Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
1.
Medicine (Baltimore) ; 103(31): e39070, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093764

ABSTRACT

RATIONALE: To investigate T lymphoma invasion and metastasis inducing factor 2 (Tiam2) protein for expression in esophageal carcinoma and relationship with clinical features among cases with tumors. PATIENT CONCERNS: In primary esophageal cancer patients, surgical resection of tumor tissue was performed in 65 cases and adjacent normal esophageal tissue in 20 cases. DIAGNOSES: Primary esophageal carcinoma (57 cases squamous cell carcinoma, 8 cases adenosquamous carcinoma). INTERVENTIONS: The expression level of Tiam2 protein in esophageal carcinoma tissues and normal esophageal tissues by SP immunohistochemical method. The expression intensity was quantitatively analyzed by using Image-pro plus software for image analysis, while SPSS26.0 software was used for a statistical analysis on the data. OUTCOMES: Tiam2 was highly expressed in esophageal squamous cell carcinoma and adenosquamous cell carcinoma, but low expressed in normal esophageal tissue. The expression level of Tiam2 protein was not correlated with gender and age of patients (P > .05), but was correlated with lymph node metastasis of esophageal carcinoma, TNM stage and differentiation degree of esophageal squamous cell carcinoma (P < .05). Tiam2 was positively correlated with Tiam1 for protein expression in esophageal carcinoma (r = .704, P < .001). LESSONS: The increased expression of Tiam2 protein in esophageal cancer may be an early molecular event of esophageal cancer. Tiam2 protein has a high expression level in esophageal carcinoma related to lymph node metastasis, TNM stage and differentiation degree, which suggests that Tiam2 protein plays an important role in the invasion and metastasis of esophageal carcinoma. There is a positive correlation between Tiam2 and Tiam1 protein expressions in esophageal carcinoma, suggesting that the 2 proteins may have a definite internal relationship.


Subject(s)
Esophageal Neoplasms , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Male , Female , Middle Aged , Aged , Guanine Nucleotide Exchange Factors/metabolism , Lymphatic Metastasis , Carcinoma, Adenosquamous/pathology , Carcinoma, Adenosquamous/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Biomarkers, Tumor/metabolism , Adult , Neoplasm Staging , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Immunohistochemistry
2.
Drug Discov Ther ; 18(3): 207-209, 2024.
Article in English | MEDLINE | ID: mdl-38987209

ABSTRACT

Aortic aneurysm and aortic dissection (AAD) are severe life-threatening cardiovascular disorders for which no approved pharmaceutical therapies are currently available. Protein S-nitrosylation (SNO) is a typical redox-dependent posttranslational modification whose role in AAD has yet to be described. Recently, Zhang et al. revealed for the first time that SNO modification of macrophage cytoskeletal protein septin2 promotes vascular inflammation and extracellular matrix degradation in aortic aneurysm. Mechanically, the TIAM1-RAC1(T lymphoma invasion and metastasis-inducing protein 1-Ras-related C3 botulinum toxin substrate 1) axis participates in the progression of AAD induced with S-nitrosylated septin2. More importantly, developing R-ketorolac and NSC23766 compounds that specifically target the TIAM1-RAC1 pathway may be new a potential strategy for alleviating AAD.


Subject(s)
Aortic Dissection , Septins , Animals , Humans , Aortic Aneurysm/drug therapy , Aortic Aneurysm/metabolism , Aortic Dissection/drug therapy , Aortic Dissection/metabolism , Molecular Targeted Therapy , Protein Processing, Post-Translational/drug effects , rac1 GTP-Binding Protein/metabolism , Septins/metabolism , Signal Transduction/drug effects , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
3.
J Cell Mol Med ; 28(11): e18443, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837873

ABSTRACT

The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.


Subject(s)
Cell Movement , Chondrocytes , Congenital Microtia , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , rac1 GTP-Binding Protein , Animals , Female , Humans , Male , Mice , Chondrocytes/metabolism , Chondrocytes/cytology , Congenital Microtia/metabolism , Congenital Microtia/genetics , Congenital Microtia/pathology , Disease Models, Animal , rac1 GTP-Binding Protein/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
4.
Brain ; 147(7): 2507-2521, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38577773

ABSTRACT

Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.


Subject(s)
Analgesics, Opioid , Drug Tolerance , Hyperalgesia , Morphine , Neuronal Plasticity , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Animals , Morphine/pharmacology , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Drug Tolerance/physiology , Mice , Analgesics, Opioid/pharmacology , Male , Mice, Inbred C57BL , Posterior Horn Cells/drug effects , Posterior Horn Cells/metabolism , rac1 GTP-Binding Protein/metabolism
5.
Circulation ; 149(24): 1903-1920, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38357802

ABSTRACT

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Macrophages , Septins , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , rac1 GTP-Binding Protein , Animals , Humans , Male , Mice , Angiotensin II/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/genetics , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/genetics , Disease Models, Animal , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Neuropeptides , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Septins/metabolism , Septins/genetics , Signal Transduction , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
6.
J Cell Sci ; 137(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38345070

ABSTRACT

Mediolateral cell intercalation is a morphogenetic strategy used throughout animal development to reshape tissues. Dorsal intercalation in the Caenorhabditis elegans embryo involves the mediolateral intercalation of two rows of dorsal epidermal cells to create a single row that straddles the dorsal midline, and thus is a simple model to study cell intercalation. Polarized protrusive activity during dorsal intercalation requires the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, but how these GTPases are regulated during intercalation has not been thoroughly investigated. In this study, we characterized the role of the Rac-specific guanine nucleotide exchange factor (GEF) TIAM-1 in regulating actin-based protrusive dynamics during dorsal intercalation. We found that TIAM-1 can promote formation of the main medial lamellipodial protrusion extended by intercalating cells through its canonical GEF function, whereas its N-terminal domains function to negatively regulate the generation of ectopic filiform protrusions around the periphery of intercalating cells. We also show that the guidance receptor UNC-5 inhibits these ectopic filiform protrusions in dorsal epidermal cells and that this effect is in part mediated via TIAM-1. These results expand the network of proteins that regulate basolateral protrusive activity during directed rearrangement of epithelial cells in animal embryos.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Animals , Actins/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Epithelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Receptors, Cell Surface , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167032, 2024 03.
Article in English | MEDLINE | ID: mdl-38246227

ABSTRACT

It was well known that SPOP is highly mutated in various cancers especially the prostate cancer and SPOP mutation dramatically impaired its tumor suppressive function. However, the detailed role and underlying mechanisms of SPOP in regulating the growth of gastric cancer is not fully studied. Here, we found that Cullin3SPOP promoted the ubiquitination and degradation of TIAM1 protein in gastric cancer setting. Gastric cancer and prostate cancer derived SPOP mutation failed to suppress the proliferation, migration and invasion of gastric cancer cells partially due to the elevated level of TIAM1 protein. Notably, SPOP protein were negatively associated with TIAM1 protein in human gastric cancer tissue specimens. In conclusion, our results elucidate a molecular mechanism by which SPOP regulates the stability of TIAM1, and further demonstrate that SPOP inhibits the progression of gastric cancer by promoting the ubiquitination and degradation of TIAM1 protein.


Subject(s)
Prostatic Neoplasms , Stomach Neoplasms , Male , Humans , Stomach Neoplasms/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/pathology , Ubiquitination
8.
Proc Natl Acad Sci U S A ; 120(40): e2300489120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37748077

ABSTRACT

Lung cancer is the leading cause of cancer deaths. Its high mortality is associated with high metastatic potential. Here, we show that the RAC1-selective guanine nucleotide exchange factor T cell invasion and metastasis-inducing protein 1 (TIAM1) promotes cell migration and invasion in the most common subtype of lung cancer, non-small-cell lung cancer (NSCLC), through an unexpected nuclear function. We show that TIAM1 interacts with TRIM28, a master regulator of gene expression, in the nucleus of NSCLC cells. We reveal that a TIAM1-TRIM28 complex promotes epithelial-to-mesenchymal transition, a phenotypic switch implicated in cell migration and invasion. This occurs through H3K9me3-induced silencing of protocadherins and by decreasing E-cadherin expression, thereby antagonizing cell-cell adhesion. Consistently, TIAM1 or TRIM28 depletion suppresses the migration of NSCLC cells, while migration is restored by the simultaneous depletion of protocadherins. Importantly, high nuclear TIAM1 in clinical specimens is associated with advanced-stage lung adenocarcinoma, decreased patient survival, and inversely correlates with E-cadherin expression.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Protocadherins , Carcinoma, Non-Small-Cell Lung/genetics , Cadherins/genetics , Epigenesis, Genetic , Tripartite Motif-Containing Protein 28 , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
9.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37219951

ABSTRACT

Pericytes are multipotent mesenchymal precursor cells that demonstrate tissue-specific properties. In this study, by comparing human adipose tissue- and periosteum-derived pericyte microarrays, we identified T cell lymphoma invasion and metastasis 1 (TIAM1) as a key regulator of cell morphology and differentiation decisions. TIAM1 represented a tissue-specific determinant between predispositions for adipocytic versus osteoblastic differentiation in human adipose tissue-derived pericytes. TIAM1 overexpression promoted an adipogenic phenotype, whereas its downregulation amplified osteogenic differentiation. These results were replicated in vivo, in which TIAM1 misexpression altered bone or adipose tissue generation in an intramuscular xenograft animal model. Changes in pericyte differentiation potential induced by TIAM1 misexpression correlated with actin organization and altered cytoskeletal morphology. Small molecule inhibitors of either small GTPase Rac1 or RhoA/ROCK signaling reversed TIAM1-induced morphology and differentiation in pericytes. In summary, our results demonstrate that TIAM1 regulates the cellular morphology and differentiation potential of human pericytes, representing a molecular switch between osteogenic and adipogenic cell fates.


Subject(s)
Actins , Pericytes , Animals , Humans , Guanine Nucleotide Exchange Factors/genetics , Osteogenesis , Cell Differentiation , Adipose Tissue , T-Lymphoma Invasion and Metastasis-inducing Protein 1
10.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047360

ABSTRACT

Hepatocellular carcinoma (HCC), the most common type of liver cancer, has very poor outcomes. Current therapies often have low efficacy and significant toxicities. Thus, there is a critical need for the development of novel therapeutic approaches for HCC. We have developed a novel bioinformatics pipeline, which integrates genome-wide DNA methylation and gene expression data, to identify genes required for the survival of specific molecular cancer subgroups but not normal cells. Targeting these genes may induce cancer-specific "synthetic lethality". Initially, five potential HCC molecular subgroups were identified based on global DNA methylation patterns. Subgroup-2 exhibited the most unique methylation profile and two candidate subtype-specific vulnerability or SL-like genes were identified for this subgroup, including TIAM1, a guanine nucleotide exchange factor encoding gene known to activate Rac1 signalling. siRNA targeting TIAM1 inhibited cell proliferation in TIAM1-positive (subgroup-2) HCC cell lines but had no effect on the normal hepatocyte HHL5 cell line. Furthermore, TIAM1-positive/subgroup-2 cell lines were significantly more sensitive to the TIAM1/RAC1 inhibitor NSC23766 compared with TIAM1-negative HCC lines or the normal HHL5 cell line. The results are consistent with a synthetic lethal role for TIAM1 in a methylation-defined HCC subgroup and suggest it may be a viable therapeutic target in this subset of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Cell Proliferation/genetics , rac1 GTP-Binding Protein/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
11.
Mol Cell Biochem ; 478(4): 729-741, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36070054

ABSTRACT

As a critical catalytic subunit of N6-methyladenosine (m6A) modification in messenger RNA, ALKBH5 has been reported to affect the progression of numerous tumors. However, the functions and mechanisms of ALKBH5 in thyroid cancer remain largely unknown. Relative mRNA and protein levels in thyroid cancer tissues and cells were detected by qRT-PCR and western blot, respectively. The proliferation and viability were evaluated using colony formation and CCK-8 assays. Intracellular iron level was measured by an iron colorimetric assay kit. ROS level was determined using CellRox Green reagent. TIAM1 mRNA m6A level was detected by MeRIP. Xenograft tumor growth was performed to examine the role of ALKBH5 in thyroid tumor growth in vivo. ALKBH5 was decreased in thyroid cancer tissues and cells. ALKBH5 overexpression inhibited thyroid cancer cell proliferation and increased the levels of Fe2+ and ROS and reduced the proteins expression of GPX4 and SLC7A11. Furthermore, overexpression of ALKBH5 inhibited TIAM1 expression by m6A modification, and overexpression of TIAM1 reversed the regulatory of oe-ALKBH5 on cell proliferation and ferroptosis in thyroid cancer. In addition, TIAM1 was elevated in thyroid cancer, and TIAM1 knockdown repressed thyroid cancer cell proliferation and promoted ferroptosis through regulating Nrf2/HO-1 axis. In addition, in vivo evidences also showed that ALKBH5 suppressed thyroid cancer progression by decreasing the m6A level of TIAM1. Our findings suggested that ALKBH5 inhibited thyroid cancer progression by inducing ferroptosis through m6A-TIAM1-Nrf2/HO-1 axis, suggesting ALKBH5 might be a potential target molecule for the treatment and diagnosis of thyroid cancer.


Subject(s)
Ferroptosis , Thyroid Neoplasms , Humans , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species , Thyroid Neoplasms/genetics , Iron , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , AlkB Homolog 5, RNA Demethylase/genetics
12.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36519542

ABSTRACT

Chronic pain often leads to depression, increasing patient suffering and worsening prognosis. While hyperactivity of the anterior cingulate cortex (ACC) appears to be critically involved, the molecular mechanisms underlying comorbid depressive symptoms in chronic pain remain elusive. T cell lymphoma invasion and metastasis 1 (Tiam1) is a Rac1 guanine nucleotide exchange factor (GEF) that promotes dendrite, spine, and synapse development during brain development. Here, we show that Tiam1 orchestrates synaptic structural and functional plasticity in ACC neurons via actin cytoskeleton reorganization and synaptic N-methyl-d-aspartate receptor (NMDAR) stabilization. This Tiam1-coordinated synaptic plasticity underpins ACC hyperactivity and drives chronic pain-induced depressive-like behaviors. Notably, administration of low-dose ketamine, an NMDAR antagonist emerging as a promising treatment for chronic pain and depression, induces sustained antidepressant-like effects in mouse models of chronic pain by blocking Tiam1-mediated maladaptive synaptic plasticity in ACC neurons. Our results reveal Tiam1 as a critical factor in the pathophysiology of chronic pain-induced depressive-like behaviors and the sustained antidepressant-like effects of ketamine.


Subject(s)
Chronic Pain , Ketamine , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Animals , Mice , Antidepressive Agents/pharmacology , Chronic Pain/drug therapy , Depression/drug therapy , Depression/genetics , Ketamine/pharmacology , Neuronal Plasticity , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
13.
Med Oncol ; 39(10): 154, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35852664

ABSTRACT

Oral squamous cell carcinoma (named OSCC) is considered the most frequent malignancy in oral cavity, which has become a rapid increasing problem for the global public health with unclear molecular mechanism. Previously, Tiam1 (T-lymphoma invasion and metastasis inducing factor 1) has been reported as a potential oncogene for OSCC. Here, we in-depth explored its signaling mechanism for the disorder. The mRNA and protein expression levels of primary differentially expressed genes (Tiam1, Fibulin-3, and MMP-7) were measured in different TNM stages of OSCC patients using RT-PCR and ELISA methods. Based on the analysis of human OSCC cell line CAL27, the relationships between these factors have been further investigated and the interactions were also examined. The luciferase reporter assay was established for the promoter region of MMP-7. Both the epithelial (E-cadherin) and mesenchymal protein markers (Vimentin and Snail) expressions were examined using western blotting. The mRNA and protein activities of Fibulin-3 declined as the increase of TNM stage. Inversely, the mRNA and protein levels of Tiam1 and MMP-7 elevated significantly as OSCC progressed. Tiam1 transfection in CAL27 cells stimulated the expression of MMP-7 by accelerating the nuclear translocation of ß-catenin, which was opposite to the functions of Fibulin-3. Moreover, Tiam1 interacted directly with Fibulin-3. The Tiam1 induced OSCC epithelial-mesenchymal transition (EMT) via MMP-7 activation, which was dependent on the direct binding of ß-catenin at the promoter region. Collectively, these results indicated that Tiam1 competed with Fibulin-3 for nuclear ß-catenin translocation, which subsequently stimulated MMP-7 expression by TCF-4 domain interaction following EMT initiation in OSCC development. Our systematical work hypothesized an innovative signaling cassette for OSCC progression, which provided beneficial references for future clinical study.


Subject(s)
Extracellular Matrix Proteins , Head and Neck Neoplasms , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cell Movement/physiology , Epithelial-Mesenchymal Transition , Extracellular Matrix Proteins/metabolism , Head and Neck Neoplasms/metabolism , Humans , Matrix Metalloproteinase 7/metabolism , Mouth Neoplasms/metabolism , RNA, Messenger/metabolism , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , beta Catenin/metabolism
14.
Int J Biol Sci ; 18(10): 4245-4259, 2022.
Article in English | MEDLINE | ID: mdl-35844783

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a high incidence of metastasis and dismal prognosis. As a member of Gas-Gap gene, RASAL2 is involved in the hydrolysis of RAS-GTP to RAS-GDP and abnormal expression in human cancers. Here we firstly described the function of RASAL2 on PDAC to enrich the knowledge of RAS family.We interestingly observed that RASAL2 expression was upregulated in PDAC at both mRNA and protein levels, and high expression of RASAL2 predicted a poor prognosis in PDAC patients. Additionally, RASAL2 promoted malignant behaviors of PDAC in vitro and in vivo. To determine the mechanistic roles of RASAL2 signaling and its potential as a therapeutic target in PDAC, we clarified that RASAL2 could accumulate the TIAM1 expression in different level through inhibiting YAP1 phosphorylation, increased TIAM1 mRNA expression and suppressed ubiquitination of TIAM1 protein. In conclusion, RASAL2 enhances YAP1/TIAM1 signaling and promotes PDAC development and progression.


Subject(s)
Carcinoma, Pancreatic Ductal , GTPase-Activating Proteins , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Pancreatic Neoplasms/metabolism , Phenotype , RNA, Messenger , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , YAP-Signaling Proteins , Pancreatic Neoplasms
15.
Oncogene ; 41(31): 3830-3845, 2022 07.
Article in English | MEDLINE | ID: mdl-35773411

ABSTRACT

Yes-associated protein 1 (YAP1), a central component of the Hippo pathway, plays an important role in tumor metastasis; however, the underlying mechanism remains to be elucidated. Invadopodia are actin-rich protrusions containing multiple proteases and have been widely reported to promote cell invasiveness by degrading the extracellular matrix. In the present study, we report that YAP1 induces invadopodia formation and promotes tumor metastasis in breast cancer cells. We also identify TIAM1, a guanine nucleotide exchange factor, as a target of the YAP1-TEAD4 complex. Our results demonstrate that YAP1 could promote TEAD4 binding to the enhancer region of TIAM1, which activates TIAM1 expression, subsequently increasing RAC1 activity and inducing invadopodia formation. These findings reveal the functional role of Hippo signaling in the regulation of invadopodia and provide potential molecular targets for preventing tumor metastasis in breast cancer.


Subject(s)
Breast Neoplasms , Podosomes , Actins/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Female , Guanine Nucleotide Exchange Factors/metabolism , Humans , Muscle Proteins/metabolism , Neoplasm Invasiveness , Podosomes/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , TEA Domain Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins
16.
Carcinogenesis ; 43(7): 705-715, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35511493

ABSTRACT

T lymphoma invasion and metastasis 1 (Tiam1) as a tumor-associated gene specifically activates Rho-like GTPases Rac1 and implicates in the invasive phenotype of many cancers. Altering the glycolytic pathway is foreseen as a sound approach to trigger cancer regression. However, the mechanism of Tiam1 in breast cancer (BC) glycolysis reprogramming remains to be clarified. Here, we reported the Tiam1 high expression and prognostic significance in BC. In vitro and in vivo experimental assays identified the functional role of Tiam1 in promoting BC cell proliferation, metastasis and glycolysis reprogramming. Mechanistically, we showed for the first time that Tiam1 could interact with the crucial glycolytic enzyme phosphofructokinase, liver type (PFKL) and promote the evolution of BC in a PFKL-dependent manner. Moreover, miR-21-5p was found to exacerbate the BC proliferation and aggression by targeting Tiam1. Altogether, our study highlights the critical role of Tiam1 in BC development and that the miR-21-5p/Tiam1/PFKL signaling pathway may serve as a target for new anti-BC therapeutic strategies.


Subject(s)
Breast Neoplasms , Glycolysis , MicroRNAs , Phosphofructokinase-1, Liver Type , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Humans , Liver/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Phosphofructokinase-1, Liver Type/metabolism , Phosphofructokinases/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
17.
PLoS Genet ; 18(3): e1010127, 2022 03.
Article in English | MEDLINE | ID: mdl-35344539

ABSTRACT

Neurons are vulnerable to physical insults, which compromise the integrity of both dendrites and axons. Although several molecular pathways of axon regeneration are identified, our knowledge of dendrite regeneration is limited. To understand the mechanisms of dendrite regeneration, we used the PVD neurons in C. elegans with stereotyped branched dendrites. Using femtosecond laser, we severed the primary dendrites and axon of this neuron. After severing the primary dendrites near the cell body, we observed sprouting of new branches from the proximal site within 6 hours, which regrew further with time in an unstereotyped manner. This was accompanied by reconnection between the proximal and distal dendrites, and fusion among the higher-order branches as reported before. We quantified the regeneration pattern into three aspects-territory length, number of branches, and fusion phenomena. Axonal injury causes a retraction of the severed end followed by a Dual leucine zipper kinase-1 (DLK-1) dependent regrowth from the severed end. We tested the roles of the major axon regeneration signalling hubs such as DLK-1-RPM-1, cAMP elevation, let-7 miRNA, AKT-1, Phosphatidylserine (PS) exposure/PS in dendrite regeneration. We found that neither dendrite regrowth nor fusion was affected by the axon injury pathway molecules. Surprisingly, we found that the RAC GTPase, CED-10 and its upstream GEF, TIAM-1 play a cell-autonomous role in dendrite regeneration. Additionally, the function of CED-10 in epidermal cell is critical for post-dendrotomy fusion phenomena. This work describes a novel regulatory mechanism of dendrite regeneration and provides a framework for understanding the cellular mechanism of dendrite regeneration using PVD neuron as a model system.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , rac GTP-Binding Proteins , Animals , Axons/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Dendrites/metabolism , GTP Phosphohydrolases/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , MAP Kinase Kinase Kinases/genetics , Nerve Regeneration/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism
18.
Am J Hum Genet ; 109(4): 571-586, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35240055

ABSTRACT

TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental delay, intellectual disability, speech delay, and seizures. Bioinformatic analyses demonstrate that these variants are rare and likely pathogenic. We found that the Drosophila ortholog of TIAM1, still life (sif), is expressed in larval and adult central nervous system (CNS) and is mainly expressed in a subset of neurons, but not in glia. Loss of sif reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. The TIAM1 reference (Ref) cDNA partially rescues the sif loss-of-function (LoF) phenotypes. We also assessed the function associated with three TIAM1 variants carried by two of the probands and compared them to the TIAM1 Ref cDNA function in vivo. TIAM1 p.Arg23Cys has reduced rescue ability when compared to TIAM1 Ref, suggesting that it is a partial LoF variant. In ectopic expression studies, both wild-type sif and TIAM1 Ref are toxic, whereas the three variants (p.Leu862Phe, p.Arg23Cys, and p.Gly328Val) show reduced toxicity, suggesting that they are partial LoF variants. In summary, we provide evidence that sif is important for appropriate neural function and that TIAM1 variants observed in the probands are disruptive, thus implicating loss of TIAM1 in neurological phenotypes in humans.


Subject(s)
Intellectual Disability , Alleles , Animals , Child , DNA, Complementary , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Drosophila/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Phenotype , Seizures/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
19.
Cell Mol Life Sci ; 79(2): 122, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35128576

ABSTRACT

Skeletal muscle demonstrates a high degree of regenerative capacity repeating the embryonic myogenic program under strict control. Rhabdomyosarcoma is the most common sarcoma in childhood and is characterized by impaired muscle differentiation. In this study, we observed that silencing the expression of syndecan-4, the ubiquitously expressed transmembrane heparan sulfate proteoglycan, significantly enhanced myoblast differentiation, and fusion. During muscle differentiation, the gradually decreasing expression of syndecan-4 allows the activation of Rac1, thereby mediating myoblast fusion. Single-molecule localized superresolution direct stochastic optical reconstruction microscopy (dSTORM) imaging revealed nanoscale changes in actin cytoskeletal architecture, and atomic force microscopy showed reduced elasticity of syndecan-4-knockdown cells during fusion. Syndecan-4 copy-number amplification was observed in 28% of human fusion-negative rhabdomyosarcoma tumors and was accompanied by increased syndecan-4 expression based on RNA sequencing data. Our study suggests that syndecan-4 can serve as a tumor driver gene in promoting rabdomyosarcoma tumor development. Our results contribute to the understanding of the role of syndecan-4 in skeletal muscle development, regeneration, and tumorigenesis.


Subject(s)
Actins/metabolism , Rhabdomyosarcoma/pathology , Syndecan-4/metabolism , rac1 GTP-Binding Protein/metabolism , Actin Cytoskeleton , Animals , Cell Differentiation , Cell Line , DNA Copy Number Variations , Humans , Male , Mice , Muscle Development , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Rhabdomyosarcoma/metabolism , Syndecan-4/antagonists & inhibitors , Syndecan-4/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
20.
Am J Hypertens ; 35(1): 87-95, 2022 01 05.
Article in English | MEDLINE | ID: mdl-32870256

ABSTRACT

BACKGROUND: MicroRNAs serve as important regulators of the pathogenesis of cardiac hypertrophy. Among them, miR-183 is well documented as a novel tumor suppressor in previous studies, whereas it exhibits a downregulated expression in cardiac hypertrophy recently. The present study was aimed to examine the effect of miR-183 on cardiomyocytes hypertrophy. METHODS: Angiotensin II (Ang II) was used for establishment of cardiac hypertrophy model in vitro. Neonatal rat ventricular cardiomyocytes transfected with miR-183 mimic or negative control were further utilized for the phenotype analysis. Moreover, the bioinformatics analysis and luciferase reporter assays were used for exploring the potential target of miR-183 in cardiomyocytes. RESULTS: We observed a significant decreased expression of miR-183 in hypertrophic cardiomyocytes. Overexpression of miR-183 significantly attenuated the cardiomyocytes size morphologically and prohypertrophic genes expression. Moreover, we demonstrated that TIAM1 was a direct target gene of miR-183 verified by bioinformatics analysis and luciferase reporter assays, which showed a decreased mRNA and protein expression in the cardiomyocytes transfected with miR-183 upon Ang II stimulation. Additionally, the downregulated TIAM1 expression was required for the attenuated effect of miR-183 on cardiomyocytes hypertrophy. CONCLUSIONS: Taken together, these evidences indicated that miR-183 acted as a cardioprotective regulator for the development of cardiomyocytes hypertrophy via directly regulation of TIAM1.


Subject(s)
MicroRNAs , Myocytes, Cardiac , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Gene Expression Regulation , Heart Ventricles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Rats , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL