Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.626
Filter
1.
Mikrochim Acta ; 191(9): 511, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103612

ABSTRACT

A sequential dual-locked luminescent copper nanoclusters (CuNCs) probe was designed and synthesized for the specific imaging and selective killing of tumor cells. This nanoprobe was prepared by first forming a Fe3+-coupled tannic acid (TA)-stabilized CuNCs (CuNCs-FeIII), which is in quenching state due to the electron transfer between CuNCs and Fe3+, and then coating a protectable layer of hyaluronic acid (HA) on the surface of CuNCs-FeIII to form the final dual-locked nanoprobe (CuNCs-FeIII@HA). When the nanoprobe of CuNCs-FeIII@HA target enter the tumor cells through CD44-HA receptor, HAase will first digest the HA layer of the nanoprobes, and then, GSH over-expressed in tumor cells will reduce Fe3+ to Fe2+, thus restoring the fluorescence emission of CuNCs and at the same time killing the tumor cells with the hydroxyl free radicals (∙OH) produced by the Fenton reaction between Fe2+ and H2O2. This sequential dual-locked luminescent nanoprobe of CuNCs-FeIII@HA has been successfully used for the specific imaging and selective killing of tumor cells.


Subject(s)
Copper , Copper/chemistry , Humans , Metal Nanoparticles/chemistry , Hyaluronic Acid/chemistry , Tannins/chemistry , Optical Imaging , Fluorescent Dyes/chemistry , Cell Survival/drug effects , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Cell Line, Tumor , Hydroxyl Radical/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Hydrogen Peroxide/chemistry
2.
Food Res Int ; 192: 114822, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147514

ABSTRACT

In food systems, proteins and polyphenols typically coexist in a non-covalent manner. However, the inherent rigid structure of proteins may hinder the binding sites of polyphenols, thereby limiting the strength of their interaction. In the study, magnetic field (MF) treatment was used to enhance non-covalent interactions between coconut globulin (CG) and tannic acid (TA) to improve protein flexibility, enhancing their functional properties without causing oxidation of polyphenols. Based on protein structure results, the interaction between CG and TA caused protein structure to unfold, exposing hydrophobic groups. Treatment with a MF, particularly at 3 mT, further promoted protein unfolding, as evidenced by a decrease in α-helix structure and an increase in coil random. These structural transformations led to the exposure of the internal binding site bound to TA and strengthening the CG-TA interaction (polyphenol binding degree increased from 62.3 to 68.2%). The characterization of molecular forces indicated that MF treatment strengthened hydrogen bonding-dominated non-covalent interactions between CG and TA, leading to improved molecular flexibility of the protein. Specifically, at a MF treatment at 3 mT, CG-TA colloidal particles with small size and high surface hydrophobicity exhibited optimal interfacial activity and wettability (as evidenced by a three-phase contact angle of 89.0°). Consequently, CG-TA-stabilized high internal phase Pickering emulsions (HIPPEs) with uniform droplets and dense gel networks at 3 mT. Furthermore, the utilization of HIPPEs in 3D printing resulted in consistent geometric shapes, uniform surface textures, and distinct printed layers, demonstrating superior printing stability. As a result, MF treatment at 3 mT was identified as the most favorable. This research provides novel insights into how proteins and polyphenols interact, thereby enabling natural proteins to be utilized in a variety of food applications.


Subject(s)
Emulsions , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Magnetic Fields , Polyphenols , Tannins , Polyphenols/chemistry , Tannins/chemistry , Emulsions/chemistry , Globulins/chemistry , Plant Proteins/chemistry , Emulsifying Agents/chemistry
3.
Sci Rep ; 14(1): 18596, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127757

ABSTRACT

Tannic acid (TA) has been reported as an efficient plant-based compound with inhibitory activity against viruses and bacteria. The combination of TA with Zinc Oxide (ZnO) nanostructures with ZnO is one of the most widely used nanoparticles for antimicrobial properties, have not yet fully elucidate especially their mechanisms of overall physicochemical and antimicrobial actions. Hence, to observe the influence of TA adsorption on ZnO, the investigations on the TA concentration and the effect of pH towards the physicochemical, optical and antimicrobial properties are demonstrated. The pure ZnO are synthesised via the chemical reduction method and the ZnO-TA nanostructures are further prepared using the dropwise methods to form variations of pH samples, which causes the formation of different mean particle size distribution, d m . The findings reveal that the performance of physicochemical and optical properties of pure ZnO and ZnO-TA are different due to the wrapped layers of TA which change the charged surface of all the particles. The protonation reactions yield strong pH dependence (pH 3 and 5), with uptake performance becoming more dominant at higher TA concentration loading (pH 3). The detailed optical energy bandgap and Urbach energy that concluded the nanoparticle growth and disorder condition of produced particles are presented. For antimicrobial efficiency, ZnO-TA shows improved effectiveness in growth inhibitions of S. aureus 99.69% compared to pure ZnO nanostructure (99.39%). This work reveals that the TA concentration increases the overall performance, and the discussion gives added support to their potential performance related to the field of ZnO compound.


Subject(s)
Staphylococcus aureus , Tannins , Zinc Oxide , Tannins/chemistry , Tannins/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Hydrogen-Ion Concentration , Staphylococcus aureus/drug effects , Particle Size , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Nanostructures/chemistry , Microbial Sensitivity Tests , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyphenols
4.
Microb Cell Fact ; 23(1): 209, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054459

ABSTRACT

BACKGROUND: The presence of inorganic pollutants and heavy metals in industrial effluents has become a serious threat and environmental issues. Fungi have a remarkable ability to exclude heavy metals from wastewater through biosorption in eco-friendly way. Tannase plays an important role in bioconversion of tannin, a major constituent of tannery effluent, to gallic acid which has great pharmaceutical applications. Therefore, the aim of the current study was to exploit the potential of tannase from Aspergillus glaucus and fungal biomass waste for the bioremediation of heavy metals and tannin. RESULTS: Tannase from A. glaucus was partially purified 4.8-fold by ammonium sulfate precipitation (80%). The enzyme was optimally active at pH 5.0 and 40 °C and stable at this temperature for 1 h. Tannase showed high stability at different physiological conditions, displayed about 50% of its activity at 60 °C and pH range 5.0-6.0. Immobilization of tannase was carried out using methods such. as entrapment in Na-alginate and covalent binding to chitosan. The effects of Na-alginate concentrations on the beads formation and enzyme immobilization revealed that maximum immobilization efficiency (75%) was obtained with 3% Na-alginate. A potential reusability of the immobilized enzyme was showed through keeping 70% of its relative activity up to the fourth cycle. The best bioconversion efficiency of tannic acid to gallic acid by immobilized tannase was at 40 °C with tannic acid concentration up to 50 g/l. Moreover, bioremediation of heavy metal (Cr3+, Pb2+, Cu2+, Fe3+, and Mn2+) from aqueous solution using A. glaucus biomass waste was achieved with uptake percentage of (37.20, 60.30, 55.27, 79.03 and 21.13 respectively). The biomass was successfully used repeatedly for removing Cr3+ after using desorbing agent (0.1 N HCl) for three cycles. CONCLUSION: These results shed the light on the potential use of tannase from locally isolated A. glaucus in the bioremediation of industrial tanneries contained heavy metals and tannin.


Subject(s)
Aspergillus , Biodegradation, Environmental , Biomass , Carboxylic Ester Hydrolases , Enzymes, Immobilized , Metals, Heavy , Tannins , Tannins/metabolism , Tannins/chemistry , Aspergillus/enzymology , Aspergillus/metabolism , Metals, Heavy/metabolism , Carboxylic Ester Hydrolases/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Temperature , Enzyme Stability
5.
J Mater Chem B ; 12(29): 7153-7170, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38952270

ABSTRACT

Europium ions (Eu3+) are gaining attention in the field of regenerative medicine due to increasing evidence of their osteogenic properties. However, inflammatory and oxidative environments present in many bone diseases, such as osteoporosis or rheumatoid arthritis, are known to hinder this regenerative process. Herein, we describe a straightforward synthetic procedure to prepare Eu3+-tannic acid nanocomplexes (EuTA NCs) with modulable physicochemical characteristics, as well as antioxidant, anti-inflammatory, and osteogenic properties. EuTA NCs were rationally synthesized to present different contents of Eu3+ on their structure to evaluate the effect of the cation on the biological properties of the formulations. In all the cases, EuTA NCs were stable in distilled water at physiological pH, had a highly negative surface charge (ζ ≈ -25.4 mV), and controllable size (80 < Dh < 160 nm). In vitro antioxidant tests revealed that Eu3+ complexation did not significantly alter the total radical scavenging activity (RSA) of TA but enhanced its ability to scavenge H2O2 and ferrous ions, thus improving its overall antioxidant potential. At the cellular level, EuTA NCs reduced the instantaneous toxicity of high concentrations of free TA, resulting in better antioxidant (13.3% increase of RSA vs. TA) and anti-inflammatory responses (17.6% reduction of nitric oxide production vs. TA) on cultures of H2O2- and LPS-stimulated macrophages, respectively. Furthermore, the short-term treatment of osteoblasts with EuTA NCs was found to increase their alkaline phosphatase activity and their matrix mineralization capacity. Overall, this simple and tunable platform is a potential candidate to promote bone growth in complex environments by simultaneously targeting multiple pathophysiological mechanisms of disease.


Subject(s)
Bone Regeneration , Europium , Tannins , Europium/chemistry , Europium/pharmacology , Bone Regeneration/drug effects , Mice , Animals , RAW 264.7 Cells , Tannins/chemistry , Tannins/pharmacology , Inflammation/drug therapy , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Oxidative Stress/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Particle Size , Surface Properties , Osteogenesis/drug effects , Polyphenols
6.
Biosens Bioelectron ; 262: 116539, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38950517

ABSTRACT

Prostaglandin E2 (PGE2), an eicosane, regulates the physiological activity of inflammatory cells and represents a potential therapeutic target for facilitating tissue repair in vivo. In our work, an electrochemical immunosensor employing Ketjen black-Au nanoparticles (KB-Au) and poly tannic acid nanospheres conjugated with anti-PGE2 polyclonal antibody (PTAN-Ab) was designed to ultra-sensitively analyze PGE2 levels secreted by living cells and tissues. Antibody assembly strategies were explored to achieve signal amplification. Moreover, we studied the therapy effects of docosahexaenoic acid (DHA), arachidonic acid (AA), hyaluronic acid (HA), and small molecule 15-hydroxyprostaglandin dehydrogenase inhibitor (SW033291) on inflammation and evaluated the protective functions of HA and SW033291 in a murine model subjected to colitis induced by dextran sulfate sodium (DSS) using the developed sensor. The sensor exhibited a linear range of 10-5-106 fg/mL and a detection limit (LOD) of 10-5 fg/mL. Fetal bovine serum (FBS) samples were used to achieve high recovery of target analytes. This study not only presents an effective strategy for ultra-sensitively monitoring PGE2 but also provides valuable insights into assessing the degree of inflammation and the therapeutic effect of related drugs. Research on human health monitoring and regenerative medicine could greatly benefit from the findings.


Subject(s)
Biosensing Techniques , Dinoprostone , Electrochemical Techniques , Inflammation , Animals , Mice , Dinoprostone/analysis , Electrochemical Techniques/methods , Inflammation/drug therapy , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Colitis/drug therapy , Hyaluronic Acid/chemistry , Tannins/chemistry , Immunoassay/methods
7.
Sci Rep ; 14(1): 16139, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997417

ABSTRACT

Rapid and safe hemostasis is crucial for the survival of bleeding patients in prehospital care. It is urgent to develop high performance hemostatic material to control the massive hemorrhage in the military field and accidental trauma. In this work, an efficient protein hemostat of thrombin was immobilized onto commercial gauze, which was mediated by self-polymerization and anchoring of tannic acid (TA). Through TA treatment, the efficient immobilization of thrombin was achieved, preserving both the biological activity of thrombin and the physical properties of the dressing, including absorbency, breathability, and mechanical performance. Moreover, in the presence of TA coating and thrombin, Gau@TA/Thr could obviously shortened clotting time and enriched blood components such as plasma proteins, platelets, and red blood cells, thereby exhibiting an enhanced in vitro coagulation effect. In SD rat liver volume defect and artery transection hemorrhage models, Gau@TA/Thr still had outstanding hemostatic performance. Besides, the Gau@TA/Thr gauze had inherent antibacterial property and demonstrated excellent biocompatibility. All results suggested that Gau@TA/Thr would be a potential candidate for treating uncontrollable hemorrhage in prehospital care.


Subject(s)
Bandages , Blood Coagulation , Hemorrhage , Hemostatics , Tannins , Thrombin , Tannins/chemistry , Tannins/pharmacology , Animals , Hemorrhage/drug therapy , Thrombin/metabolism , Blood Coagulation/drug effects , Rats , Hemostatics/pharmacology , Hemostatics/chemistry , Rats, Sprague-Dawley , Male , Anti-Infective Agents/pharmacology , Humans , Immobilized Proteins/pharmacology , Immobilized Proteins/chemistry , Disease Models, Animal , Polyphenols
8.
ACS Appl Mater Interfaces ; 16(31): 40653-40666, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052487

ABSTRACT

The key to saving lives is to achieve instant and effective sealing hemostasis in the event of emergency bleeding. Herein, a plant oil-based EMTA/Zn2+ bioadhesive is prepared by a facile reaction of epoxidized soybean oil (ESO) with methacrylic acid (MAA) and tannic acid (TA), followed by the addition of zinc ions for coordination with TA. The EMTA/Zn2+ bioadhesive can be rapidly cured in situ at the wound site through photo-cross-linking under ultraviolet (UV) light-emitting diode (LED) irradiation within 30 s, achieving ultrastrong wet-tissue adhesion performance of 92.4 and 51.8 kPa to porcine skin and aortic skin after 7 days underwater, respectively. Especially, the EMTA/Zn2+ bioadhesive exhibits outstanding sealing performance in vitro with the high burst pressure of 525 mmHg (70 kPa) and 337.5 mmHg (45 kPa) to porcine skin and aortic skin, respectively. Moreover, the EMTA/Zn2+ bioadhesive not only has outstanding hemocompatibility and good biodegradability but also exhibits excellent cytocompatibility and antibacterial properties. Notably, the EMTA/Zn2+ bioadhesive has remarkable instant sealing hemostatic ability for hemorrhaging liver in vivo. Therefore, the prepared plant oil-based EMTA/Zn2+ bioadhesive can serve as a charming alternative candidate for instant sealing hemostasis in clinical applications, especially in traumatic internal organs and arterial bleeding.


Subject(s)
Hemostasis , Animals , Swine , Hemostasis/drug effects , Plant Oils/chemistry , Plant Oils/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Zinc/chemistry , Zinc/pharmacology , Mice , Humans , Hemorrhage/drug therapy , Skin/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tannins/chemistry , Tannins/pharmacology , Methacrylates/chemistry , Methacrylates/pharmacology
9.
Int J Biol Macromol ; 275(Pt 2): 134230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084996

ABSTRACT

Currently, the most effective way to improve the anti-fouling performance of water treatment separation membrane is to enhance the hydrophilicity of the membrane surface, but it can still cause contamination, leading to the occurrence of flux reduction. The construction of a strong hydration layer to resist wastewater contamination is still a challenging task. In this study, a defect-free hydration layer barrier was achieved by grafting chitosan polysaccharide derivatives (CS-SDAEM) on the membrane, which achieved in effective fouling prevention and low flux decline rate. A layer of tannic acid-coated carbon nanotubes (TA@CNTs) has been uniformly deposited on the commercial PVDF membrane so that the surface was rich in -COOH groups, providing sufficient reaction sites. These reactive groups facilitate the grafting of amphiphilic polymers onto the membrane. This modification strategy achieved in enhancing the antifouling performance. The modified membrane achieved low contamination rate with DR of 16.9 % for wastewater filtration, and the flux recovery rate was above 95 % with PWF of 1100 (L·m-2·h-1). The membrane had excellent anti-fouling performance, which provided a new route for the future development of water treatment membrane.


Subject(s)
Chitosan , Emulsions , Membranes, Artificial , Nanotubes, Carbon , Polyvinyls , Water Purification , Water Purification/methods , Chitosan/chemistry , Polyvinyls/chemistry , Nanotubes, Carbon/chemistry , Tannins/chemistry , Polysaccharides/chemistry , Water/chemistry , Wastewater/chemistry , Oils/chemistry , Hydrophobic and Hydrophilic Interactions , Filtration/methods , Fluorocarbon Polymers
10.
Int J Biol Macromol ; 275(Pt 2): 133669, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971289

ABSTRACT

Surface browning of plant-derived fresh-cut products is mainly caused by conversion of the phenolic compounds into o-quinones under tyrosinase catalysis. In this study, the rarely reported complex tannins from Euryale ferox seed shell (ECTs) constituted by the units of 35.60% condensed tannins and 64.40% hydrolysable tannins were shown to suppress the activity of tyrosinase efficiently, supporting the exploitation of ECTs into novel anti-browning agents. However, the utilization of ECTs in food preservation is often restricted because of their chemical instability to external environment. Further fabrication of nanoliposomes loaded with ECTs (ECTs-NLs) herein was carried out to improve the stability of ECTs. DLS, TEM, FTIR, DSC and XRD confirmed that ECTs were encapsulated into nanoliposomes successfully, and ECTs-NLs appeared as vesicle-like spherical morphology with favorable encapsulation efficiency, uniform particle size distribution and negative zeta-potential. The resulting ECTs-NLs were relatively stable in the dark at 4 °C. Nanoliposomal encapsulation significantly enhanced ECTs stability, thus protecting inhibitory effect of ECTs against tyrosinase. Furthermore, anti-browning evaluation proved that ECTs-NLs had distinct advantages over free ECTs in alleviating surface browning of fresh-cut asparagus lettuces. These results suggested that nanoliposomes were effective in stabilizing ECTs and ECTs-NLs could be potentially applied to the fresh-cut food industry.


Subject(s)
Asparagus Plant , Liposomes , Monophenol Monooxygenase , Seeds , Tannins , Liposomes/chemistry , Seeds/chemistry , Asparagus Plant/chemistry , Tannins/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Nanoparticles/chemistry , Particle Size , Nymphaeaceae/chemistry
11.
Carbohydr Polym ; 342: 122372, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048222

ABSTRACT

Wound healing is a complex process involving a complicated interplay between numerous cell types and vascular systems. Hyaluronic acid (HA)-based hydrogel facilitates wound healing, and is involved in all processes. However, slow gelation speed and weak adhesion strength limit its ability to form a stable physical barrier quickly. Herein, we propose a HA-based composite hydrogel as the wound dressing based on oxidative coupling reaction. Tannic acid and dopamine-coated carbon particles (DCPs) containing abundant phenolic hydroxyl groups are incorporated into the HA-based hydrogel for increasing the number of crosslinking sites of oxidative coupling of the hydrogel and enhancing adhesion through the formation of covalent bonds and hydrogen bonds between hydrogel and wound sites. The composite hydrogel exhibits short gelation time (<6 s) and high adhesion strength (>8.1 kPa), which are superior to the references and commercial products of its kind. The in vitro experiments demonstrate that the hydrogel has low hemolytic reaction, negligible cytotoxicity, and the ability to promote fibroblast proliferation and migration. The in vivo full-thickness skin defect model experiments demonstrate that the hydrogel can accelerate wound healing under mild photothermal stimulation of DCPs by reducing inflammation, relieving tissue hypoxia, and promoting angiogenesis and epithelialization.


Subject(s)
Hyaluronic Acid , Hydrogels , Polyphenols , Tannins , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Wound Healing/drug effects , Tannins/chemistry , Tannins/pharmacology , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Polyphenols/chemistry , Polyphenols/pharmacology , Cell Proliferation/drug effects , Humans , Skin/drug effects , Fibroblasts/drug effects , Cell Movement/drug effects , Male
12.
Carbohydr Polym ; 342: 122397, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048234

ABSTRACT

The development of tissue adhesives with good biocompatibility and potent antimicrobial properties is crucial for addressing the high incidence of surgical site infections in emergency and clinical settings. Herein, an injectable hydrogel adhesive composed of chitosan biguanidine (CSG), oxidized dextran (ODex) and tannin (TA) was synthesized primarily through Schiff-base reactions, hydrogen bonding, and electrostatic interactions. TA was introduced into the CSG/ODex hydrogel to prepare a physicochemically double cross-linked hydrogel. The hydrogel formulation incorporating 2 wt% TA (CSG/ODex-TA2) exhibited rapid gelation, moderate mechanical properties, good tissue adhesion, and sustained release behavior of TA. Both in vitro and in vivo studies demonstrated that CSG/ODex-TA2 showed significantly enhanced adhesion and antibacterial effectiveness compared to the CSG/ODex hydrogel and commercial fibrin glue. Leveraging the positive charge of CSG, the CSG/ODex-TA2 hydrogel demonstrated a strong contact antibacterial effect, while the sustained release of TA provided diffusion antibacterial capabilities. By integrating contact and diffusion antibacterial mechanisms into the hydrogel, a promising approach was developed to boost antibacterial efficiency and accelerate the healing of wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). The CSG/ODex-TA2 hydrogel has excellent biocompatibility, hemostatic properties, and antibacterial capabilities, making it a promising candidate for improving in vivo wound care and combating bacterial infections.


Subject(s)
Anti-Bacterial Agents , Chitosan , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Tissue Adhesives , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Mice , Biguanides/chemistry , Biguanides/pharmacology , Dextrans/chemistry , Dextrans/pharmacology , Tannins/chemistry , Tannins/pharmacology , Humans , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests , Male
13.
Carbohydr Polym ; 342: 122405, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048240

ABSTRACT

Nanofibrillated cellulose (NFC) has found extensive potential and existing utilizations across various industries. Nonetheless, a notable constraint of NFC lies in its inherent hydrophilic nature, which restricts its suitability for non-aqueous application. This study aims at synthesising hydrophobic NFC through a two-step surface modification by reacting NFC with tannic acid and amine group. The study also investigated the effect of using various alkylamines on the properties of modified NFC. The hydrophobic NFC was characterized using various analytical techniques namely Thermogravimetric Analysis (TGA), X-Ray Diffraction analysis (XRD), Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), elemental analysis, and contact angle measurements. The present study also looked into the possible use of modified NFC as a pharmaceutical excipient for the delivery of water insoluble curcumin. The analysis of curcumin binding onto the modified NFC was conducted using UV-Visible spectrophotometry. The findings from the study indicated that the modified NFC effectively bound a substantial quantity of curcumin (80 % - 87 %) and the binding varied for samples of different degree of substitution.


Subject(s)
Cellulose , Curcumin , Hydrophobic and Hydrophilic Interactions , Nanofibers , Cellulose/chemistry , Curcumin/chemistry , Nanofibers/chemistry , Tannins/chemistry
14.
J Environ Manage ; 366: 121699, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981255

ABSTRACT

Germanium (Ge) is a dispersed metal primarily recovered from secondary Ge-containing resources. The traditional treatment method is hindered by incomplete impurity removal, resulting in a low grade of tannin germanium residue (TGR) and Ge concentrate, high production costs, and significant hazardous waste. This study proposes a new technology involving ultrasonic pre-purification of TGR to enhance the quality of Ge concentrate prepared by roasting. Under optimal conditions (ultrasonic power 225 W, liquid-solid ratio 7:1, H2SO4 concentration 20 g/L, reaction time 30 min, and reaction temperature 40 °C), the removal efficiencies of impurities Zn, Mg, Fe, As, and S from purified tannin germanium residue (PTGR) increased by 4.2%, 4.2%, 17.4%, 8.7%, and 2.9% respectively. Moreover, the Ge content in PTGR increased from 2.9% to 4.1%. The mechanism of ultrasonic action indicated the ultrasonic energy reduced the particle size of the reactants from 67.698 µm to 31.768 µm, thereby accelerating impurity removal. Roasting ultrasonic-purified tannin germanium residue (U-PTGR) at 650 °C with 40 L/h air flow for 120 min produced Ge concentrate with a Ge grade of 33.26%, which is 6.11% higher than the regular method. Analysis using XRD and HRTEM, combined with crystallite size calculation, revealed that the Ge concentrate prepared by U-PTGR exhibited low sintering degree, good crystal properties, and high crystallinity. Implementing this technology could save enterprises approximately $57,412 annually in production costs. Additionally, it holds significant practical importance in reducing hazardous waste emissions and promoting the high-quality development of the Ge industry.


Subject(s)
Germanium , Tannins , Ultrasonics , Germanium/chemistry , Tannins/chemistry
15.
J Colloid Interface Sci ; 674: 1025-1036, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39002291

ABSTRACT

Non-invasive and efficient photodynamic therapy (PDT) holds great promise to circumvent resistance to traditional osteosarcoma (OS) treatments. Nevertheless, high-power PDT applied in OS often induces photothermogenesis, resulting in normal cells rupture, sustained inflammation and irreversible vascular damage. Despite its relative safety, low-power PDT fails to induce severe DNA damage for insufficient reactive oxygen species (ROS) production. Herein, a non-ROS-dependent DNA damage-sensitizing strategy is introduced in low-power PDT to amplify the therapeutic efficiency of OS, where higher apoptosis is achieved with low laser power. Inspired by the outstanding DNA damage performance of tannic acid (TA), TA-based metal phenolic networks (MPNs) are engineered to encapsulate hydrophobic photosensitizer (purpurin 18) to act as DNA damage-sensitized nanosynergists (TCP NPs). Specially, under low-power laser irradiation, the TCP NPs can boost ROS instantly to trigger mitochondrial dysfunction simultaneously with upregulation of DNA damage levels triggered by TA to reinforce PDT sensitization, evoking potent antitumor effects. In addition, TCP NPs exhibit long-term retention in tumor, greatly benefiting sustained antitumor performances. Overall, this study sheds new light on promoting the sensitivity of low-power PDT by strengthening DNA damage levels and will benefits advanced OS therapy.


Subject(s)
DNA Damage , Osteosarcoma , Photochemotherapy , Photosensitizing Agents , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/therapy , DNA Damage/drug effects , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Mice , Animals , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/therapy , Bone Neoplasms/metabolism , Particle Size , Surface Properties , Tannins/chemistry , Tannins/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Phenols/chemistry , Phenols/pharmacology , Apoptosis/drug effects , Nanoparticles/chemistry
16.
Int J Biol Macromol ; 275(Pt 1): 133578, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960272

ABSTRACT

Tannic acid (TA) is a natural polyphenol that shows great potential in the field of biomedicine due to its anti-inflammatory, anti-oxidant, anti-bacterial, anti-tumor, anti-virus, and neuroprotective activities. Recent studies have revealed that liquid-liquid phase separation (LLPS) is closely associated with protein aggregation. Therefore, modulating LLPS offers new insights into the treatment of neurodegenerative diseases. In this study, we investigated the influence of TA on the LLPS of the Alzheimer's-related protein tau and the underlying mechanism. Our findings indicate that TA affects the LLPS of tau in a biphasic manner, with initial promotion and subsequent suppression as the TA to tau molar ratio increases. TA modulates tau phase separation through a combination of hydrophobic interactions and hydrogen bonds. The balance between TA-tau and tau-tau interactions is found to be relevant to the material properties of TA-induced tau condensates. We further illustrate that the modulatory activity of TA in phase separation is highly dependent on the target proteins. These findings enhance our understanding of the forces driving tau LLPS under different conditions, and may facilitate the identification and optimization of compounds that can rationally modulate protein phase transition in the future.


Subject(s)
Phase Separation , Tannins , tau Proteins , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Phase Separation/drug effects , Phase Transition , Polyphenols , Protein Aggregates/drug effects , Tannins/chemistry , Tannins/pharmacology , Tannins/isolation & purification , tau Proteins/metabolism , tau Proteins/chemistry
17.
Biomacromolecules ; 25(8): 4843-4855, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38985577

ABSTRACT

Tannin, after lignin, is one of the most abundant sources of natural aromatic biomolecules. It has been used and chemically modified during the past few decades to create novel biobased materials. This work intended to functionalize for the first time quebracho Tannin (T) through a simple phosphorylation process in a urea system. The phosphorylation of tannin was studied by Fourier transform infrared spectroscopy (FTIR), NMR, inductively coupled plasma optical emission spectroscopy (ICP-OES), and X-ray fluorescence spectrometry (XRF), while further characterization was performed by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and thermogravimetric analysis (TGA) to investigate the morphology, composition, structure, and thermal degradation of the phosphorylated material. Results indicated the occurrence of phosphorylation, suggesting the insertion of phosphate-containing groups into the tannin structure, revealing a high content of phosphate for modified tannin (PT). This elevated phosphorus content serves as evidence for the successful incorporation of phosphate groups through the functionalization process. The corresponding PT and T were employed as adsorbents for methylene blue (MB) removal from aqueous solutions. The results revealed that the Langmuir isotherm model effectively represents the adsorption isotherms. Additionally, the pseudo-second-order model indicates that chemisorption predominantly controls the adsorption mechanism. This finding also supports the fact that the introduced phosphate groups via the phosphorylation process significantly contributed to the improved adsorption capacity. Under neutral pH conditions and at room temperature, the material achieved an impressive adsorption capacity of 339.26 mg·g-1 in about 2 h.


Subject(s)
Methylene Blue , Tannins , Urea , Methylene Blue/chemistry , Methylene Blue/isolation & purification , Tannins/chemistry , Urea/chemistry , Phosphorylation , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
18.
J Chromatogr A ; 1731: 465193, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39047446

ABSTRACT

A pH/temperature bi-responsive gallic acid magnetic imprinted polymer (PTBG-MIP) was synthesized on a Fe3O4@SiO2@KH570 carrier using methacrylic acid (MAA), p-Vinylphenylboronic acid (p-VPBA), and N-isopropyl-acrylamide (NIPAAm) as complex functional monomers. The density functional theory (DFT) was employed to optimize the molar ratio of multi-functional monomers-template complex, which proved to be an effective tool for predicting complex configuration based on electrostatic potential (ESP) analysis and the lowest binding energy. DFT calculation and analysis determined the optimized molar ratio of 2:1:1:1 for GA-MAA-NIPAAm-p-VPBA, which showed good agreement with experimental results. The PTBG-MIP-4 obtained under the optimized conditions exhibited high pH- and temperature- dependence in rebinding the template, displaying a maximum adsorption capacity (Qe) of 62.26 mg g-1 and a highest selection factor (α) of 5.217. Additionally, the PTBG-MIP-4 exhibited exceptional physicochemical properties encompassing magnetization characteristics, morphology, surface sites distribution, and adsorption performance. The application efficiency of this imprinted composite in the extraction and purification of gallic acid from Galla chinensis was remarkably demonstrated.


Subject(s)
Drugs, Chinese Herbal , Gallic Acid , Tannins , Temperature , Acrylamides/chemistry , Adsorption , Biological Products/chemistry , Biological Products/chemical synthesis , Drugs, Chinese Herbal/chemistry , Gallic Acid/chemistry , Gallic Acid/isolation & purification , Hydrogen-Ion Concentration , Molecular Imprinting/methods , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Polymers/chemical synthesis , Silicon Dioxide/chemistry , Solid Phase Extraction/methods , Tannins/chemistry
19.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893465

ABSTRACT

Yerba Mate drink made from dried and crushed leaves and twigs of Paraguayan holly (Ilex paraguariensis A. St.-Hil.), which is a valuable source of bioactive substances, in particular antioxidants. The available literature lacks data on changes in the content and profile of bioactive compounds such as tannins, caffeine, the phenolic acid profile of flavonoids and carotenoids, as well as total polyphenol content and antioxidant activity in Yerba Mate infusions depending on different brewing conditions, and how different brewing conditions affect the physicochemical properties of these infusions. Therefore, this study evaluated the physicochemical properties of dried and Yerba Mate infusions prepared via single and double brewing processes at 70 °C and 100 °C. The organoleptic evaluation, as well as the instrumental color measurement, showed significant changes in the total color difference (ΔE) and the L*a*b* chromatic coordinates of dried Yerba Mate samples and their infusions. Moreover, the research showed higher contents of tannins (mean 1.36 ± 0.14 g/100 g d.m.), caffeine (mean 17.79 ± 3.49 mg/g d.m.), carotenoids (mean 12.90 ± 0.44 µg/g d.m.), phenolic acids (mean 69.97 ± 7.10 mg/g d.m.), flavonoids (mean 5.47 ± 1.78 mg/g d.m.), total polyphenols (mean 55.26 ± 8.51 mg GAE/g d.m.), and antioxidant activity (mean 2031.98 ± 146.47 µM TEAC/g d.m.) in single-brewed Yerba Mate infusions compared to double-brewed (0.77 ± 0.12 g/100 g d.m., 14.28 ± 5.80 mg/g d.m., 12.67 ± 0.62 µg/g d.m., 57.75 ± 8.73 mg/g d.m., 3.64 ± 0.76 mg/g d.m., 33.44 ± 6.48 mg GAE/g d.m. and 1683.09 ± 155.34 µM TEAC/g d.m., respectively). In addition, infusions prepared at a lower temperature (70 °C) were characterized by a higher content of total polyphenols and higher antioxidant activity, in contrast to the tannin and carotenoid contents, the levels of which were higher at 100 °C than at 70 °C. Considering the high amount of bioactive ingredients, in particular antioxidants, and a wide range of health benefits, it is worth including Yerba Mate in the daily diet.


Subject(s)
Antioxidants , Ilex paraguariensis , Polyphenols , Ilex paraguariensis/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Polyphenols/chemistry , Polyphenols/analysis , Tannins/analysis , Tannins/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Carotenoids/chemistry , Carotenoids/analysis , Plant Extracts/chemistry , Plant Leaves/chemistry , Caffeine/analysis , Caffeine/chemistry , Hydroxybenzoates/chemistry , Hydroxybenzoates/analysis , Beverages/analysis
20.
Molecules ; 29(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38893491

ABSTRACT

This paper explores the emerging subject of extracting tannins from various plant sources using deep eutectic solvents (DESs). Tannins are widely used in the food and feed industries as they have outstanding antioxidant qualities and greatly enhance the flavor and nutritional content of a wide range of food products. Organic solvents are frequently used in traditional extraction techniques, which raises questions about their safety for human health and the environment. DESs present a prospective substitute because of their low toxicity, adaptability, and environmental friendliness. The fundamental ideas supporting the application of DESs in the extraction of tannins from a range of plant-based materials frequently used in daily life are all well covered in this paper. Furthermore, this paper covers the impact of extraction parameters on the yield of extracted tannins, as well as possible obstacles and directions for future research in this emerging subject. This includes challenges such as high viscosity, intricated recovery of compounds, thermal degradation, and the occurrence of esterification. An extensive summary of the diversity, structure, biosynthesis, distribution, and roles of tannins in plants is given in this paper. Additionally, this paper thoroughly examines various bioactivities of tannins and their metabolites.


Subject(s)
Deep Eutectic Solvents , Tannins , Tannins/chemistry , Tannins/isolation & purification , Deep Eutectic Solvents/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Plants/chemistry , Plants/metabolism , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL