Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
1.
AAPS PharmSciTech ; 25(6): 159, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987438

ABSTRACT

Vitamin C is extensively used in cosmetic formulation, howbeit stability is the supreme demerit that limits its use in beautifying products. Numerous techniques are being employed to inhibit the degradation of vitamin C caused by formulation components to facilitate the use in skin rejuvenating products. Diverse materials are being exercised in formulation to stabilize the ascorbic acid and ingredients selected in this formulation composition help for stabilization. The initial stable prototype is developed and further optimization is accomplished by applying the design of experiment tools. The stable pharmaceutical formulations were evaluated for the evaluation parameters and designated as two optimized formulations. The analytical method for the assay of ascorbic acid from the United States pharmacopeia and the related substance method from European pharmacopeia has been modified to be used for cream formulation. The DoE design exhibited that the stability of formulation is impacted by citric acid and tartaric acid but not by propylene glycol and glycerin. The analysis results of topical formulations for the evaluation parameter exhibited satisfactory results. The in-vitro release study method has been developed, optimized, and validated to fit the analysis. The in-vitro studies have been performed for selected compositions and both the formulation has similar kinds of release patterns. The stability study as per ICH guidelines exhibited that the product is stable for accelerated, intermediate, and room-temperature storage conditions. The optimized formulation shows constant release and permeation of ascorbic acid through the skin. The formulation with the combinations of citric acid, tartaric acid, and tocopherol is more stable and the degradation of vitamin C has been reduced significantly. The beaucoup strategies in the unique composition help to protect the degradation by inhibiting the multitudinous degradation pathways.


Subject(s)
Ascorbic Acid , Chemistry, Pharmaceutical , Drug Stability , Ascorbic Acid/chemistry , Chemistry, Pharmaceutical/methods , Tartrates/chemistry , Citric Acid/chemistry , Drug Compounding/methods , Excipients/chemistry
2.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970698

ABSTRACT

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Subject(s)
Charcoal , Metals, Heavy , Soil Pollutants , Soil , Charcoal/chemistry , Soil Pollutants/chemistry , Metals, Heavy/chemistry , Soil/chemistry , Molecular Weight , Hydrogen-Ion Concentration , Cadmium/chemistry , Tartrates/chemistry , Malates/chemistry , Citric Acid/chemistry , Environmental Restoration and Remediation/methods , Oxalic Acid/chemistry , Adsorption , Oryza/chemistry
3.
Waste Manag ; 187: 198-206, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39053113

ABSTRACT

This article employs six organic acids to selectively dissolve Mo, Ni and V from spent catalysts, and the most effective acid is identified. Then, the effects of key leaching parameters, including acid concentration, temperature, and S/L ratio, on metal leaching are systematically explored to determine the leaching mechanism. The results demonstrate that the leaching ability of organic acids followed the order: oxalic acid > citric acid > tartaric acid > malonic acid > acetic acid > formic acid. The leaching process of metals was jointly influenced by acidolysis and complexolysis. Among them, more than 93.07 % of Mo, 86.64 % of V, and 74.21 % of Ni were selectively leached with oxalic acid at the optimum condition: S/l: 1/20, oxalic acid: 1.0 mol/L, temp: 60 °C. From the correlation coefficients, the resulting activation energies, and n values, it was demonstrated that Mo and V followed the Avrami dissolution reaction model, V leaching was controlled by the diffusion mode, and Mo leaching was controlled by a mixed mode of chemical reaction and diffusion. The dissolution behavior of both metals consistently adhered to the linear trend of the Avrami kinetic model under varying S/L ratios and oxalic acid concentrations.


Subject(s)
Molybdenum , Nickel , Oxalic Acid , Kinetics , Nickel/chemistry , Catalysis , Oxalic Acid/chemistry , Molybdenum/chemistry , Tartrates/chemistry , Citric Acid/chemistry , Formates/chemistry , Acetic Acid/chemistry , Malonates
4.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893387

ABSTRACT

The extraction of cannabinoids from the inflorescence and leaves of Cannabis sativa L. is gaining interest from researchers, in addition to addressing the under-utilization of the by-products in the stems and roots of the trees. The present study investigated the recovery of pectin from the left-over parts of hemp tress using an eco-friendly method with the aid of organic acids. Different cannabis cultivars-Chalotte's Angels (CHA) and Hang-Krarog (HKR)-were used as plant materials. The stems of both cannabis cultivars contained more pectin than the roots, and tartaric acid-aided extraction provided higher yields than from citric acid. Extracting the acid solution affected some characteristics, thereby differentiating the functional properties of the derived pectin. Extraction using tartaric acid provided pectin with a higher galacturonic acid content, whereas pectin with a higher methylation degree could be prepared using citric acid. The pectin samples extracted from the stems of CHA (P-CHA) and HKR (P-HKR) had low methoxyl pectin. P-CHA had better free radical scavenging capability, whereas P-HKR showed more potent reducibility. Considering the functional properties, P-CHA showed greater emulsion formability and foaming activity, whereas P-HKR possessed a better thickening effect. The present work suggests the feasible utilization of P-CHA and P-HKR as food additives with bioactivity.


Subject(s)
Cannabis , Pectins , Plant Extracts , Pectins/chemistry , Pectins/isolation & purification , Cannabis/chemistry , Plant Extracts/chemistry , Citric Acid/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry , Tartrates/chemistry , Plant Roots/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/analysis
5.
J Pharm Biomed Anal ; 247: 116256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38850847

ABSTRACT

A long-term stability study using high performance liquid chromatography (HPLC) revealed an unidentified impurity in the bromhexine hydrochloride injection, which was employed as a mucolytic agent. Investigations into stress degradation and elemental impurities revealed one of the elemental impurities Fe3+ in this injection as the primary generator of these impurities. This impurity, named N-carboxymethyl bromhexine, was a product formed during drug-excipient interaction between bromhexine and tartaric acid with Fe3+. The structure of the impurity was identified through ultra-high-performance liquid chromatography with diode array detector (UHPLC-DAD), liquid chromatograph mass spectrometer (LC-MS). Further, the formation mechanism of the impurity was discussed. Overall, this study elucidates the cause, origin, and mechanism of an unknown impurity in bromhexine hydrochloride injection, providing a basis for quality control for bromhexine hydrochloride injections and drug products containing both amine and tartaric acid.


Subject(s)
Bromhexine , Drug Contamination , Excipients , Bromhexine/chemistry , Bromhexine/analysis , Chromatography, High Pressure Liquid/methods , Excipients/chemistry , Excipients/analysis , Tartrates/chemistry , Tartrates/analysis , Mass Spectrometry/methods , Drug Stability , Quality Control
6.
Biochemistry ; 63(12): 1578-1587, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38803051

ABSTRACT

l-(+)-Tartaric acid plays important roles in various industries, including pharmaceuticals, foods, and chemicals. cis-Epoxysuccinate hydrolases (CESHs) are crucial for converting cis-epoxysuccinate to l-(+)-tartrate in the industrial production process. There is, however, a lack of detailed structural and mechanistic information on CESHs, limiting the discovery and engineering of these industrially relevant enzymes. In this study, we report the crystal structures of RoCESH and KoCESH-l-(+)-tartrate complex. These structures reveal the key amino acids of the active pocket and the catalytic triad residues and elucidate a dynamic catalytic process involving conformational changes of the active site. Leveraging the structural insights, we identified a robust BmCESH (550 ± 20 U·mg-1) with sustained catalytic activity even at a 3 M substrate concentration. After six batches of transformation, immobilized cells with overexpressed BmCESH maintained 69% of their initial activity, affording an overall productivity of 200 g/L/h. These results provide valuable insights into the development of high-efficiency CESHs and the optimization of biotransformation processes for industrial uses.


Subject(s)
Biocatalysis , Tartrates , Tartrates/metabolism , Tartrates/chemistry , Catalytic Domain , Crystallography, X-Ray , Hydrolases/chemistry , Hydrolases/metabolism , Hydrolases/genetics , Models, Molecular , Protein Conformation
7.
PLoS One ; 19(4): e0299218, 2024.
Article in English | MEDLINE | ID: mdl-38662654

ABSTRACT

To enhance the yield of the one-step synthesis of terpinyl acetate from α-pinene and acetic acid, this study evaluated α-hydroxycarboxylic acid (HCA)-boric acid composite catalysts based on orthogonal experimental design. The most important factor affecting the terpinyl acetate content in the product was the HCA content. The catalytic performance of the composite catalyst was related to the pKa1 of HCA. The tartaric acid-boric acid composite catalyst showed the highest catalytic activity. The α-pinene conversion reached 91.8%, and the terpinyl acetate selectivity reached 45.6%. When boric acid was replaced with B2O3, the HCA composite catalyst activity was enhanced, which reduced the use of HCA. When the lactic acid and B2O3 content accounted for 10% and 4% of the α-pinene mass content, respectively, the α-pinene conversion reached 93.2%, and the terpinyl acetate selectivity reached up to 47.1%. In addition, the presence of water was unfavorable to HCA-boric acid composite catalyst. However, a water content less than 1% of the α-pinene mass content improved the catalytic activity of HCA-B2O3. When the tartaric acid-B2O3 was used as catalyst, and the water content was 1% of the α-pinene mass content, the α-pinene conversion was 89.6%, and the terpinyl acetate selectivity was 47.5%.


Subject(s)
Bicyclic Monoterpenes , Boric Acids , Monoterpenes , Catalysis , Bicyclic Monoterpenes/chemistry , Boric Acids/chemistry , Monoterpenes/chemistry , Tartrates/chemistry , Acetates/chemistry , Carboxylic Acids/chemistry , Terpenes/chemistry , Terpenes/chemical synthesis
8.
J Hazard Mater ; 471: 134350, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38643580

ABSTRACT

Biotransformation is a major dissipation process of tetrabromobisphenol A and its derivatives (TBBPAs) in soil. The biotransformation and ultimate environmental fate of TBBPAs have been widely studied, yet the effect of root exudates (especially low-molecular weight organic acids (LMWOAs)) on the fate of TBBPAs is poorly documented. Herein, the biotransformation behavior and mechanism of TBBPAs in bacteriome driven by LMWOAs were comprehensively investigated. Tartaric acid (TTA) was found to be the main component of LMWOAs in root exudates of Helianthus annus in the presence of TBBPAs, and was identified to play a key role in driving shaping bacteriome. TTA promoted shift of the dominant genus in soil bacteriome from Saccharibacteria_genera_incertae_sedis to Gemmatimonas, with a noteworthy increase of 24.90-34.65% in relative abundance of Gemmatimonas. A total of 28 conversion products were successfully identified, and ß-scission was the principal biotransformation pathway for TBBPAs. TTA facilitated the emergence of novel conversion products, including 2,4-dibromophenol, 3,5-dibromo-4-hydroxyacetophenone, para-hydroxyacetophenone, and tribromobisphenol A. These products were formed via oxidative skeletal cleavage and debromination pathways. Additionally, bisphenol A was observed during the conversion of derivatives. This study provides a comprehensive understanding about biotransformation of TBBPAs driven by TTA in soil bacteriome, offering new insights into LMWOAs-driven biotransformation mechanisms.


Subject(s)
Biotransformation , Polybrominated Biphenyls , Soil Microbiology , Soil Pollutants , Tartrates , Soil Pollutants/metabolism , Soil Pollutants/chemistry , Polybrominated Biphenyls/metabolism , Polybrominated Biphenyls/chemistry , Tartrates/metabolism , Tartrates/chemistry , Biodegradation, Environmental , Plant Roots/metabolism
9.
Food Chem ; 422: 136159, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37146354

ABSTRACT

Tartrate stabilization remains a necessary step in commercial wine production to avoid the precipitation of crystals in bottled wine. The conventional refrigeration method to prevent crystallization of potassium bitartrate is time-consuming, energy-intensive, and involves a filtration step to remove the sediment. Nevertheless, it is still the most used stabilization method by winemakers. This work exploits for the first time an alternative to traditional cold stabilization that explores the potential of carefully tailored surface coatings obtained by plasma polymerization. Coatings containing amine functional groups were most potent in binding and removing potassium in heat-unstable wines. In contrast, carboxyl acid groups rich surfaces had the most significant impact on heat-stabilized wines. The results of this study demonstrate that surfaces with carefully designed chemical functionalities can remove tartaric acid from wine and induce cold stabilization. This process can operate at higher temperatures, reducing the need for cooling facilities, saving energy, and improving cost-effectiveness.


Subject(s)
Wine , Wine/analysis , Tartrates/chemistry , Crystallization , Potassium
10.
IUCrJ ; 10(Pt 1): 66-76, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36598503

ABSTRACT

As an extremely popular natural product, berberine (BER) is mainly used for gastroenteritis and diarrhoea caused by bacteria. Research has also revealed the potent and extensive pharmacological properties of BER including its anti-arrhythmic, anti-tumour, anti-inflammatory and hypoglycemic activities and so on; therefore, BER is a promising drug for further development. However, its commercial form with hydrochloride exhibits poor stability and solubility, which are detrimental to its clinical therapeutic effects. For these purposes, the salt form was regulated via the reactive crystallization of 8-hydroxy-7,8-dihydroberberine (8H-HBER) with five pharmaceutically suitable organic acids including malonic acid (MA), L-tartaric acid (LTA), D-tartaric acid (DTA), DL-tartaric acid (DLTA) and citric acid (CA), resulting in the six novel solid forms 1BER-1LTA-1W, 1BER-1DTA-1W, 1BER-1DLTA and 2BER-2CA as well as two rare multi-stoichiometric solid forms 1BER-1MA and 1BER-2MA-2W. The preparation of the multi-stoichiometric products was greatly influenced by both the crystallization solvent type and the molar ratio of reactants. The structures of these multi-component solid forms were determined using single-crystal X-ray diffraction and further characterized by powder X-ray diffraction, thermal analysis and Fourier transform infrared spectroscopy. Stability experiments showed that all samples prepared had superior physical stability under high temperature and high humidity. Furthermore, dissolution experiments demonstrated that the maximum apparent solubilities (MAS) of all the products were significantly improved compared with the commercial form of BER in dilute hydrochloric solution (pH = 1.2). In particular, the MAS of 1BER-1MA in dilute hydrochloric solution is as high as 34 times that of the commercial form. In addition, it is preliminarily confirmed that the MAS of the samples prepared in pure water and dilute hydrochloric solution is primarily influenced by a combination of factors including the packing index, intermolecular interactions, affinity of the counter-ion to the solvent, the molar ratio of the drug to counter-ion in the product and the common ion effect. These novel solids are potential candidates for BER solid forms with improved oral dosage design and may prompt further development.


Subject(s)
Berberine , Tartrates/chemistry , Solvents , Powders/chemistry
11.
Sci Rep ; 11(1): 18488, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531507

ABSTRACT

Low-temperature plasma is being widely used in the various fields of life science, such as medicine and agriculture. Plasma-activated solutions have been proposed as potential cancer therapeutic reagents. We previously reported that plasma-activated Ringer's lactate solution exhibited selective cancer-killing effects, and that the plasma-treated L-sodium lactate in the solution was an anti-tumor factor; however, the components that are generated through the interactions between plasma and L-sodium lactate and the components responsible for the selective killing of cancer cells remain unidentified. In this study, we quantified several major chemical products, such as pyruvate, formate, and acetate, in plasma-activated L-sodium lactate solution by nuclear magnetic resonance analysis. We further identified novel chemical products, such as glyoxylate and 2,3-dimethyltartrate, in the solution by direct infusion-electrospray ionization with tandem mass spectrometry analysis. We found that 2,3-dimethyltartrate exhibited cytotoxic effects in glioblastoma cells, but not in normal astrocytes. These findings shed light on the identities of the components that are responsible for the selective cytotoxic effect of plasma-activated solutions on cancer cells, and provide useful data for the potential development of cancer treatments using plasma-activated L-sodium lactate solution.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Plasma Gases/chemistry , Sodium Lactate/chemistry , Tartrates/toxicity , Cell Death/drug effects , Cell Line, Tumor , Formates/chemistry , Glyoxylates/chemistry , Humans , Pyruvic Acid/chemistry , Tartrates/chemistry
12.
Anal Bioanal Chem ; 413(27): 6813-6821, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34491395

ABSTRACT

Nano-magnetite with superparamagnetism could be coated by some organic compounds or by nano Au or Pt via surface modifications with multi-step reactions for the applications of isolating histidine-tagged (His-tagged) proteins. Introducing active sites of binding histidine onto the surface of nano-magnetite was the ultimate task. However, multi-step treatments might result in departure of the coatings from the surface of the nano-magnetite, which led to loss of active sites. In this work, we reported a convenient and efficient way of treating nano-magnetites and applied them in isolating His-tagged proteins. Carboxylates were introduced on the surface of home-made nano-magnetite directly via ultrasonic mixing with sodium bitartrate rather than complicated surface modifications, which was proved by thermogravimetric analyses. Ni2+ was, therefore, caught by the carboxylates of the coating via the coordinate interaction, demonstrated by X-ray photoelectron spectra. The coated magnetic nanoparticles with the bonded Ni2+ were successfully employed to selectively bind and separate recombinant His-tagged proteins directly from the mixture of Escherichia coli cell lysate, and showed wonderful affinity for His-tagged proteins with the saturated adsorption amount being 556 mg g-1. Additionally, such functionalized nano-magnetite manifested the excellent recyclability in isolating His-tagged proteins.


Subject(s)
Escherichia coli/genetics , Magnetite Nanoparticles/chemistry , Nickel/chemistry , Recombinant Proteins/isolation & purification , Carbonic Anhydrase II/genetics , Carbonic Anhydrase II/isolation & purification , Carbonic Anhydrase II/metabolism , Histidine/genetics , Microscopy, Electron, Transmission , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/isolation & purification , Photoelectron Spectroscopy , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tartrates/chemistry , Thermogravimetry
13.
Carbohydr Polym ; 270: 118328, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364591

ABSTRACT

Here, biomimetic dual esterification strategy was proposed on natural polysaccharides cellulose nanocrystals (CNCs) and galactomannan (GM) in combination with tartaric acid (TA) and benzoic anhydride (BA) respectively. Evaporation-induced self-assembly (EISA) formed the oriented quasinematic structure of the nanocomposites membranes. The CNCs crystallites were modified by TA and intercalated by amorphous polysaccharides, building a complex supramolecular network. Thus, it presents excellent light scattering property with the optical haze of ~90%, which was rarely reported previously. TA and BA simultaneously contributed to satisfying UV adsorption capability for the membranes, showing almost whole-spectra UVA/UVB blocking. Super high mechanical strength (>150 MPa) and toughness (~8 kJ/m3) were revealed by the membranes with high addition amount of BA, together with the efficient antibacterial capability on both Gram-positive and negative bacteria. The diverse optical, mechanical and biological functions displayed by the polysaccharides membranes, propose new horizons on application for packaging, optoelectronic and biomonitoring sensors.


Subject(s)
Anti-Bacterial Agents/chemistry , Benzoates/chemistry , Cellulose/chemistry , Galactose/analogs & derivatives , Mannans/chemistry , Nanoparticles/chemistry , Tartrates/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Benzoates/pharmacology , Biocompatible Materials/chemistry , Esterification , Galactose/chemistry , Galactose/pharmacology , Mannans/pharmacology , Nanocomposites/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Tartrates/pharmacology , Tensile Strength , Ultraviolet Rays
14.
Chem Rec ; 21(8): 1957-1967, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34212498

ABSTRACT

"Chiral pool" compounds possessing well defined stereocenters and suitable functionality serve as excellent building blocks for the synthesis of natural products and therapeutically important compounds. Tartaric acid is a C2 -symmetric molecule available in both enantiomeric forms. It was extensively utilized in the synthesis of privileged chiral ligands/catalysts such as TADDOLs, and as a start point in the synthesis of plethora of compounds. The advent of several new C-C bond forming reactions offers opportunity for the development of novel synthetic strategies based on chiral pool compounds. We found that the desymmetrization of the bis-dimethyl amide/Weinreb amide derived from tartaric acid can be accomplished by controlled addition of Grignard /organolithium reagents leading to the mono keto amides, the reduction of which affords the γ-hydroxy amides. This account describes our research efforts of more than a decade on the synthesis and application of diverse γ-hydroxy amides derived from tartaric acid in the total synthesis of structurally simple to complex bio-active natural products.


Subject(s)
Amides/chemistry , Biological Products/chemical synthesis , Tartrates/chemistry , Biological Products/chemistry , Catalysis , Lactones/chemical synthesis , Lactones/chemistry , Ligands , Pyrones/chemical synthesis , Pyrones/chemistry , Stereoisomerism
15.
Molecules ; 26(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066468

ABSTRACT

NR+ is a highly effective vitamin B3 type supplement due to its unique ability to replenish NAD+ levels. While NR+ chloride is already on the market as a nutritional supplement, its synthesis is challenging, expensive, and low yielding, making it cumbersome for large-scale industrial production. Here we report the novel crystalline NR+ salts, d/l/dl-hydrogen tartrate and d/l/dl-hydrogen malate. Their high-yielding, one-pot manufacture does not require specific equipment and is suitable for multi-ton scale production. These new NR+ salts seem ideal for nutritional applications due to their bio-equivalence compared to the approved NR+ chloride. In addition, the crystal structures of all stereoisomers of NR+ hydrogen tartrate and NR+ hydrogen malate and a comparison to the known NR+ halogenides are presented.


Subject(s)
Food Additives/chemistry , Food Technology/methods , Niacinamide/analogs & derivatives , Niacinamide/chemistry , Pyridinium Compounds/chemistry , Anions , Chemistry Techniques, Synthetic , Chlorides , Crystallization , Dietary Supplements , Hydrogen/chemistry , Magnetic Resonance Spectroscopy , Malates/chemistry , Oxidation-Reduction , Salts , Stereoisomerism , Tartrates/chemistry , X-Ray Diffraction
16.
J Med Chem ; 64(13): 9550-9566, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34137625

ABSTRACT

Preclinical and clinical data reveal that inflammation is strongly correlated with the pathogenesis of a number of diseases including those of cancer, Alzheimer, and diabetes. The inflammatory cascade involves a multitude of cytokines ending ultimately with the activation of COX-2/LOX for the production of prostaglandins and leukotrienes. While the available inhibitors for these enzymes suffer from nonoptimal selectivity, in particular for COX-2, we present here the results of purposely designed tartarate derivatives that exhibit favorable selectivity and significant effectiveness against COX-2 and LOX. Integrated approaches of molecular simulation, organic synthesis, and biochemical/physical experiments identified 15 inhibiting COX-2 and LOX with respective IC50 4 and 7 nM. At a dose of 5 mg kg-1 to Swiss albino mice, 15 reversed algesia by 65% and inflammation by 33% in 2-3 h. We find good agreement between experiments and simulations and use the simulations to rationalize our observations.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Design , Edema/drug therapy , Lipoxygenase Inhibitors/pharmacology , Tartrates/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Edema/chemically induced , Female , Humans , Lipoxygenase/metabolism , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Male , Mice , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Tartrates/chemical synthesis , Tartrates/chemistry
17.
Food Chem ; 360: 129996, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34010762

ABSTRACT

In this work, the effect of carboxymethylcellulose structural features on the efficiency to prevent potassium hydrogen tartrate precipitation in red wines and on the phenolic composition, chromatic characteristics and colouring matter stability was studied. The degree of substitution of carboxymethylcellulose was important for its efficiency in highly unstable wines. Application of carboxymethylcellulose doesn't result in a significant change in the phenolic, monomeric anthocyanin composition, colour intensity, and chromatic characteristics of red wines. Sensory analysis also showed that carboxymethylcellulose doesn't have a significant impact on wine sensory attributes. Carboxymethylcellulose doesn't decrease the colouring matter stability. The use of turbidity for evaluating the colouring matter stability of wines has severe drawbacks as the turbidity value measured might not be related to the amount of suspended material. Therefore, the application of carboxymethylcellulose in red wines is efficient in increasing tartaric stability without impacting on the phenolic composition, sensory characteristics, and colouring matter stability.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Phenols/chemistry , Tartrates/chemistry , Wine/analysis , Color , Nephelometry and Turbidimetry , Phenols/analysis , Vitis/chemistry , Vitis/metabolism
18.
Eur J Pharm Biopharm ; 165: 174-184, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34015471

ABSTRACT

The development of Fe-coordination polymer-based nanoparticles, with safe and high anti-tumor effects, for the treatment of tumor is facing challenges such as limited resources and poor targeting. In this study, we prepared Fe-polyhydroxy coordination polymer nanoparticles (TA-Fe@MNPs), based on tartaric acid (TA)-Fe(III) coordination polymer as the new photothermal agent, mannose (M) as the target, and bovine serum albumin (BSA) and polyethyleneimine (PEI) as the carrier materials, and investigated them for targeting the multifunctional therapy of tumors. The TA-Fe@MNPs synthesized via a simple coordination of Fe3+ with TA, bovine serum albumin, and polyethyleneimine under ambient conditions exhibited an appropriate size (~125 nm), electrically neutral surfaces, good biocompatibility, and low normal cell toxicity. The TA-Fe@MNPs are the first to exhibit a remarkable photothermal performance. They also showed a pH-sensitive Fenton-like response that was further enhanced via glutathione response. Interestingly, after a single injection, the TA-Fe@MNPs could be retained at the tumor site for 36 h with an effective photothermal dose, which was attributed to the reduced protein adsorption and slow elimination in tumor cells with the aid of M modification and carrier materials, while that for the TA-Fe@NPs did so for only 2 h. Tumor ablation was demonstrated by in vivo photothermal and chemokinetic therapy using TA-Fe@MNPs, and their safety was evident from the weight changes and blood parameters. These results indicated that the TA-Fe@MNPs, as new photothermal and CDT agents, have the potential to be used in clinical tumor therapy nanoplatforms.


Subject(s)
Coordination Complexes/administration & dosage , Drug Carriers/chemistry , Neoplasms/drug therapy , Photosensitizing Agents/administration & dosage , Animals , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/pharmacokinetics , Disease Models, Animal , Drug Screening Assays, Antitumor , Female , Ferric Compounds/chemistry , Humans , Hydrogen-Ion Concentration , Male , Mice , Nanoparticles/chemistry , Neoplasms/pathology , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Photothermal Therapy/methods , Polyethyleneimine/chemistry , Rats , Serum Albumin, Bovine/chemistry , Tartrates/chemistry , Theranostic Nanomedicine/methods , Tissue Distribution
19.
Drug Deliv ; 28(1): 894-905, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33960251

ABSTRACT

The aim of this study was to build up a novel chiral mesoporous silica called PEIs@TA-CMS through a facile biomimetic strategy and to explore its potential to serve as a drug carrier for improving the delivery efficiency of poorly water-soluble drug. PEIs@TA-CMS was synthesized by using a chiral crystalline complex associated of tartaric acid and polyethyleneimine (PEIs) as templates, scaffolds and catalysts. The structural features including morphology, size, pore structure and texture properties were systematacially studied. The results showed that PEIs@TA-CMS was monodispersed spherical nanoparticles in a uniformed diameter of 120-130 nm with well-developed pore structure (SBET: 1009.94 m2/g, pore size <2.21 nm). Then PEIs@TA-CMS was employed as nimodipine (NMP) carrier and compared with the drug carry ability of MCM41. After drug loading, NMP was effectively transformed from the crystalline state to an amorphous state due to the space confinement in mesopores. As expected, PEIs@TA-CMS had superiority in both drug loading and drug release compared to MCM41. It could incorporate NMP with high efficiency, and the dissolution-promoting effect of PEIs@TA-CMS was more obvious because of the unique interconnected curved pore channels. Meanwhile, PEIs@TA-CMS could significantly improve the oral adsorption of NMP to a satisfactory level, which showed approximately 3.26-fold higher in bioavailability, and could effectively prolong the survival time of mice on cerebral anoxia from 10.98 to 17.33 min.


Subject(s)
Nanoparticles/chemistry , Nimodipine/pharmacokinetics , Polyethyleneimine/chemistry , Silicon Dioxide/chemistry , Tartrates/chemistry , Administration, Oral , Animals , Chemistry, Pharmaceutical , Drug Carriers/chemistry , Drug Liberation , Male , Nimodipine/administration & dosage , Particle Size , Rats , Rats, Sprague-Dawley , Solubility , Surface Properties
20.
Int J Biol Macromol ; 177: 294-305, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33607141

ABSTRACT

Lignocellulosic biomass is a renewable and sustainable feedstock, mainly composed of cellulose, hemicellulose, and lignin. Lignin, as the most abundant natural aromatic polymer occurring on Earth, has great potential to produce value-added products. However, the isolation of highly pure lignin from biomass requires the use of efficient methods during lignocellulose fractionation. Therefore, in this work, novel acidic deep eutectic solvents (DESs) were prepared, characterized and screened for lignin extraction from maritime pine wood (Pinus pinaster Ait.) sawdust. The use of cosolvents and the development of new DES were also evaluated regarding their extraction and selectivity performance. The results show that an 1 h extraction process at 175 °C, using a novel DES composed of lactic acid, tartaric acid and choline chloride, named Lact:Tart:ChCl, in a molar ratio of 4:1:1, allows the recovery of 95 wt% of the total lignin present in pine biomass with a purity of 89 wt%. Such superior extraction of lignin with remarkable purity using a "green" solvent system makes this process highly appealing for future large-scale applications.


Subject(s)
Choline/chemistry , Lactic Acid/chemistry , Lignin/isolation & purification , Pinus/chemistry , Tartrates/chemistry , Wood/chemistry , Lignin/chemistry , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL