Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Mol Ther ; 32(4): 1080-1095, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38310353

ABSTRACT

Abnormal tau accumulation is the hallmark of several neurodegenerative diseases, named tauopathies. Strategies aimed at reducing tau in the brain are promising therapeutic interventions, yet more precise therapies would require targeting specific nuclei and neuronal subpopulations affected by disease while avoiding global reduction of physiological tau. Here, we developed artificial microRNAs directed against the human MAPT mRNA to dwindle tau protein by engaging the endogenous RNA interference pathway. In human differentiated neurons in culture, microRNA-mediated tau reduction diminished neuronal firing without affecting neuronal morphology or impairing axonal transport. In the htau mouse model of tauopathy, we locally expressed artificial microRNAs in the prefrontal cortex (PFC), an area particularly vulnerable to initiating tau pathology in this model. Tau knockdown prevented the accumulation of insoluble and hyperphosphorylated tau, modulated firing activity of putative pyramidal neurons, and improved glucose uptake in the PFC. Moreover, such tau reduction prevented cognitive decline in aged htau mice. Our results suggest target engagement of designed tau-microRNAs to effectively reduce tau pathology, providing a proof of concept for a potential therapeutic approach based on local tau knockdown to rescue tauopathy-related phenotypes.


Subject(s)
MicroRNAs , Tauopathies , Mice , Humans , Animals , Aged , tau Proteins/genetics , tau Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Tauopathies/genetics , Tauopathies/therapy , Tauopathies/metabolism , Neurons/metabolism , Phenotype , Mice, Transgenic , Disease Models, Animal
2.
ACS Chem Neurosci ; 15(4): 699-715, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38305187

ABSTRACT

Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity. In the broad universe of neurodegenerative diseases, tauopathies comprise the most prevalent, with Alzheimer's disease as its main representative. This review highlights the use of AFM as a suitable research technique for the study of cellular damages in tauopathies, even in early stages, allowing elucidation of pathogenic mechanisms of these diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Tauopathies , Humans , Microscopy, Atomic Force/methods , Tauopathies/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism
3.
Mov Disord Clin Pract ; 11(3): 238-247, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38155526

ABSTRACT

BACKGROUND: Corticobasal syndrome (CBS) is associated with diverse underlying pathologies, including the four-repeat (4R)-tauopathies. The Movement Disorders Society (MDS) criteria for progressive supranuclear palsy (PSP) proposed the novel category "probable 4R-tauopathy" to address the phenotypic overlap between PSP and corticobasal degeneration (CBD). OBJECTIVES: To investigate the clinical ability of the MDS-PSP criteria for probable 4R-tauopathy in predicting a negative amyloid-PET in CBS. Additionally, this study aims to explore CBS patients classified as 4R-tauopathy concerning their clinical features and neuroimaging degeneration patterns. METHODS: Thirty-two patients with probable CBS were prospectively evaluated and split into those who fulfilled or did not fulfill the 4R-tauopathy criteria (CBS-4RT+ vs. CBS-4RT-). All patients underwent positron emission tomographies (PET) with [18 F]fluorodeoxyglucose and [11 C]Pittsburgh Compound-B (PIB) on a hybrid PET-MRI scanner to perform multimodal quantitative comparisons with a control group. RESULTS: Eleven patients were clinically classified as CBS-4RT+, and only one had a positive PIB-PET. The CBS-4RT+ classification had 92% specificity, 52% sensitivity, and 69% accuracy in predicting a negative PIB-PET. The CBS-4RT+ group presented with dysarthria and perseveration more often than the CBS-4RT- group. Moreover, the CBS-4RT+ group showed a prominent frontal hypometabolism extending to the supplementary motor area and striatum, and brain atrophy at the anterior cingulate and bilateral striata. CONCLUSIONS: The 4R-tauopathy criteria were highly specific in predicting a negative amyloid-PET in CBS. Patients classified as 4R-tauopathy presented distinct clinical aspects, as well as brain metabolism and atrophy patterns previously associated with tauopathies.


Subject(s)
Corticobasal Degeneration , Tauopathies , Humans , Fluorodeoxyglucose F18/metabolism , Tauopathies/metabolism , Brain/diagnostic imaging , Magnetic Resonance Imaging , Atrophy/metabolism
4.
PLoS One ; 17(4): e0266405, 2022.
Article in English | MEDLINE | ID: mdl-35421130

ABSTRACT

A comprehensive understanding of the pathological mechanisms involved at different stages of neurodegenerative diseases is key for the advance of preventive and disease-modifying treatments. Gene expression alterations in the diseased brain is a potential source of information about biological processes affected by pathology. In this work, we performed a systematic comparison of gene expression alterations in the brains of human patients diagnosed with Alzheimer's disease (AD) or Progressive Supranuclear Palsy (PSP) and animal models of amyloidopathy and tauopathy. Using a systems biology approach to uncover biological processes associated with gene expression alterations, we could pinpoint processes more strongly associated with tauopathy/PSP and amyloidopathy/AD. We show that gene expression alterations related to immune-inflammatory responses preponderate in younger, whereas those associated to synaptic transmission are mainly observed in older AD patients. In PSP, however, changes associated with immune-inflammatory responses and synaptic transmission overlap. These two different patterns observed in AD and PSP brains are fairly recapitulated in animal models of amyloidopathy and tauopathy, respectively. Moreover, in AD, but not PSP or animal models, gene expression alterations related to RNA splicing are highly prevalent, whereas those associated with myelination are enriched both in AD and PSP, but not in animal models. Finally, we identify 12 AD and 4 PSP genetic risk factors in cell-type specific co-expression modules, thus contributing to unveil the possible role of these genes to pathogenesis. Altogether, this work contributes to unravel the potential biological processes affected by amyloid versus tau pathology and how they could contribute to the pathogenesis of AD and PSP.


Subject(s)
Alzheimer Disease , Supranuclear Palsy, Progressive , Tauopathies , Aged , Alzheimer Disease/metabolism , Brain/metabolism , Humans , Supranuclear Palsy, Progressive/metabolism , Tauopathies/metabolism , tau Proteins/genetics , tau Proteins/metabolism
5.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205516

ABSTRACT

Neurodegenerative disorders, including Tauopathies that involve tau protein, base their pathological mechanism on forming proteinaceous aggregates, which has a deleterious effect on cells triggering an inflammatory response. Moreover, tau inhibitors can exert their mechanism of action through noncovalent and covalent interactions. Thus, Michael's addition appears as a feasible type of interaction involving an α, ß unsaturated carbonyl moiety to avoid pathological confirmation and further cytotoxicity. Moreover, we isolated three compounds from Antarctic lichens Cladonia cariosa and Himantormia lugubris: protolichesterinic acid (1), fumarprotocetraric acid (2), and lichesterinic acid (3). The maleimide cysteine labeling assay showed that compounds 1, 2, and 3 inhibit at 50 µM, but compounds 2 and 3 are statistically significant. Based on its inhibition capacity, we decided to test compound 2 further. Thus, our results suggest that compound 2 remodel soluble oligomers and diminish ß sheet content, as demonstrated through ThT experiments. Hence, we added externally treated oligomers with compound 2 to demonstrate that they are harmless in cell culture. First, the morphology of cells in the presence of aggregates does not suffer evident changes compared to the control. Additionally, the externally added aggregates do not provoke a substantial LDH release compared to the control, indicating that treated oligomers do not provoke membrane damage in cell culture compared with aggregates alone. Thus, in the present work, we demonstrated that Michael's acceptors found in lichens could serve as a scaffold to explore different mechanisms of action to turn tau aggregates into harmless species.


Subject(s)
Fumarates/pharmacology , Protein Aggregates/drug effects , tau Proteins/antagonists & inhibitors , tau Proteins/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Antarctic Regions , Ascomycota/metabolism , Cell Line, Tumor , Humans , Lichens/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Parmeliaceae/metabolism , Tauopathies/drug therapy , Tauopathies/metabolism
6.
Brain ; 144(8): 2302-2309, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34059893

ABSTRACT

Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein tau (MAPT), which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in MAPT pre-mRNA produces equal amounts of protein isoforms with either three (3R) or four (4R) microtubule binding domains. Imbalance in the 3R:4R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration. Yet, the development of effective therapies for those pathologies is an unmet goal. Here we report motor coordination impairments in the htau mouse model of tauopathy which harbour abnormal 3R:4R tau isoforms content, and in contrast to TauKO mice, are unresponsive to l-DOPA. Preclinical-PET imaging, array tomography and electrophysiological analyses indicated the dorsal striatum as the candidate structure mediating such phenotypes. Indeed, local modulation of tau isoforms by RNA trans-splicing in the striata of adult htau mice, prevented motor coordination deficits and restored basal neuronal firing. Together, these results suggest that abnormal striatal tau isoform content might lead to parkinsonian-like phenotypes and demonstrate a proof of concept that modulation of tau mis-splicing is a plausible disease-modifying therapy for some primary tauopathies.


Subject(s)
Corpus Striatum/metabolism , Motor Disorders/metabolism , Motor Skills/physiology , Tauopathies/metabolism , tau Proteins/metabolism , Alternative Splicing , Animals , Corpus Striatum/physiopathology , Disease Models, Animal , Male , Mice , Mice, Transgenic , Motor Disorders/genetics , Motor Disorders/physiopathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Tauopathies/genetics , Tauopathies/physiopathology , tau Proteins/genetics
7.
Sci Rep ; 11(1): 4448, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627790

ABSTRACT

Brain aging is a natural process characterized by cognitive decline and memory loss. This impairment is related to mitochondrial dysfunction and has recently been linked to the accumulation of abnormal proteins in the hippocampus. Age-related mitochondrial dysfunction could be induced by modified forms of tau. Here, we demonstrated that phosphorylated tau at Ser 396/404 sites, epitope known as PHF-1, is increased in the hippocampus of aged mice at the same time that oxidative damage and mitochondrial dysfunction are observed. Most importantly, we showed that tau PHF-1 is located in hippocampal mitochondria and accumulates in the mitochondria of old mice. Finally, since two mitochondrial populations were found in neurons, we evaluated tau PHF-1 levels in both non-synaptic and synaptic mitochondria. Interestingly, our results revealed that tau PHF-1 accumulates primarily in synaptic mitochondria during aging, and immunogold electron microscopy and Proteinase K protection assays demonstrated that tau PHF-1 is located inside mitochondria. These results demonstrated the presence of phosphorylated tau at PHF-1 commonly related to tauopathy, inside the mitochondria from the hippocampus of healthy aged mice for the first time. Thus, this study strongly suggests that synaptic mitochondria could be damaged by tau PHF-1 accumulation inside this organelle, which in turn could result in synaptic mitochondrial dysfunction, contributing to synaptic failure and memory loss at an advanced age.


Subject(s)
Aging/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Phosphorylation/physiology , Serine/metabolism , tau Proteins/metabolism , Animals , Cognitive Dysfunction/metabolism , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Tauopathies/metabolism
8.
J Alzheimers Dis ; 68(2): 439-458, 2019.
Article in English | MEDLINE | ID: mdl-30775999

ABSTRACT

The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.


Subject(s)
Brain/metabolism , Brain/pathology , Endoplasmic Reticulum Stress , Tauopathies/metabolism , Tauopathies/pathology , Animals , Brain/drug effects , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Humans , Tauopathies/drug therapy
9.
Cell Rep ; 23(3): 709-715, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-29669277

ABSTRACT

The microtubule-associated protein tau regulates myriad neuronal functions, such as microtubule dynamics, axonal transport and neurite outgrowth. Tauopathies are neurodegenerative disorders characterized by the abnormal metabolism of tau, which accumulates as insoluble neuronal deposits. The adult human brain contains equal amounts of tau isoforms with three (3R) or four (4R) repeats of microtubule-binding domains, derived from the alternative splicing of exon 10 (E10) in the tau transcript. Several tauopathies are associated with imbalances of tau isoforms, due to splicing deficits. Here, we used a trans-splicing strategy to shift the inclusion of E10 in a mouse model of tauopathy that produces abnormal excess of 3R tau. Modulating the 3R/4R ratio in the prefrontal cortex led to a significant reduction of pathological tau accumulation concomitant with improvement of neuronal firing and reduction of cognitive impairments. Our results suggest promising potential for the use of RNA reprogramming in human neurodegenerative diseases.


Subject(s)
Tauopathies/pathology , tau Proteins/metabolism , Alternative Splicing , Animals , Disease Models, Animal , Exons , Male , Mice , Prefrontal Cortex/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Tauopathies/metabolism , tau Proteins/genetics
10.
Int J Mol Sci ; 19(4)2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29570615

ABSTRACT

Progressive neurodegenerative pathologies in aged populations are an issue of major concern worldwide. The microtubule-associated protein tau is able to self-aggregate to form abnormal supramolecular structures that include small oligomers up to complex polymers. Tauopathies correspond to a group of diseases that share tau pathology as a common etiological agent. Since microglial cells play a preponderant role in innate immunity and are the main source of proinflammatory factors in the central nervous system (CNS), the alterations in the cross-talks between microglia and neuronal cells are the main focus of studies concerning the origins of tauopathies. According to evidence from a series of studies, these changes generate a feedback mechanism reactivating microglia and provoking constant cellular damage. Thus, the previously summarized mechanisms could explain the onset and progression of different tauopathies and their functional/behavioral effects, opening the window towards an understanding of the molecular basis of anomalous tau interactions. Despite clinical and pathological differences, increasing experimental evidence indicates an overlap between tauopathies and synucleinopathies, considering that neuroinflammatory events are involved and the existence of protein misfolding. Neurofibrillary tangles of pathological tau (NFT) and Lewy bodies appear to coexist in certain brain areas. Thus, the co-occurrence of synucleinopathies with tauopathies is evidenced by several investigations, in which NFT were found in the substantia nigra of patients with Parkinson's disease, suggesting that the pathologies share some common features at the level of neuroinflammatory events.


Subject(s)
Alzheimer Disease/metabolism , Tauopathies/metabolism , Animals , Humans , Nerve Degeneration , tau Proteins/metabolism
11.
Brain Pathol ; 28(2): 274-283, 2018 03.
Article in English | MEDLINE | ID: mdl-28019685

ABSTRACT

Tauopathies are a major group of neurodegenerative proteinopathies characterized by the accumulation of abnormal and hyperphosphorylated tau proteins in the brain. Tau pathology is characterized as 3R (repeat) or 4R predominant or mixed 3R and 4R type. Here we report three cases lacking mutations in the microtubule associated protein tau (MAPT) gene with unusual tau pathology. The age at onset and duration of illness, respectively, were 63 and 20 years (male), 67 and 5 years (female) and 72 and 20 years (female). The clinical presentation was compatible with a diagnosis of progressive supranuclear palsy (PSP) in two subjects and with cognitive decline in all three subjects. Common neuropathological features included neuronal loss in the hippocampus and dentate gyrus associated with spherical basophilic Pick body-like inclusions showing 4R tau immunoreactivity, which was supported by the detection of predominantly 4R tau species by Western blot examination. In addition, accumulation of tau immunoreactive argyrophilic astrocytes in the hippocampus and amygdala and oligodendroglial coiled bodies in the hippocampal white matter were observed. These morphologies appeared in combination with Alzheimer disease-related pathology and subcortical tau pathology compatible with PSP. Together with a single case report in the literature, our observations on these three cases expand the spectrum of previously described tauopathies. We suggest that this tauopathy variant with hippocampal 4R tau immunoreactive spherical inclusions might contribute to the cognitive deficits in the patients reported here. The precise definition of the clinicopathological relevance of these unusual tau pathologies merits further study.


Subject(s)
Hippocampus/metabolism , Hippocampus/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Tauopathies/metabolism , Tauopathies/pathology , Aged , Aged, 80 and over , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Fatal Outcome , Female , Humans , Male , Phenotype , Tauopathies/diagnosis , Tauopathies/genetics , tau Proteins/metabolism
12.
J Neurosci ; 37(1): 58-69, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28053030

ABSTRACT

Tau, as a microtubule (MT)-associated protein, participates in key neuronal functions such as the regulation of MT dynamics, axonal transport, and neurite outgrowth. Alternative splicing of exon 10 in the tau primary transcript gives rise to protein isoforms with three (3R) or four (4R) MT binding repeats. Although tau isoforms are balanced in the normal adult human brain, imbalances in 3R:4R ratio have been tightly associated with the pathogenesis of several neurodegenerative disorders, yet the underlying molecular mechanisms remain elusive. Several studies exploiting tau overexpression and/or mutations suggested that perturbations in tau metabolism impair axonal transport. Nevertheless, no physiological model has yet demonstrated the consequences of altering the endogenous relative content of tau isoforms over axonal transport regulation. Here, we addressed this issue using a trans-splicing strategy that allows modulating tau exon 10 inclusion/exclusion in differentiated human-derived neurons. Upon changes in 3R:4R tau relative content, neurons showed no morphological changes, but live imaging studies revealed that the dynamics of the amyloid precursor protein (APP) were significantly impaired. Single trajectory analyses of the moving vesicles showed that predominance of 3R tau favored the anterograde movement of APP vesicles, increasing anterograde run lengths and reducing retrograde runs and segmental velocities. Conversely, the imbalance toward the 4R isoform promoted a retrograde bias by a significant reduction of anterograde velocities. These findings suggest that changes in 3R:4R tau ratio has an impact on the regulation of axonal transport and specifically in APP dynamics, which might link tau isoform imbalances with APP abnormal metabolism in neurodegenerative processes. SIGNIFICANCE STATEMENT: The tau protein has a relevant role in the transport of cargos throughout neurons. Dysfunction in tau metabolism underlies several neurological disorders leading to dementia. In the adult human brain, two tau isoforms are found in equal amounts, whereas changes in such equilibrium have been associated with neurodegenerative diseases. We investigated the role of tau in human neurons in culture and found that perturbations in the endogenous balance of tau isoforms were sufficient to impair the transport of the Alzheimer's disease-related amyloid precursor protein (APP), although neuronal morphology was normal. Our results provide evidence of a direct relationship between tau isoform imbalance and defects in axonal transport, which induce an abnormal APP metabolism with important implications in neurodegeneration.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Axonal Transport/physiology , Neurons/metabolism , tau Proteins/metabolism , Animals , Cells, Cultured , Humans , Mice , Neurons/ultrastructure , Protein Isoforms , Tauopathies/metabolism
13.
Semin Immunopathol ; 35(3): 277-92, 2013 May.
Article in English | MEDLINE | ID: mdl-23609500

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by synaptic dysfunction and accumulation of amyloid-beta (Aß) peptide, which are responsible for the progressive loss of memory. The mechanisms involved in neuron dysfunction in AD remain poorly understood. Recent evidence implicates the participation of adaptive responses to stress within the endoplasmic reticulum (ER) in the disease process, via a pathway known as the unfolded protein response (UPR). Here, we review the findings suggesting a functional role of ER stress in the etiology of AD. Possible therapeutic strategies to mitigate ER stress in the context of AD are discussed.


Subject(s)
Alzheimer Disease/etiology , Unfolded Protein Response , Amyloid beta-Protein Precursor/metabolism , Animals , Endoplasmic Reticulum Stress , Humans , Neurons/metabolism , Presenilins/metabolism , Proteolysis , Signal Transduction , Tauopathies/metabolism , Tauopathies/physiopathology
14.
BMC Biol ; 10: 78, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22999309

ABSTRACT

Most neurodegenerative diseases involve the accumulation of misfolded proteins in the nervous system. Impairment of protein degradation pathways such as autophagy is emerging as a consistent and transversal pathological phenomenon in neurodegenerative diseases, including Alzheimer's, Huntington's, and Parkinson's disease. Genetic inactivation of autophagy in mice has demonstrated a key role of the pathway in maintaining protein homeostasis in the brain, triggering massive neuronal loss and the accumulation of abnormal protein inclusions. However, the mechanism underlying neurodegeneration due to autophagy impairment remains elusive. A paper in Molecular Neurodegeneration from Abeliovich's group now suggests a role for phosphorylation of Tau and the activation of glycogen synthase kinase 3ß (GSK3ß) in driving neurodegeneration in autophagy-deficient neurons. We discuss the implications of this study for understanding the factors driving neurofibrillary tangle formation in Alzheimer's disease and tauopathies.


Subject(s)
Autophagy/physiology , Extracellular Matrix Proteins/physiology , Nerve Tissue Proteins/physiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Animals , Humans , Mice
15.
Neuroreport ; 23(16): 942-6, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-22975846

ABSTRACT

Tauopathies are a family of neurodegenerative diseases that have the pathological hallmark of intraneuronal accumulation of filaments composed of hyperphosphorylated tau proteins that tend to aggregate in an ultrastructure known as neurofibrillary tangles. The identification of mutations on the tau gene in familial cases of tauopathies underscores the pathological role of the tau protein. However, the molecular process that underlines tau-mediated neurodegeneration is not understood. Here, a proteomics approach was used to identify proteins that may be affected during the course of tau-mediated neurodegeneration in the tauopathy mouse model JNPL3. The JNPL3 mice express human tau proteins bearing a P301L mutation, which mimics the neurodegenerative process observed in humans with tauopathy. The results showed that the protein amphiphysin-1 (AMPH1) is significantly reduced in terminally ill JNPL3 mice. Specifically, the AMPH1 protein level is reduced in brain regions known to accumulate aggregates of hyperphosphorylated tau proteins. The AMPH1 protein reduction was validated in Alzheimer's disease cases. Taken together, the results suggest that the reduction of the AMPH1 protein level is a molecular event associated with the progression of tau-mediated neurodegeneration.


Subject(s)
Nerve Tissue Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/physiology , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cell Aggregation/genetics , Humans , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Phosphorylation/genetics , Tauopathies/genetics , tau Proteins/metabolism
16.
Curr Alzheimer Res ; 8(6): 678-85, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21605038

ABSTRACT

The anomalous aggregation of proteins into pathological filaments is a common feature of a many human diseases, often related to aging. In this context, neurodegenerative pathologies such as Alzheimer's disease (AD) account for a major part of these protein misfolding diseases. AD is characterized by pathological aggregation of two proteins, tau and Aß-amyloid. The intracellular neurofibrillary tangles (NFTs) and neuropil threads consists of filaments of the modified microtubule-associated protein tau, while extracellular amyloid plaques consists of filaments of Aß-peptide. It is noteworthy that tau oligomers with a prefilamentous structure appear to play a role at early stages of AD and tauopathies, but also in asymptomatic patients with Braak-stage I neuropathology, where clinical symptoms of AD and NFTs in frontal cortex are absent. This suggests that an increase in tau oligomers levels occurs before individuals manifest clinical symptoms of AD. NFTs are one of the hallmarks of Alzheimer disease and other tauphaties. These aggregates are thought to be toxic to neurons, either by causing some neurotoxic signalling defects or by obstructing the cell function. Factors contributing to accumulation of tau aggregates include the increased rate of protein misfolding, generation of amyloidogenic oligomers, underactivity of repair systems such as chaperones and ubiquitin-proteasome system, or a failure of energy supply and antioxidant defense mechanisms. There is not clear evidence if the aggregated tau or oligomers cause cellular damage, but on the basis of the emergent need to have an early and effective treatment, lowering the production or removal of these aggregates appears as a pathway toward alleviating the disease. In the context of some of most relevant reports, we analyze why tau protein seems to be an interesting target for AD treatment, and the importance to understand the pathways of tau. aggregation. This knowledge will allow us to identify and optimize potential inhibitors that interact with aggregated forms of tau and hyperphosphorylated tau before the formation of the NFTs, offering a possible therapeutic route for AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Tauopathies/drug therapy , tau Proteins/metabolism , Alzheimer Disease/metabolism , Humans , Neurofibrillary Tangles/metabolism , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Tauopathies/metabolism
17.
Curr Alzheimer Res ; 8(6): 608-14, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21605046

ABSTRACT

Pathological tau protein aggregates can be found in brain of patients with some of the neurodegenerative diseases collectively known as tauopathies, which include Alzheimer's disease (AD). Since tau post-translational modifications including phosphorylations, glycosylations, truncation and the subsequent aggregation in oligomers, paired helical filaments (PHFs) and neurofibrillary tangles (NFTs), correlate with cognitive impairment and neurodegeneration in AD, a pathogenic role for tau and its modifications has been raised. Here we summarize the current status of knowledge about tau modifications under pathologic conditions and the evidence supporting neurotoxic - or neuroprotective - roles of the diverse forms of modified and aggregated tau. Finally, we analyze the structural and functional tau alterations found in different tauopathies and how these modifications are related to the pathophysiologic mechanisms of neurodegeneration.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Neurofibrillary Tangles/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Brain/pathology , Humans , Neurofibrillary Tangles/pathology , Tauopathies/metabolism , Tauopathies/pathology
18.
J Neurochem ; 106(1): 96-106, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18346207

ABSTRACT

Tauopathies are a group of neurological disorders characterized by the presence of intraneuronal hyperphosphorylated and filamentous tau. Mutations in the tau gene have been found in kindred with tauopathy. The expression of the human tau mutant in transgenic mice induced neurodegeneration, indicating that tau plays a central pathological role. However, the molecular mechanism leading to tau-mediated neurodegeneration is poorly understood. To gain insights into the role that tau plays in neurodegeneration, human tau proteins were immunoprecipitated from brain lysates of the tauopathy mouse model JNPL3, which develops neurodegeneration in age-dependent manner. In the present work, a novel EF-hand domain-containing protein was found associated with tau proteins in brain lysate of 12-month-old JNPL3 mice. The association between tau proteins and the novel identified protein appears to be induced by the neurodegeneration process as these two proteins were not found associated in young JNPL3 mice. Consistently, the novel protein co-purified with the pathological sarkosyl insoluble tau in terminally ill JNPL3 mice. Calcium-binding assays demonstrated that this protein binds calcium effectively. Finally, the association between tau and the novel calcium-binding protein is conserved in human and enriched in Alzheimer's disease brain. Taken together, the identification of a novel calcium-binding protein associated with tau protein in terminally ill tauopathy mouse model and its confirmation in human brain lysate suggests that this association may play an important physiological and/or pathological role.


Subject(s)
Brain/metabolism , Calcium-Binding Proteins/metabolism , Neurons/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Aging/metabolism , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amino Acid Sequence , Animals , Base Sequence , Brain/pathology , Brain/physiopathology , Calcium/metabolism , Calcium Signaling/physiology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/isolation & purification , Disease Models, Animal , EF Hand Motifs/physiology , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Neurons/pathology , Tauopathies/genetics , Tauopathies/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL