humans , Neurons/metabolism , Synaptic Transmission , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Presynaptic Terminals/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Golgi Apparatus/metabolism , Protein Binding , HEK293 Cells
7.
Funct Integr Genomics ; 24(3): 77, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38632140

ABSTRACT

BACKGROUND: Gastric cancer (GC) remains a leading cause of cancer mortality globally. Synaptotagmin-4 (SYT4), a calcium-sensing synaptic vesicle protein, has been implicated in the oncogenesis of diverse malignancies. PURPOSE: This study delineates the role of SYT4 in modulating clinical outcomes and biological behaviors in GC. METHODS: We evaluated SYT4 expression in GC specimens using bioinformatics analyses and immunohistochemistry. Functional assays included CCK8 proliferation tests, apoptosis assays via flow cytometry, confocal calcium imaging, and xenograft models. Western blotting elucidated MAPK pathway involvement. Additionally, we investigated the impact of the calcium channel blocker amlodipine on cellular dynamics and MAPK pathway activity. RESULTS: SYT4 was higher in GC tissues, and the elevated SYT4 was significantly correlated with adverse prognosis. Both univariate and multivariate analyses confirmed SYT4 as an independent prognostic indicator for GC. Functionally, SYT4 promoted tumorigenesis by fostering cellular proliferation, inhibiting apoptosis, and enhancing intracellular Ca2+ influx, predominantly via MAPK pathway activation. Amlodipine pre-treatment attenuated SYT4-driven cell growth and potentiated apoptosis, corroborated by in vivo xenograft assessments. These effects were attributed to MAPK pathway suppression by amlodipine. CONCLUSION: SYT4 emerges as a potential prognostic biomarker and a pro-oncogenic mediator in GC through a Ca2+-dependent MAPK mechanism. Amlodipine demonstrates significant antitumor effects against SYT4-driven GC, positing its therapeutic promise. This study underscores the imperative of targeting calcium signaling in GC treatment strategies.


Subject(s)
Amlodipine , Calcium Signaling , Stomach Neoplasms , Synaptotagmins , Humans , Amlodipine/pharmacology , Amlodipine/therapeutic use , Calcium/metabolism , Calcium Signaling/drug effects , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Synaptotagmins/antagonists & inhibitors , Synaptotagmins/genetics , Synaptotagmins/metabolism , Calcium Channel Blockers/pharmacology
8.
Elife ; 132024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450720

ABSTRACT

Synapse is the fundamental structure for neurons to transmit information between cells. The proper synapse formation is crucial for developing neural circuits and cognitive functions of the brain. The aberrant synapse formation has been proved to cause many neurological disorders, including autism spectrum disorders and intellectual disability. Synaptic cell adhesion molecules (CAMs) are thought to play a major role in achieving mechanistic cell-cell recognition and initiating synapse formation via trans-synaptic interactions. Due to the diversity of synapses in different brain areas, circuits and neurons, although many synaptic CAMs, such as Neurexins (NRXNs), Neuroligins (NLGNs), Synaptic cell adhesion molecules (SynCAMs), Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs), and SLIT and NTRK-like protein (SLITRKs) have been identified as synaptogenic molecules, how these molecules determine specific synapse formation and whether other molecules driving synapse formation remain undiscovered are unclear. Here, to provide a tool for synapse labeling and synaptic CAMs screening by artificial synapse formation (ASF) assay, we generated synaptotagmin-1-tdTomato (Syt1-tdTomato) transgenic mice by inserting the tdTomato-fused synaptotagmin-1 coding sequence into the genome of C57BL/6J mice. In the brain of Syt1-tdTomato transgenic mice, the tdTomato-fused synaptotagmin-1 (SYT1-tdTomato) signals were widely observed in different areas and overlapped with synapsin-1, a widely-used synaptic marker. In the olfactory bulb, the SYT1-tdTomato signals are highly enriched in the glomerulus. In the cultured hippocampal neurons, the SYT1-tdTomato signals showed colocalization with several synaptic markers. Compared to the wild-type (WT) mouse neurons, cultured hippocampal neurons from Syt1-tdTomato transgenic mice presented normal synaptic neurotransmission. In ASF assays, neurons from Syt1-tdTomato transgenic mice could form synaptic connections with HEK293T cells expressing NLGN2, LRRTM2, and SLITRK2 without immunostaining. Therefore, our work suggested that the Syt1-tdTomato transgenic mice with the ability to label synapses by tdTomato, and it will be a convenient tool for screening synaptogenic molecules.


Subject(s)
Cell Adhesion Molecules , Red Fluorescent Protein , Synapses , Humans , Mice , Animals , Mice, Transgenic , HEK293 Cells , Mice, Inbred C57BL , Cell Adhesion Molecules/metabolism , Synapses/physiology , Synaptotagmins/metabolism , Neural Cell Adhesion Molecules/metabolism
9.
Elife ; 122024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536730

ABSTRACT

Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.


Subject(s)
Synapses , Synaptic Vesicles , Synaptotagmins , Animals , Mice , Action Potentials , Calcium/metabolism , Exocytosis , Neurotransmitter Agents , Synapses/metabolism , Synaptic Transmission , Synaptic Vesicles/metabolism , Synaptotagmin I/metabolism , Synaptotagmins/metabolism , Calcium-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism
10.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38365841

ABSTRACT

Dopamine neurons switch from tonic pacemaker activity to high-frequency bursts in response to salient stimuli. These bursts lead to superlinear increases in dopamine release, and the degree of this increase is highly dependent on firing frequency. The superlinearity and frequency dependence of dopamine release implicate short-term plasticity processes. The presynaptic Ca2+-sensor synaptotagmin-7 (SYT7) has suitable properties to mediate such short-term plasticity and has been implicated in regulating dopamine release from somatodendritic compartments. Here, we use a genetically encoded dopamine sensor and whole-cell electrophysiology in Syt7 KO mice to determine how SYT7 contributes to both axonal and somatodendritic dopamine release. We find that SYT7 mediates a hidden component of facilitation of release from dopamine terminals that can be unmasked by lowering initial release probability or by predepressing synapses with low-frequency stimulation. Depletion of SYT7 increased short-term depression and reduced release during stimulations that mimic in vivo firing. Recordings of D2-mediated inhibitory postsynaptic currents in the substantia nigra pars compacta (SNc) confirmed a similar role for SYT7 in somatodendritic release. Our results indicate that SYT7 drives short-term facilitation of dopamine release, which may explain the frequency dependence of dopamine signaling seen in vivo.


Subject(s)
Depression , Dopamine , Animals , Mice , Calcium/metabolism , Dopaminergic Neurons/metabolism , Synapses/metabolism , Synaptotagmins
11.
J Neurosci ; 44(9)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38262726

ABSTRACT

Synapses with high release probability (Pr ) tend to exhibit short-term synaptic depression. According to the prevailing model, this reflects the temporary depletion of release-ready vesicles after an initial action potential (AP). At the high-Pr layer 4 to layer 2/3 (L4-L2/3) synapse in rodent somatosensory cortex, short-term plasticity appears to contradict the depletion model: depression is absent at interstimulus intervals (ISIs) <50 ms and develops to a maximum at ∼200 ms. To understand the mechanism(s) underlying the biphasic time course of short-term plasticity at this synapse, we used whole-cell electrophysiology and two-photon calcium imaging in acute slices from male and female juvenile mice. We tested several candidate mechanisms including neuromodulation, postsynaptic receptor desensitization, and use-dependent changes in presynaptic AP-evoked calcium. We found that, at single L4-L2/3 synapses, Pr varies as a function of ISI, giving rise to the distinctive short-term plasticity time course. Furthermore, the higher-than-expected Pr at short ISIs depends on expression of synaptotagmin 7 (Syt7). Our results show that two distinct vesicle release processes summate to give rise to short-term plasticity at this synapse: (1) a basal, high-Pr release mechanism that undergoes rapid depression and recovers slowly (τ = ∼3 s) and (2) a Syt7-dependent mechanism that leads to a transient increase in Pr (τ = ∼100 ms) after the initial AP. We thus reveal how these synapses can maintain a very high probability of neurotransmission for multiple APs within a short time frame. Key words : depression; facilitation; short-term plasticity; synaptotagmin 7.


Subject(s)
Calcium , Neuronal Plasticity , Animals , Female , Male , Mice , Calcium/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Synaptic Transmission/physiology , Synaptotagmins/genetics , Synaptotagmins/metabolism
12.
EMBO Rep ; 25(1): 286-303, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177911

ABSTRACT

Upon T-cell activation, the levels of the secondary messenger diacylglycerol (DAG) at the plasma membrane need to be controlled to ensure appropriate T-cell receptor signaling and T-cell functions. Extended-Synaptotagmins (E-Syts) are a family of inter-organelle lipid transport proteins that bridge the endoplasmic reticulum and the plasma membrane. In this study, we identify a novel regulatory mechanism of DAG-mediated signaling for T-cell effector functions based on E-Syt proteins. We demonstrate that E-Syts downmodulate T-cell receptor signaling, T-cell-mediated cytotoxicity, degranulation, and cytokine production by reducing plasma membrane levels of DAG. Mechanistically, E-Syt2 predominantly modulates DAG levels at the plasma membrane in resting-state T cells, while E-Syt1 and E-Syt2 negatively control T-cell receptor signaling upon stimulation. These results reveal a previously underappreciated role of E-Syts in regulating DAG dynamics in T-cell signaling.


Subject(s)
Signal Transduction , T-Lymphocytes , Synaptotagmins/metabolism , Cell Membrane/metabolism , Biological Transport , Receptors, Antigen, T-Cell/metabolism , Calcium/metabolism
13.
Biol Chem ; 405(3): 189-201, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-37677740

ABSTRACT

The exact mechanisms involved in flaviviruses virions' release and the specific secretion of viral proteins, such as the Non Structural protein-1 (NS1), are still unclear. While these processes might involve vesicular transport to the cell membrane, NS1 from some flaviviruses was shown to participate in viral assembly and release. Here, we assessed the effect of the Zika virus (ZIKV) NS1 expression on the cellular proteome to identify trafficking-related targets that may be altered in the presence of the viral protein. We detected an increase in the synaptotagmin-9 (SYT9) secretory protein, which participates in the intracellular transport of protein-laden vesicles. We confirmed the effect of NS1 on SYT9 levels by transfection models while also detecting a significant subcellular redistribution of SYT9. We found that ZIKV prM-Env proteins, required for the viral particle release, also increased SYT9 levels and changed its localization. Finally, we demonstrated that ZIKV cellular infection raises SYT9 levels and promotes changes in its subcellular localization, together with a co-distribution with both Env and NS1. Altogether, the data suggest SYT9's implication in the vesicular transport of viral proteins or virions during ZIKV infection, showing for the first time the association of synaptotagmins with the flavivirus' life cycle.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Proteome , Synaptotagmins , Viral Proteins
14.
FEBS J ; 291(3): 441-444, 2024 02.
Article in English | MEDLINE | ID: mdl-38037874

ABSTRACT

The molecular mechanisms involved in the transition of cardiac hypertrophy to heart failure (HF) are not fully characterized. Autophagy is a catabolic, self-renewal intracellular mechanism, which protects the heart during HF. In the heart of a mouse model of angiotensin-II-induced hypertrophy, Sun and colleagues demonstrated that reduced levels of miR-93 lead to synaptotagmin-7 (Syt-7) upregulation and consequent inhibition of autophagy. miR-93 overexpression or syt-7 inhibition rescues autophagy and maladaptive hypertrophy. This research identifies new players in the pathophysiology of cardiac hypertrophy, opening innovative therapeutic perspectives. miR-93 may also be considered in the future as a novel circulating biomarker for patients at high risk to develop HF.


Subject(s)
Heart Failure , MicroRNAs , Animals , Humans , Mice , Angiotensin II , Autophagy/genetics , Cardiomegaly/metabolism , Heart Failure/genetics , Heart Failure/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
15.
FEBS J ; 291(3): 489-509, 2024 02.
Article in English | MEDLINE | ID: mdl-37724442

ABSTRACT

Sustained cardiac hypertrophy damages the heart and weakens cardiac function, often leading to heart failure and even death. Pathological cardiac hypertrophy has become a central therapeutic target for many heart diseases including heart failure. However, the underlying mechanisms of cardiac hypertrophy, especially the involvement of autophagy program, are still ill-understood. Synaptotagmin-7 (Syt7), a multifunctional and high-affinity calcium sensor, plays a pivotal role in asynchronous neurotransmitter release, synaptic facilitation, and vesicle pool regulation during synaptic transmission. However, little is known about whether Syt7 is expressed in the myocardium and involved in the pathogenesis of heart diseases. Here we showed that Syt7 was significantly upregulated in Ang II-treated hearts and cardiomyocytes. Homozygous syt7 knockout (syt7-/-) mice exhibited significantly attenuated cardiac hypertrophy and fibrosis and improved cardiac function. We further found that Syt7 exerted a pro-hypertrophic effect by suppressing the autophagy process. In exploring the upstream mechanisms, microRNA (miR)-93 was identified to participate in the regulation of Syt7 expression. miR-93 protected hearts against Ang II-induced hypertrophy through targeting Syt7-autophagy pathway. In summary, our data reveal a new cardiac hypertrophy regulator and a novel hypertrophy regulating model composed of miR-93, Syt7 and autophagy program. These molecules may serve as potential therapeutic targets in the treatment of cardiac hypertrophy and heart failure.


Subject(s)
Heart Failure , MicroRNAs , Mice , Animals , Synaptotagmins/genetics , Synaptotagmins/metabolism , Synaptotagmins/pharmacology , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , Heart Failure/complications , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Angiotensin II/genetics
16.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37931956

ABSTRACT

Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.


Subject(s)
Calcium , Endoplasmic Reticulum , Mitochondria , Synaptotagmins , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis , Lipids , Mitochondria/metabolism , Synaptotagmins/metabolism
17.
Eur J Med Res ; 28(1): 601, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111060

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a common cancer with a poor prognosis. Pyroptosis is an important process in the development and progression of LUAD. We analyzed the risk factors affecting the prognosis of patients and constructed a nomogram to predict the overall survival of patients based on different pyroptosis-related genes (PRGs) subtypes. METHODS: The genomic data of LUAD were downloaded from the TCGA and GEO databases, and all data were filtered and divided into TCGA and GEO cohorts. The process of data analysis and visualization was performed via R software. The data were classified based on different PRGs subtypes using the K-means clustering method. Then, the differentially expressed genes were identified between two different subtypes, and risk factors analysis, survival analysis, functional enrichment analysis, and immune cells infiltration landscape analysis were conducted. The COX regression analysis was used to construct the prediction model. RESULTS: Based on the PRGs of LUAD, the patients were divided into two subtypes. We found the survival probability of patients in subtype 1 is higher than that in subtype 2. The results of the logistics analysis showed that gene risk score was closely associated with the prognosis of LUAD patients. The results of GO analysis and KEGG analysis revealed important biological processes and signaling pathways involved in the differentially expressed proteins between the two subtypes. Then we constructed a prediction model of patients' prognosis based on 13 genes, including IL-1A, P2RX1, GSTM2, ESYT3, ZNF682, KCNF1, STK32A, HHIPL2, GDF10, NDC80, GSTA1, BCL2L10, and CCR2. This model was strongly related to the overall survival (OS) and also reflects the immune status in patients with LUAD. CONCLUSION: In our study, we examined LUAD heterogeneity with reference to pyroptosis and found different prognoses between the two subtypes. And a novel prediction model was constructed to predict the OS of LUAD patients based on different PRGs signatures. The model has shown excellent predictive efficiency through validation.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Pyroptosis/genetics , Adenocarcinoma of Lung/genetics , Risk Factors , Genetic Risk Score , Lung Neoplasms/genetics , Prognosis , Synaptotagmins
18.
J Neurochem ; 167(5): 680-695, 2023 12.
Article in English | MEDLINE | ID: mdl-37924268

ABSTRACT

Membrane trafficking pathways mediate key microglial activities such as cell migration, cytokine secretion, and phagocytosis. However, the underlying molecular mechanism remains poorly understood. Previously, we found that synaptotagmin-11 (Syt11), a non-Ca2+ -binding Syt associated with Parkinson's disease (PD) and schizophrenia, inhibits cytokine release and phagocytosis in primary microglia. Here we reported the in vivo function of Syt11 in microglial immune responses using an inducible microglia-specific Syt11-conditional-knockout (cKO) mouse strain. Syt11-cKO resulted in activation of microglia and elevated mRNA levels of IL-6, TNF-α, IL-1ß, and iNOS in various brain regions under both resting state and LPS-induced acute inflammation state in adult mice. In a PD mouse model generated by microinjection of preformed α-synuclein fibrils into the striatum, a reduced number of microglia migrated toward the injection sites and an enhanced phagocytosis of α-synuclein fibrils by microglia were found in Syt11-cKO mice. To understand the molecular mechanism of Syt11 function, we identified its direct binding proteins vps10p-tail-interactor-1a (vti1a) and vti1b. The linker domain of Syt11 interacted with both proteins and a peptide derived from it competitively inhibited the interaction of Syt11 with vti1a/vti1b in vitro and in cells. Importantly, application of this peptide induced more cytokine secretion in wild-type microglia upon LPS treatment, phenocopying defects in Syt11 knockdown cells. Altogether, we propose that Syt11 inhibits microglial activation in vivo and regulates cytokine secretion through interactions with vti1a and vti1b.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Mice , alpha-Synuclein/metabolism , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Microglia/metabolism , Parkinson Disease/metabolism , Phagocytosis , Synaptotagmins/genetics
19.
Medicine (Baltimore) ; 102(45): e35851, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37960721

ABSTRACT

In the clinic, atrial fibrillation (AF) is a common arrhythmia. Despite constant innovation in treatments for AF, they remain limited by a lack of knowledge of the underlying mechanism responsible for AF. In this study, we examined the molecular mechanisms associated with primary mitral regurgitation (MR) in AF using several bioinformatics techniques. Limma was used to identify differentially expressed genes (DEGs) associated with AF using microarray data from the GSE115574 dataset. WGCNA was used to identify significant module genes. A functional enrichment analysis for overlapping genes between the DEGs and module genes was done and several AF hub genes were identified from a protein-protein interaction (PPI) network. Receiver operating characteristic (ROC) curves were generated to evaluate the validity of the hub genes. We examined 306 DEGs and 147 were upregulated and 159 were downregulated. WGCNA analysis revealed black and ivory modules that contained genes associated with AF. Functional enrichment analysis revealed various biological process terms related to AF. The AUCs for the 8 hub genes screened by the PPI network analysis were > 0.7, indicating satisfactory diagnostic accuracy. The 8 AF-related hub genes included SYT13, VSNL1, GNAO1, RGS4, RALYL, CPLX1, CHGB, and CPLX3. Our findings provide novel insight into the molecular mechanisms of AF and may lead to the development of new treatments.


Subject(s)
Atrial Fibrillation , Mitral Valve Insufficiency , Humans , Atrial Fibrillation/genetics , Ambulatory Care Facilities , Area Under Curve , Computational Biology , Gene Regulatory Networks , Synaptotagmins , GTP-Binding Protein alpha Subunits, Gi-Go
20.
Nat Commun ; 14(1): 7761, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012142

ABSTRACT

Synaptotagmin-1 and synaptotagmin-7 are two prominent calcium sensors that regulate exocytosis in neuronal and neuroendocrine cells. Upon binding calcium, both proteins partially penetrate lipid bilayers that bear anionic phospholipids, but the specific underlying mechanisms that enable them to trigger exocytosis remain controversial. Here, we examine the biophysical properties of these two synaptotagmin isoforms and compare their interactions with phospholipid membranes. We discover that synaptotagmin-1-membrane interactions are greatly influenced by membrane order; tight packing of phosphatidylserine inhibits binding due to impaired membrane penetration. In contrast, synaptotagmin-7 exhibits robust membrane binding and penetration activity regardless of phospholipid acyl chain structure. Thus, synaptotagmin-7 is a super-penetrator. We exploit these observations to specifically isolate and examine the role of membrane penetration in synaptotagmin function. Using nanodisc-black lipid membrane electrophysiology, we demonstrate that membrane penetration is a critical component that underlies how synaptotagmin proteins regulate reconstituted, exocytic fusion pores in response to calcium.


Subject(s)
Calcium , Synaptotagmin I , Synaptotagmins/metabolism , Calcium/metabolism , Synaptotagmin I/metabolism , Exocytosis/physiology , Cell Membrane/metabolism , Calcium-Binding Proteins/metabolism , Phospholipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL