Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.826
Filter
1.
Adv Exp Med Biol ; 1459: 79-94, 2024.
Article in English | MEDLINE | ID: mdl-39017840

ABSTRACT

T lymphocytes consist of several subtypes with distinct functions that help to coordinate an immune response. They are generated within the thymus through a sequential developmental pathway that produces subsets with diverse antigen specificities and functions. Naïve T cells populate peripheral lymphoid organs and are activated upon foreign antigen encounter. While most T cells die soon after activation, a memory population survives and is able to quickly respond to secondary challenges, thus providing long-term immunity to the host. Although cell identity is largely stable and is instructed by cell-specific transcriptional programs, cells may change their transcriptional profiles to be able to adapt to new functionalities. Central to these dynamic processes are transcription factors, which control cell fate decisions, through direct regulation of gene expression. In this book chapter, we review the functions of the transcription factor B-cell lymphoma 6 (BCL6), which directs the fate of several lymphocyte subsets, including helper, cytotoxic, and innate-like T cells, but can also be involved in lymphomagenesis in humans.


Subject(s)
Cell Differentiation , Proto-Oncogene Proteins c-bcl-6 , Humans , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Cell Differentiation/immunology , Animals , T-Lymphocytes/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Gene Expression Regulation , Lymphocyte Activation/immunology
2.
J Vis Exp ; (208)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39007567

ABSTRACT

Various nuclear processes, such as transcriptional control, occur within discrete structures known as foci that are discernable through the immunofluorescence technique. Investigating the dynamics of these foci under diverse cellular conditions via microscopy yields valuable insights into the molecular mechanisms governing cellular identity and functions. However, performing immunofluorescence assays across different cell types and assessing alterations in the assembly, diffusion, and distribution of these foci present numerous challenges. These challenges encompass complexities in sample preparation, determination of parameters for analyzing imaging data, and management of substantial data volumes. Moreover, existing imaging workflows are often tailored for proficient users, thereby limiting accessibility to a broader audience. In this study, we introduce an optimized immunofluorescence protocol tailored for investigating nuclear proteins in different human primary T cell types that can be customized for any protein of interest and cell type. Furthermore, we present a method for unbiasedly quantifying protein staining, whether they form distinct foci or exhibit a diffuse nuclear distribution. Our proposed method offers a comprehensive guide, from cellular staining to analysis, leveraging a semi-automated pipeline developed in Jython and executable in Fiji. Furthermore, we provide a user-friendly Python script to streamline data management, publicly accessible on a Google Colab notebook. Our approach has demonstrated efficacy in yielding highly informative immunofluorescence analyses for proteins with diverse patterns of nuclear organization across different contexts.


Subject(s)
Fluorescent Antibody Technique , Humans , Fluorescent Antibody Technique/methods , Cell Nucleus/chemistry , Cell Nucleus/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , T-Lymphocytes/chemistry , Image Processing, Computer-Assisted/methods
3.
ACS Nano ; 18(24): 15935-15949, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833531

ABSTRACT

Monitoring T lymphocyte differentiation is essential for understanding T cell fate regulation and advancing adoptive T cell immunotherapy. However, current biomarker analysis methods necessitate cell lysis, leading to source depletion. Intracellular pH (pHi) can be affected by the presence of lactic acid (LA), a metabolic mediator of T cell activity such as glycolysis during T cell activation; therefore, it is a potentially a good biomarker of T cell state. In this work, a dual emitting enhancement-based nanoprobe, namely, AIEgen@F127-AptCD8, was developed to accurately detect the pHi of T cells to "read" the T cell differentiation process. The nanocore of this probe comprises a pair of AIE dyes, TPE-AMC (pH-sensitive moiety) and TPE-TCF, that form a donor-acceptor pair for sensitive detection of pHi by dual emitting enhancement analysis. The nanoprobe exhibits a distinctly sensitive narrow range of pHi values (from 6.0 to 7.4) that can precisely distinguish the differentiated lymphocytes from naïve ones based on their distinct pHi profiles. Activated CD8+ T cells demonstrate lower pHi (6.49 ± 0.09) than the naïve cells (7.26 ± 0.11); Jurkat cells exhibit lower pHi (6.43 ± 0.06) compared to that of nonactivated ones (7.29 ± 0.09) on 7 days post-activation. The glycolytic product profiles in T cells strongly correlate with their pHi profiles, ascertaining the reliability of probing pHi for predicting T cell states. The specificity and dynamic detection capabilities of this nanoprobe make it a promising tool for indirectly and noninvasively monitoring T cell activation and differentiation states.


Subject(s)
Cell Differentiation , Hydrogen-Ion Concentration , Humans , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Activation , Animals
4.
Anal Chem ; 96(26): 10780-10790, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889002

ABSTRACT

This study introduces a T cell enrichment process, capitalizing on the size differences between activated and unactivated T cells to facilitate the isolation of activated, transducible T cells. By employing multidimensional double spiral (MDDS) inertial sorting, our approach aims to remove unactivated or not fully activated T cells post-activation, consequently enhancing the efficiency of chimeric antigen receptor (CAR) T cell manufacturing. Our findings reveal that incorporating a simple, label-free, and continuous MDDS sorting step yields a purer T cell population, exhibiting significantly enhanced viability and CAR-transducibility (with up to 85% removal of unactivated T cells and approximately 80% recovery of activated T cells); we found approximately 2-fold increase in CAR transduction efficiency for a specific sample, escalating from ∼10% to ∼20%, but this efficiency highly depends on the original T cell sample as MDDS sorting would be more effective for samples possessing a higher proportion of unactivated T cells. This new cell separation process could augment the efficiency, yield, and cost-effectiveness of CAR T cell manufacturing, potentially broadening the accessibility of this transformative therapy and contributing to improved patient outcomes.


Subject(s)
Cell Separation , Lymphocyte Activation , Receptors, Chimeric Antigen , T-Lymphocytes , T-Lymphocytes/cytology , Humans , Receptors, Chimeric Antigen/metabolism , Cell Separation/methods , Microfluidic Analytical Techniques/instrumentation , Immunotherapy, Adoptive/methods
5.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38830768

ABSTRACT

Hematopoietic stem cells and multipotential progenitors emerge in multiple, overlapping waves of fetal development. Some of these populations seed the bone marrow and sustain adult B- and T-cell development long-term after birth. However, others are present transiently, but whether they are vestigial or generate B and T cells that contribute to the adult immune system is not well understood. We now report that transient fetal progenitors distinguished by expression of low levels of the PU.1 transcription factor generated activated and memory T and B cells that colonized and were maintained in secondary lymphoid tissues. These included the small and large intestines, where they may contribute to the maintenance of gut homeostasis through at least middle age. At least some of the activated/memory cells may have been the progeny of B-1 and marginal zone B cells, as transient PU.1low fetal progenitors efficiently generated those populations. Taken together, our data demonstrate the potential of B- and T-cell progeny of transient PU.1low fetal progenitors to make an early and long-term contribution to the adult immune system.


Subject(s)
B-Lymphocytes , Proto-Oncogene Proteins , T-Lymphocytes , Trans-Activators , Trans-Activators/metabolism , Trans-Activators/genetics , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Cell Differentiation/immunology , Female , Fetus/cytology , Fetal Stem Cells/metabolism , Fetal Stem Cells/cytology
6.
Nano Lett ; 24(19): 5808-5815, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710049

ABSTRACT

In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.


Subject(s)
Antigen-Presenting Cells , Cell Communication , DNA , DNA/chemistry , Humans , Antigen-Presenting Cells/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Lymphocyte Activation , Neoplasms/pathology , Neoplasms/genetics
7.
Methods Mol Biol ; 2800: 167-187, 2024.
Article in English | MEDLINE | ID: mdl-38709484

ABSTRACT

Analyzing the dynamics of mitochondrial content in developing T cells is crucial for understanding the metabolic state during T cell development. However, monitoring mitochondrial content in real-time needs a balance of cell viability and image resolution. In this chapter, we present experimental protocols for measuring mitochondrial content in developing T cells using three modalities: bulk analysis via flow cytometry, volumetric imaging in laser scanning confocal microscopy, and dynamic live-cell monitoring in spinning disc confocal microscopy. Next, we provide an image segmentation and centroid tracking-based analysis pipeline for automated quantification of a large number of microscopy images. These protocols together offer comprehensive approaches to investigate mitochondrial dynamics in developing T cells, enabling a deeper understanding of their metabolic processes.


Subject(s)
Flow Cytometry , Microscopy, Confocal , Mitochondria , Single-Cell Analysis , T-Lymphocytes , Flow Cytometry/methods , Mitochondria/metabolism , Single-Cell Analysis/methods , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Microscopy, Confocal/methods , Animals , Image Processing, Computer-Assisted/methods , Humans , Mice , Mitochondrial Dynamics
8.
ACS Appl Bio Mater ; 7(6): 3746-3757, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38775109

ABSTRACT

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.


Subject(s)
Lipids , Materials Testing , Nanoparticles , Particle Size , Transfection , Humans , Transfection/methods , Nanoparticles/chemistry , Lipids/chemistry , Jurkat Cells , Biocompatible Materials/chemistry , Cell Survival/drug effects , DNA/administration & dosage , DNA/chemistry , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Receptors, Chimeric Antigen/metabolism
9.
Acc Chem Res ; 57(12): 1722-1735, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38819691

ABSTRACT

ConspectusIn human cells, intracellular access and therapeutic cargo transport, including gene-editing tools (e.g., CRISPR-Cas9 and transposons), nucleic acids (e.g., DNA, mRNA, and siRNA), peptides, and proteins (e.g., enzymes and antibodies), are tightly constrained to ensure healthy cell function and behavior. This principle is exemplified in the delivery mechanisms of chimeric antigen receptor (CAR)-T cells for ex-vivo immunotherapy. In particular, the clinical success of CAR-T cells has established a new standard of care by curing previously incurable blood cancers. The approach involves the delivery, typically via the use of electroporation (EP) and lentivirus, of therapeutic CAR genes into a patient's own T cells, which are then engineered to express CARs that target and combat their blood cancer. But the key difficulty lies in genetically manipulating these cells without causing irreversible damage or loss of function─all the while minimizing complexities of manufacturing, safety concerns, and costs, and ensuring the efficacy of the final CAR-T cell product.Nanoinjection─the process of intracellular delivery using nanoneedles (NNs)─is an emerging physical delivery route that efficiently negotiates the plasma membrane of many cell types, including primary human T cells. It occurs with minimal perturbation, invasiveness, and toxicity, with high efficiency and throughput at high spatial and temporal resolutions. Nanoinjection promises greatly improved delivery of a broad range of therapeutic cargos with little or no damage to those cargos. A nanoinjection platform allows these cargos to function in the intracellular space as desired. The adaptability of nanoinjection platforms is now bringing major advantages in immunomodulation, mechanotransduction, sampling of cell states (nanobiopsy), controlled intracellular interrogation, and the primary focus of this account─intracellular delivery and its applications in ex vivo cell engineering.Mechanical nanoinjection typically exerts direct mechanical force on the cell membrane, offering a straightforward route to improve membrane perturbation by the NNs and subsequent transport of genetic cargo into targeted cell type (adherent or suspension cells). By contrast, electroactive nanoinjection is controlled by coupling NNs with an electric field─a new route for activating electroporation (EP) at the nanoscale─allowing a dramatic reduction of the applied voltage to a cell and so minimizing post-EP damage to cells and cargo, and overcoming many of the limitations of conventional bulk EP. Nanoinjection transcends mere technique; it is an approach to cell engineering ex vivo, offering the potential to endow cells with new, powerful features such as generating chimeric antigen receptor (CAR)-T cells for future CAR-T cell technologies.We first discuss the manufacturing of NN devices (Section 2), then delve into nanoinjection-mediated cell engineering (Section 3), nanoinjection mechanisms and interfacing methodologies (Section 4), and emerging applications in using nanoinjection to create functional CAR-T cells (Section 5).


Subject(s)
Cell Engineering , Humans , Cell Engineering/methods , Receptors, Chimeric Antigen/metabolism , Nanotechnology/methods , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Electroporation/methods , Injections
10.
Biol Chem ; 405(7-8): 485-515, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38766710

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has led to remarkable clinical outcomes in the treatment of hematological malignancies. However, challenges remain, such as limited infiltration into solid tumors, inadequate persistence, systemic toxicities, and manufacturing insufficiencies. The use of alternative cell sources for CAR-based therapies, such as natural killer cells (NK), macrophages (MΦ), invariant Natural Killer T (iNKT) cells, γδT cells, neutrophils, and induced pluripotent stem cells (iPSC), has emerged as a promising avenue. By harnessing these cells' inherent cytotoxic mechanisms and incorporating CAR technology, common CAR-T cell-related limitations can be effectively mitigated. We herein present an overview of the tumoricidal mechanisms, CAR designs, and manufacturing processes of CAR-NK cells, CAR-MΦ, CAR-iNKT cells, CAR-γδT cells, CAR-neutrophils, and iPSC-derived CAR-cells, outlining the advantages, limitations, and potential solutions of these therapeutic strategies.


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/immunology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Immunotherapy, Adoptive , Cell- and Tissue-Based Therapy/methods , Killer Cells, Natural/immunology , Killer Cells, Natural/cytology , Macrophages/immunology , Macrophages/cytology , Macrophages/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Animals , Neoplasms/therapy , Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/cytology
11.
Angew Chem Int Ed Engl ; 63(30): e202406186, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38738850

ABSTRACT

The advancement of cell-mimic materials, which can forge sophisticated physicochemical dialogues with living cells, has unlocked a realm of intriguing prospects within the fields of synthetic biology and biomedical engineering. Inspired by the evolutionarily acquired ability of T lymphocytes to release perforin and generate transmembrane channels on targeted cells for killing, herein we present a pioneering DNA-encoded artificial T cell mimic model (ARTC) that accurately mimics T-cell-like behavior. ARTC responds to acidic conditions similar to those found in the tumor microenvironment and then selectively releases a G-rich DNA strand (LG4) embedded with C12 lipid and cholesterol molecules. Once released, LG4 effectively integrates into the membranes of neighboring live cells, behaving as an artificial transmembrane channel that selectively transports K+ ions and disrupts cellular homeostasis, ultimately inducing apoptosis. We hope that the emergence of ARTC will usher in new perspectives for revolutionizing future disease treatment and catalyzing the development of advanced biomedical technologies.


Subject(s)
DNA , DNA/chemistry , DNA/metabolism , Humans , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Apoptosis/drug effects , Cell Death/drug effects
13.
Nature ; 629(8010): 211-218, 2024 May.
Article in English | MEDLINE | ID: mdl-38600391

ABSTRACT

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.


Subject(s)
Forkhead Box Protein O1 , Immunologic Memory , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Animals , Humans , Mice , Cell Line, Tumor , Chromatin/metabolism , Chromatin/genetics , Forkhead Box Protein O1/metabolism , Gene Editing , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology
14.
Nano Lett ; 24(17): 5132-5138, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38588326

ABSTRACT

Nanoparticle synthesis on microfluidic platforms provides excellent reproducibility and control over bulk synthesis. While there have been plenty of platforms for producing nanoparticles (NPs) with controlled physicochemical properties, such platforms often operate in a narrow range of predefined flow rates. The flow rate limitation restricts either up-scalability for industrial production or down-scalability for exploratory research use. Here, we present a universal flow rate platform that operates over a wide range of flow rates (0.1-75 mL/min) for small-scale exploratory research and industrial-level synthesis of NPs without compromising the mixing capabilities. The wide range of flow rate is obtained by using a coaxial flow with a triangular microstructure to create a vortex regardless of the flow regime (Reynolds number). The chip synthesizes several types of NPs for gene and protein delivery, including polyplex, lipid NPs, and solid polymer NPs via self-assembly and precipitation, and successfully expresses GFP plasmid DNA in human T cells.


Subject(s)
Nanoparticles , Nanoparticles/chemistry , Humans , Microfluidic Analytical Techniques , Microfluidics/methods , T-Lymphocytes/cytology , Polymers/chemistry , DNA/chemistry
15.
Cytotherapy ; 26(7): 757-768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38625071

ABSTRACT

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.


Subject(s)
Cell Differentiation , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cell Proliferation , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Bioreactors , Cell Culture Techniques/methods , CD8-Positive T-Lymphocytes/immunology
16.
Cell Rep ; 43(5): 114159, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38676923

ABSTRACT

The traditional view of hematopoiesis is that myeloid cells derive from a common myeloid progenitor (CMP), whereas all lymphoid cell populations, including B, T, and natural killer (NK) cells and possibly plasmacytoid dendritic cells (pDCs), arise from a common lymphoid progenitor (CLP). In Max41 transgenic mice, nearly all B cells seem to be diverted into the granulocyte lineage. Here, we show that these mice have an excess of myeloid progenitors, but their CLP compartment is ablated, and they have few pDCs. Nevertheless, T cell and NK cell development proceeds relatively normally. These hematopoietic abnormalities result from aberrant expression of Gata6 due to serendipitous insertion of the transgene enhancer (Eµ) in its proximity. Gata6 mis-expression in Max41 transgenic progenitors promoted the gene-regulatory networks that drive myelopoiesis through increasing expression of key transcription factors, including PU.1 and C/EBPa. Thus, mis-expression of a single key regulator like GATA6 can dramatically re-program multiple aspects of hematopoiesis.


Subject(s)
GATA6 Transcription Factor , Hematopoiesis , Mice, Transgenic , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Animals , Mice , Cell Lineage , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Mice, Inbred C57BL , Dendritic Cells/metabolism , Cell Differentiation , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Proto-Oncogene Proteins , Trans-Activators
17.
Cytometry A ; 105(6): 430-436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634730

ABSTRACT

We report the development of an optimized 50-color spectral flow cytometry panel designed for the in-depth analysis of the immune system in human blood and tissues, with the goal of maximizing the amount of information that can be collected using currently available flow cytometry platforms. We established and tested this panel using peripheral blood mononuclear cells (PBMCs), but included CD45 to enable its future use for the analysis of human tissue samples. The panel contains lineage markers for all major immune cell subsets, and an extensive set of phenotyping markers focused on the activation and differentiation status of the T cell and dendritic cell (DC) compartment. We outline the biological insight that can be gained from the simultaneous measurement of such a large number of proteins and propose that this approach provides a unique opportunity for the comprehensive exploration of the immune status in human samples with a limited number of cells. Of note, we tested the panel to be compatible with cell sorting for further downstream applications. Furthermore, to facilitate the wide-spread implementation of such a panel across different cohorts and samples, we established a trimmed-down 45-color version which can be used with different spectral cytometry platforms. Finally, to generate this panel, we utilized not only existing panel design guidelines, but also developed new metrics to systematically identify the optimal combination of 50 fluorochromes and evaluate fluorochrome-specific resolution in the context of a 50-color unmixing matrix.


Subject(s)
Dendritic Cells , Flow Cytometry , Immunophenotyping , T-Lymphocytes , Humans , Dendritic Cells/immunology , Dendritic Cells/cytology , Flow Cytometry/methods , Immunophenotyping/methods , T-Lymphocytes/immunology , T-Lymphocytes/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/cytology , Immune System/cytology , Phenotype , Biomarkers
18.
Nature ; 630(8015): 222-229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657677

ABSTRACT

Gamma delta (γδ) T cells, a unique T cell subgroup, are crucial in various immune responses and immunopathology1-3. The γδ T cell receptor (TCR), which is generated by γδ T cells, recognizes a diverse range of antigens independently of the major histocompatibility complex2. The γδ TCR associates with CD3 subunits, initiating T cell activation and holding great potential in immunotherapy4. Here we report the structures of two prototypical human Vγ9Vδ2 and Vγ5Vδ1 TCR-CD3 complexes5,6, revealing two distinct assembly mechanisms that depend on Vγ usage. The Vγ9Vδ2 TCR-CD3 complex is monomeric, with considerable conformational flexibility in the TCRγ-TCRδ extracellular domain and connecting peptides. The length of the connecting peptides regulates the ligand association and T cell activation. A cholesterol-like molecule wedges into the transmembrane region, exerting an inhibitory role in TCR signalling. The Vγ5Vδ1 TCR-CD3 complex displays a dimeric architecture, whereby two protomers nestle back to back through the Vγ5 domains of the TCR extracellular domains. Our biochemical and biophysical assays further corroborate the dimeric structure. Importantly, the dimeric form of the Vγ5Vδ1 TCR is essential for T cell activation. These findings reveal organizing principles of the γδ TCR-CD3 complex, providing insights into the unique properties of γδ TCR and facilitating immunotherapeutic interventions.


Subject(s)
CD3 Complex , Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocytes , Humans , CD3 Complex/chemistry , CD3 Complex/immunology , CD3 Complex/metabolism , CD3 Complex/ultrastructure , Cholesterol/metabolism , Cholesterol/chemistry , Cryoelectron Microscopy , Ligands , Lymphocyte Activation/immunology , Models, Molecular , Protein Domains , Protein Multimerization , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/ultrastructure , T-Lymphocytes/chemistry , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Signal Transduction , Cell Membrane/chemistry , Cell Membrane/metabolism
19.
Nature ; 629(8010): 201-210, 2024 May.
Article in English | MEDLINE | ID: mdl-38600376

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has transformed the treatment of haematological malignancies such as acute lymphoblastic leukaemia, B cell lymphoma and multiple myeloma1-4, but the efficacy of CAR T cell therapy in solid tumours has been limited5. This is owing to a number of factors, including the immunosuppressive tumour microenvironment that gives rise to poorly persisting and metabolically dysfunctional T cells. Analysis of anti-CD19 CAR T cells used clinically has shown that positive treatment outcomes are associated with a more 'stem-like' phenotype and increased mitochondrial mass6-8. We therefore sought to identify transcription factors that could enhance CAR T cell fitness and efficacy against solid tumours. Here we show that overexpression of FOXO1 promotes a stem-like phenotype in CAR T cells derived from either healthy human donors or patients, which correlates with improved mitochondrial fitness, persistence and therapeutic efficacy in vivo. This work thus reveals an engineering approach to genetically enforce a favourable metabolic phenotype that has high translational potential to improve the efficacy of CAR T cells against solid tumours.


Subject(s)
Forkhead Box Protein O1 , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Stem Cells , T-Lymphocytes , Humans , Mice , Cell Line, Tumor , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Mitochondria/metabolism , Phenotype , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , Tumor Microenvironment/immunology , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy
20.
Biol Chem ; 405(7-8): 517-529, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38666334

ABSTRACT

T-cell therapy has emerged as an effective approach for treating viral infections and cancers. However, a significant challenge is the selection of T-cell receptors (TCRs) that exhibit the desired functionality. Conventionally in vitro techniques, such as peptide sensitivity measurements and cytotoxicity assays, provide valuable insights into TCR potency but are labor-intensive. In contrast, measuring ligand binding properties (z-Movi technology) could provide an accelerated processing while showing robust correlations with T-cell functions. In this study, we assessed whether cell avidity can predict functionality also in the context of TCR-engineered T cells. To this end, we developed a flexible system for TCR re-expression by generating a Jurkat-derived T cell clone lacking TCR and CD3 expression through CRISPR-Cas9-mediated TRBC knockout. The knockin of a transgenic TCR into the TRAC locus restored TCR/CD3 expression, allowing for CD3-based purification of TCR-engineered T cells. Subsequently, we characterized these engineered cell lines by functional readouts, and assessment of binding properties through the z-Movi technology. Our findings revealed a strong correlation between the cell avidities and functional sensitivities of Jurkat TCR-T cells. Altogether, by integrating cell avidity measurements with our versatile T cell engineering platform, we established an accelerated system for enhancing the in vitro selection of clinically relevant TCRs.


Subject(s)
Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Jurkat Cells , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/cytology , CRISPR-Cas Systems/genetics , CD3 Complex/metabolism , CD3 Complex/immunology
SELECTION OF CITATIONS
SEARCH DETAIL