Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.354
Filter
1.
Sci Rep ; 14(1): 21234, 2024 09 11.
Article in English | MEDLINE | ID: mdl-39261620

ABSTRACT

In continuous powder handling processes, precise and consistent feeding is crucial for ensuring the quality of the final product. The intermixing effect caused by agitators, which alters the powder's bulk density, flow rate, and flow patterns, plays a significant role in this process, yet it is often overlooked. This study combines discrete element method (DEM) modeling and experiments using a commercial-scale feeder to propose a Digital Twin (DT) framework. The DEM model accurately captures key flow features, such as bypass trajectories, stagnant zones, and preferential flow patterns, while providing quantitative predictions for the feed factor and zones prone to material accumulation. Scenario analysis is performed to identify the most favorable operating ranges of the screw-agitator ratio and screw speed, considering the cohesive properties of the powder. The study demonstrates that powders with poor flow characteristics require tighter operational constraints, as the screw-agitator ratio is susceptible to variations in mass feed rate. This contribution highlights the importance of selecting an appropriate screw-agitator ratio instead of maintaining a fixed value. Properly choosing this ratio helps determine an optimal operation window, which aims to achieve a minimum agitation level needed to induce unhindered flow and reduce variability in the mass flow rate.


Subject(s)
Powders , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation , Models, Theoretical
2.
Int J Pharm ; 662: 124542, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39094919

ABSTRACT

This study investigates particle size segregation within the powder chamber of a vacuum drum-based capsule filling machine using various stirrer types and proposing novel designs to mitigate segregation. The stirrer is essential to the process, ensuring uniform density during volume-based filling. Three lactose grades, comprising 10% fine, 80% medium, and 10% coarse particles, were used, with tracer particles replacing fine or coarse particles, respectively. Dosages were collected over time for a line-array of five bores, and tracer concentrations were analysed using UV-Vis spectrophotometry. By visual assessments and stagnant zone observations particle segregation was evaluated and quantified by normalised tracer concentrations. Both standard and modified stirrers were examined under the same conditions. Stirrer type significantly influenced particle segregation, with the "spike" standard stirrer yielding the highest segregation, while the modified "3-wirem" and "coreless 3-wirem" stirrers exhibited superior performance, minimizing differences between fine and coarse particle concentrations and eliminating stagnant zones. These findings highlight promising prospects for further analysing the "3-wirem" and "coreless 3-wirem" stirrers. In that respect additional variables such as stirrer speed, rotation direction, and level of vacuum, need to be considered. Stirrer design significantly impacts vacuum drum-based capsule filling machine performance, ensuring reliable pharmaceutical capsule filling. This study offers insights into optimizing the industrial process.


Subject(s)
Capsules , Lactose , Particle Size , Powders , Vacuum , Lactose/chemistry , Powders/chemistry , Equipment Design , Drug Compounding/methods , Drug Compounding/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation , Excipients/chemistry
3.
PDA J Pharm Sci Technol ; 78(4): 512-513, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179394

ABSTRACT

STERIS and W.L. GORE collaborated on a case study testing the compatibility of a new prefilled syringe plunger design with VHP terminal sterilization. VHP chamber conditions require deep vacuum pulsing, which may represent challenges to prefilled syringe container integrity. The growing industry trend toward VHP sterilization is driven by the FDA search for alternative sterilization methods to EO and the recent publication of a VHP specific process standard. The purpose of the study is to test and report compatibility of the new 0.5 mL GORE IMPROJECT plunger, a silicone free syringe solution for ophthalmic application, with VHP sterilization. Various challenges have been reported when using conventional, siliconized, prefilled syringe systems for intravitreal injections such as subvisible particles, inflammation, silicone floaters, and intraocular pressure increases. The GORE plunger eliminates the need for silicone oil as a lubricant on the plunger and barrel, while meeting strict container closure and terminal sterilization requirements of ophthalmic applications. This case study presents successful results of deep vacuum VHP terminal sterilization process compatibility with the GORE plunger design and material composition. Test results include primary container integrity, stopper off-gassing/ingress, and visual inspection. Principles of VHP vacuum sterilization process, test cycle configuration, and its main parameters are presented.


Subject(s)
Hydrogen Peroxide , Sterilization , Syringes , Sterilization/methods , Syringes/standards , Hydrogen Peroxide/chemistry , Equipment Design , Vacuum , Volatilization , Drug Packaging/standards , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/standards , Silicone Oils/chemistry , Intravitreal Injections/instrumentation
4.
Pharm Dev Technol ; 29(7): 675-683, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38979559

ABSTRACT

Hot melt extrusion by a co-rotating twin screw extruder is an important process in the pharmaceutical industry. Especially for quality by design aspects, a comprehensive process understanding is indispensable. The performance of conveying elements was determined as critical process parameter, and therefore an experimental and numerical framework was developed to analyze and compare variations. A test rig capable of measuring volume flow, pressure and torque with high accuracy and precision was designed and built. The 3D simulation was performed using computational fluid dynamics (CFD). A stationary model with impulse transmission and an apparent motion of the screws was applied. The experimental data were fitted to the model of Pawlowski, and parameters for the pressure (A1, A2) and power characteristics (B1, B2) were determined. Good agreement between experimental data and the model was observed. The simulation was significantly faster compared to common methods, and the results were consistent with the literature. Systematic investigations of a native and worn screw were performed with CFD resulting in a transport capacity increase and a pressure build up decrease for all tested screw elements. An experimental and simulation setup was generated to assess the performance of co-rotating twin screw elements. The experiments provided high-quality data, and the simulations exhibited high flexibility with low computational effort.


Subject(s)
Hydrodynamics , Pressure , Computer Simulation , Drug Compounding/methods , Drug Compounding/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation , Equipment Design , Torque
5.
Int J Pharm ; 661: 124478, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39019300

ABSTRACT

Continuous manufacturing has the potential to offer several benefits for the production of oral solid dosage forms, including reduced costs, low-scale equipment, and the application of process analytical technology (PAT) for real-time process control. This study focuses on the implementation of a stream sampler to develop a near infrared (NIR) calibration model for blend uniformity monitoring in a continuous manufacturing mixing process. Feeding and mixing characterizations were performed for three loss-in-weight feeders and a commercial continuous mixer to prepare powder blends of 2.5-7.5 % w/w ibuprofen DC 85 W with a total throughput of 33 kg/h. The NIR spectral acquisition was performed after the mixing stage using a stream sampler for flowing powders. A continuous mixer shaft speed of 250 RPM was selected to operate the mixing process based on a variability analysis developed with in-line spectral data acquired using the stream sampler at 6 RPM. A partial least squares regression (PLS-R) model was performed and evaluated, yielding a root-mean-square error of prediction (RMSEP) of 0.39 % w/w and a bias of 0.05 % w/w. An independent experimental run conducted two days later revealed that the continuous mixing process and the NIR calibration model presented low day-to-day variation. The minimum practical error (MPE) and sill values through variographic analysis showed low variance associated with the sampling process using the stream sampler. Results demonstrated the promising capacity of the stream sampler coupled to an NIR probe to be implemented within continuous manufacturing processes for the real-time determination of API concentration.


Subject(s)
Drug Compounding , Ibuprofen , Powders , Spectroscopy, Near-Infrared , Technology, Pharmaceutical , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation , Drug Compounding/methods , Drug Compounding/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation , Ibuprofen/analysis , Ibuprofen/chemistry , Least-Squares Analysis , Calibration , Chemistry, Pharmaceutical/methods
6.
J Pharm Sci ; 113(7): 1898-1906, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369018

ABSTRACT

As lyophilization continues to be a critical step in the manufacturing of sensitive biopharmaceuticals, challenges often arise during the scale up to commercial scale or the transfer from one manufacturing site to another. While data from the small-scale development of the lyophilization cycle is abundant it is typically much more difficult to extract important information from commercial scale cycles, due to the lack of process analytical technologies available on the commercial line. There is often a reluctance to include wireless temperature or pressure probes during GMP operations due to the additional contamination risk, and retrofitting equipment such as the TDLAS can be prohibitively expensive. Further, as products become more advanced, the cost of consuming the product or even the availability of material may limit the opportunities to run commercial scale trials. This paper presents two novel methods to garner critical cycle information to allow for the evaluation of cycle performance without the need for expensive analytical equipment, costly revalidation and line downtime. Critically, this can be achieved using commonly available temperature and capacitance probes on existing commercial scale equipment. The first method is a calorimetric method, based on quantifying the differences in heat transfer liquid temperature between the shelf inlet and shelf outlet. This change in temperature results from the on-going sublimation, an endo-thermic reaction occurring during lyophilization. The second method uses the differential pressure between the chamber and condenser resulting from the vapor flow from vial to condenser during primary drying. As stated by the authors both methods align well and provide valuable cycle characterization data.


Subject(s)
Freeze Drying , Pressure , Temperature , Freeze Drying/methods , Freeze Drying/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/instrumentation , Cost-Benefit Analysis
7.
Sci Rep ; 14(1): 2927, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316908

ABSTRACT

Gemigliptin-Rosuvastatin single-pill combination is a promising therapeutic tool in the effective control of hyperglycemia and hypercholesterolemia. Organic sensors with high quantum yields have profoundly significant applications in the pharmaceutical industry, such as routine quality control of marketed formulations. Herein, the fluorescence sensor, 2-Morpholino-4,6-dimethyl nicotinonitrile 3, (λex; 226 nm, λem; 406 nm), was synthesized with a fluorescence quantum yield of 56.86% and fully characterized in our laboratory. This sensor showed high efficiency for the determination of Gemigliptin (GEM) and Rosuvastatin (RSV) traces through their stoichiometric interactions and simultaneously fractionated by selective solvation. The interaction between the stated analytes and sensor 3 was a quenching effect. Various experimental parameters and the turn-off mechanism were addressed. The adopted approach fulfilled the ICH validation criteria and showed linear satisfactory ranges, 0.2-2 and 0.1-1 µg/mL for GEM and RSV, respectively with nano-limits of detection less than 30 ng/mL for both analytes. The synthesized sensor has been successfully applied for GEM and RSV co-assessment in their synthetic polypill with excellent % recoveries of 98.83 ± 0.86 and 100.19 ± 0.64, respectively. No statistically significant difference between the results of the proposed and reported spectrophotometric methods in terms of the F- and t-tests. Ecological and whiteness appraisals of the proposed study were conducted via three novel approaches: the Greenness Index via Spider Diagram, the Analytical Greenness Metric, and the Red-Green-Blue 12 model. The aforementioned metrics proved the superiority of the adopted approach over the previously published one regarding eco-friendliness and sustainability. Our devised fluorimetric turn-off sensing method showed high sensitivity, selectivity, feasibility, and rapidity with minimal cost and environmental burden over other sophisticated techniques, making it reliable in quality control labs.


Subject(s)
Piperidones , Pyrimidines , Quality Control , Rosuvastatin Calcium , Spectrometry, Fluorescence , Technology, Pharmaceutical , Laboratories , Drug Combinations , Drug Industry/instrumentation , Drug Industry/methods , Drug Industry/standards , Drug Compounding/instrumentation , Drug Compounding/methods , Drug Compounding/standards , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/standards , Color , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Spectrometry, Fluorescence/standards , Dosage Forms
8.
Sci Rep ; 12(1): 12010, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835977

ABSTRACT

Monitoring product temperature during lyophilization is critical, especially during the process development stage, as the final product may be jeopardized if its process temperature exceeds a threshold value. Also, in-situ temperature monitoring of the product gives the capability of creating an optimized closed-loop lyophilization process. While conventional thermocouples can track product temperature, they are invasive, limited to a single-point measurement, and can significantly alter the freezing and drying behavior of the product in the monitored vial. This work has developed a new methodology that combines non-invasive temperature monitoring and comprehensive modeling. It allows the accurate reconstruction of the complete temperature profile of the product inside the vial during the lyophilization process. The proposed methodology is experimentally validated by combining the sensors' wirelessly collected data with the advanced multiphysics simulations. The flexible wireless multi-point temperature sensing probe is produced using micro-manufacturing techniques and attached outside the vial, allowing for accurate extraction of the product temperature.


Subject(s)
Desiccation , Technology, Pharmaceutical/methods , Desiccation/methods , Freeze Drying/methods , Freezing , Pharmaceutical Preparations , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/standards , Temperature , Thermometers/classification
9.
Eur J Pharm Biopharm ; 170: 144-159, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34785345

ABSTRACT

Increasing access to additive manufacturing technologies utilising easily available desktop devices opened novel ways for formulation of personalized medicines. It is, however, challenging to propose a flexible and robust formulation platform which can be used for fabrication of tailored solid dosage forms composed of APIs with different properties (e.g., hydrophobicity) without extensive optimization. This manuscript presents a strategy for formulation of fast dissolving tablets using binder jetting (BJ) technology. The approach is demonstrated using two model APIs: hydrophilic quinapril hydrochloride (QHCl, logP = 1.4) and hydrophobic clotrimazole (CLO, logP = 5.4). The proposed printing method uses inexpensive, well known, and easily available FDA approved pharmaceutical excipients. The obtained model tablets had uniform content of the drug, excellent mechanical properties, and highly porous structure resulting in short disintegration time and fast dissolution rate. The tablets could be scaled and obtained in predesigned shapes and sizes. The proposed method may find its application in the early stages of drug development where high flexibility of the formulation is required and the amount of available API is limited.


Subject(s)
Clotrimazole/chemistry , Printing, Three-Dimensional , Quinapril/chemistry , Tablets , Technology, Pharmaceutical/instrumentation , Drug Liberation , Excipients/chemistry , Hydrophobic and Hydrophilic Interactions
11.
Eur J Pharm Biopharm ; 169: 52-63, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34547415

ABSTRACT

Wireless sensor networks have become prolific in a wide range of industrial processes and offer several key advantages over their wired counterparts in terms of positioning flexibility, modularity, interconnectivity, and data routing. We demonstrate their utility in pharmaceutical lyophilization by developing a series of wireless devices to measure spatial variations in gas pressure and temperature during primary drying. The influence of shelf temperature, chamber pressure, excipient concentration, and dryer configuration are explored for various representative cycles using a laboratory-scale pharmaceutical lyophilizer. Pressure and temperature variations across the shelf for these cases are shown to vary up to 1.2 Pa and 10 °C, respectively. Experimental measurements are supported by computational fluid dynamics simulations to reveal the mechanisms driving the vapor flow. The measurements and simulation data are then combined to estimate the shelf-wise sublimation rate in the inverse sense to within a deviation of 3% based on comparison with gravimetric data. We then apply the sublimation rate profile to obtain the vial heat transfer coefficient and product mass transfer resistance for a 5% w/v mannitol formulation. Finally, these parameters are applied to a one-dimensional quasi-steady heat transfer model to predict the evolution of the product temperature over the course of primary drying. Thermocouple measurements of product temperature are compared directly to the simulated data and demonstrate accuracy comparable to existing published one-dimensional models.


Subject(s)
Computer Simulation , Freeze Drying , Technology, Pharmaceutical , Wireless Technology , Desiccation/instrumentation , Desiccation/methods , Dimensional Measurement Accuracy , Freeze Drying/instrumentation , Freeze Drying/methods , Humans , Hydrodynamics , Models, Spatial Interaction , Pressure , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/trends , Temperature
12.
AAPS PharmSciTech ; 22(4): 143, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33903988

ABSTRACT

The objective of this research was to assess the applicability of manometric temperature measurement (MTM) and SMART™ for cycle development and monitoring of critical product and process parameters in a mini-freeze dryer using a small set of seven vials. Freeze drying cycles were developed using SMART™ which automatically defines and adapts process parameters based on input data and MTM feedback information. The freeze drying behavior and product characteristics of an amorphous model system were studied at varying wall temperature control settings of the cylindrical wall surrounding the shelf in the mini-freeze dryer. Calculated product temperature profiles were similar for all different wall temperature settings during the MTM-SMART™ runs and in good agreement with the temperatures measured by thermocouples. Product resistance profiles showed uniformity in all of the runs conducted in the mini-freeze dryer, but absolute values were slightly lower compared to values determined by MTM in a LyoStar™ pilot-scale freeze dryer. The resulting cakes exhibited comparable residual moisture content and optical appearance to the products obtained in the larger freeze dryer. An increase in intra-vial heterogeneity was found for the pore morphology in the cycle with deactivated wall temperature control in the mini-freeze dryer. SMART™ cycle design and product attributes were reproducible and a minimum load of seven 10R vials was identified for more accurate MTM values. MTM-SMART™ runs suggested, that in case of the wall temperature following the product temperature of the center vial, product temperatures differ only slightly from those in the LyoStar™ freeze dryer.


Subject(s)
Freeze Drying/instrumentation , Manometry/methods , Technology, Pharmaceutical/instrumentation , Temperature
13.
Pharm Dev Technol ; 26(5): 559-575, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33722178

ABSTRACT

Loss-in-Weights (LiW) feeders are commonly oriented in a horizontal way. In this work, an experimental proof of concept, including mechanical and electrical design, construction, and operation, of a vertical LiW feeder prototype is performed. In a systematic design process, based on functional design specifications, the semi-automated vertical LiW feeder for dosing a wide range of powders, especially cohesive ones, is developed. The new dosing machine is assessed with regard to a number of key features such as high dosing accuracy, first-in-first-out powder discharge, easily interchange of the powder container, and flexibility in controlling the speed of the auger and stirrer motors independently. An experimental sensitivity analysis to study the functionality of the dosing machine and to investigate the weight variability of the weighing platform, i.e. mass flow rate, and quantity of dosed mass, is carried out. The results of the sensitivity analysis and the powder dosing tests of five diverse powders using different auger and stirrer geometries verified the proof of concept prototype.HighlightsA systematic design approach for validating a proof of concept of a vertical loss in weight feeder is appliedA full mechanical CAD design and implementation along with electric installation and software programming are executedSensitivity analysis approach is performed to validate the functionality of the semi-automated machine and successfully dispense dissimilar powders tested with different process parametersThe machine is characterized with a number of key features: first-in-first-out powder discharge, high dosing accuracy, flexible and modular concept design, flexibility in controlling the speed of the auger and the stirrer independently, lightweight and user-friendly design.


Subject(s)
Drug Compounding/methods , Excipients/chemistry , Technology, Pharmaceutical/methods , Drug Compounding/instrumentation , Equipment Design , Powders , Proof of Concept Study , Technology, Pharmaceutical/instrumentation
14.
Int J Pharm ; 595: 120069, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33421586

ABSTRACT

In pharmaceutical wet granulation, drying is a critical step in terms of energy and material consumption, whereas granule moisture content and size are important process outcomes that determine tabletting performance. The drying process is, however, very complex due to the multitude of interacting mechanisms on different scales. Building robust physical models of this process therefore requires detailed data. Current data collection methods only succeed in measuring the average moisture content of a size fraction of granules, whereas this property rather follows a distribution that, moreover, contains information on the drying patterns. Therefore, a measurement method is devised to simultaneously characterise the moisture content and size of individual pharmaceutical granules. A setup with near-infrared chemical imaging (NIR-CI) is used to capture an image of a number of granules, in which the absorbance spectra are used for deriving the moisture content of the material and the size of the granules is estimated based on the amount of pixels containing pharmaceutical material. The quantification of moisture content based on absorption spectra is performed with two different regression methods, Partial Least Squares regression (PLSR) and Elastic Net Regression (ENR). The method is validated with particle size data for size determination, loss-on-drying (LOD) data of average moisture contents of granule samples and, finally, batch fluid bed experiments in which the results are compared to the most detailed method to date. The individual granule moisture contents confirmed again that granule size is an important factor in the drying process. The measurement method can be used to gain more detailed experimental insight in different fluidisation and particulate processes, which will allow building of robust process models.


Subject(s)
Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods , Water/analysis , Calibration , Desiccation/methods , Least-Squares Analysis , Models, Chemical , Particle Size , Particulate Matter/chemistry , Powders/chemistry , Temperature
15.
Eur J Pharm Biopharm ; 159: 137-142, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33429008

ABSTRACT

Pharmaceutical continuous manufacturing is considered as an emerging technology by the regulatory agencies, which have defined a framework guided by an effective quality risk management. With the understanding of process dynamics and the appropriate control strategy, pharmaceutical continuous manufacturing is able to tackle the Quality-by-Design paradigm that paves the way to the future smart manufacturing described by Quality-by-Control. The introduction of soft sensors seems to be a helpful tool to reach smart manufacturing. In fact, soft sensors have the ability to keep the quality attributes of the final drug product as close as possible to their references set by regulatory agencies and to mitigate the undesired events by potentially discard out of specification products. Within this review, challenges related to implementing these technologies are discussed. Then, automation control strategies for pharmaceutical continuous manufacturing are presented and discussed: current control tools such as the proportional integral derivative controllers are compared to advanced control techniques like model predictive control, which holds promise to be an advanced automation concept for pharmaceutical continuous manufacturing. Finally, industrial applications of model predictive control in pharmaceutical continuous manufacturing are outlined. Simulations studies as well as real implementation on pharmaceutical plant are gathered from the control of one single operation unit such as the tablet press to the control of a full direct compaction line. Model predictive control is a key to enable the industrial revolution or Industry 4.0.


Subject(s)
Automation , Drug Industry/standards , Models, Theoretical , Quality Control , Technology, Pharmaceutical/standards , Drug Industry/methods , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/methods
16.
Curr Drug Discov Technol ; 18(3): 354-364, 2021.
Article in English | MEDLINE | ID: mdl-32164511

ABSTRACT

Most of the clinical approved protein-based drugs or under clinical trials have a profound impact on the treatment of critical diseases. The mammalian eukaryotic cells culture approaches, particularly the CHO (Chinese Hamster Ovary) cells are mainly used in the biopharmaceutical industry for the mass-production of the therapeutic protein. Recent advances in CHO cell bioprocessing to yield recombinant proteins and monoclonal antibodies have enabled the expression of quality protein. The developments of cell lines are possible to enhance specific productivity. As a result, it holds an interesting area for academic as well as industrial researchers around the world. This review will focus on the recent progress of the mammalian CHO cells culture technology and the future scope of further development for the mass-production of protein therapeutics.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Cell Culture Techniques/methods , Recombinant Proteins/isolation & purification , Technology, Pharmaceutical/methods , Animals , Antibodies, Monoclonal/therapeutic use , Bioreactors , CHO Cells , Cell Culture Techniques/instrumentation , Cricetulus , Humans , Recombinant Proteins/therapeutic use , Technology, Pharmaceutical/instrumentation
17.
Pharm Res ; 37(12): 255, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33319329

ABSTRACT

PURPOSE: Spray drying plays an important role in the pharmaceutical industry for product development of sensitive bio-pharmaceutical formulations. Process design, implementation and optimisation require in-depth knowledge of process-product interactions. Here, an integrated approach for the rapid, early-stage spray drying process development of trehalose and glucagon on lab-scale is presented. METHODS: Single droplet drying experiments were used to investigate the particle formation process. Process implementation was supported using in-line process analytical technology within a data acquisition framework recording temperature, humidity, pressure and feed rate. During process implementation, off-line product characterisation provided additional information on key product properties related to residual moisture, solid state structure, particle size/morphology and peptide fibrillation/degradation. RESULTS: A psychrometric process model allowed the identification of feasible operating conditions for spray drying trehalose, achieving high yields of up to 84.67%, and significantly reduced levels of residual moisture and particle agglomeration compared to product obtained during non-optimal drying. The process was further translated to produce powders of glucagon and glucagon-trehalose formulations with yields of >83.24%. Extensive peptide aggregation or degradation was not observed. CONCLUSIONS: The presented data-driven process development concept can be applied to address future isolation problems on lab-scale and facilitate a systematic implementation of spray drying for the manufacturing of sensitive bio-pharmaceutical formulations.


Subject(s)
Excipients/chemistry , Glucagon/isolation & purification , Technology, Pharmaceutical , Trehalose/chemistry , Drug Stability , Freeze Drying , Powders , Protein Aggregates , Protein Stability , Technology, Pharmaceutical/instrumentation
18.
Eur J Pharm Biopharm ; 157: 59-65, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33022389

ABSTRACT

The establishment of 3D-printing as manufacturing process for oral solid dosage forms enables new options for the individualized medicine. The aim of this work was to develop a novel drug-printing model using pressure-assisted microsyringe (PAM) technology, which allows the precise dispensing of drug substances. Printed tablets with different numbers of layers, mimicking different doses for pediatric subgroups, were analyzed regarding mass variation, friability, thickness and disintegration time. Furthermore, the uniformity of dosage units and the dissolution behavior were investigated. Friability was <0.3% in all cases, which demonstrates the ability of PAM printing to manufacture robust solid dosage. Disintegration results showed the dependency of the disintegration on the number of layers and therefore on the compact mass of polymer. However, all tablets disintegrated within 3 min and fulfilled the requirements of immediate release tablets of the USP and orodispersible tablets according to the Ph. Eur. Results of uniformity dosage units confirmed the successful manufacturing of the intended individualized doses. Drug dissolution appeared to be dependent on the number of layers. An increase of layers resulted in a decrease of the drug release rate. Further, the drug release could be correlated to the surface area/volume (SA/V) ratio.


Subject(s)
Anticonvulsants/chemistry , Levetiracetam/chemistry , Microtechnology/instrumentation , Printing, Three-Dimensional/instrumentation , Syringes , Technology, Pharmaceutical/instrumentation , Anticonvulsants/administration & dosage , Drug Liberation , Equipment Design , Levetiracetam/administration & dosage , Miniaturization , Pressure , Solubility , Tablets
19.
J Pharm Sci ; 109(12): 3678-3689, 2020 12.
Article in English | MEDLINE | ID: mdl-33007276

ABSTRACT

A multiscale model by coupling computational fluid dynamics (CFD) with a discrete element model (DEM) and discrete droplet model (DDM) is developed to simulate a lab-scale Wurster coater. Two case studies are conducted to study the effect of particle shape in the system. In the first case study, 45,000 spherical particles are coated for 5 s while for the second case study, a mixture of 22,500 spherical particles and 22,500 cylindrical particles is simulated. The residence time distributions (RTD) of particles in different spray zones are compared, and the best spray zone is derived by analysing the positions of spray droplet-particle contacts. The simulation results show that the RTD of the particles within an accurate spray zone can provide valuable information on the final product's particles size distribution. Furthermore, the coefficient of variation (COV) for the coating mass received by the particles is studied for both case studies.


Subject(s)
Drug Compounding/instrumentation , Hydrodynamics , Computer Simulation , Equipment Design , Models, Chemical , Particle Size , Powders , Technology, Pharmaceutical/instrumentation
20.
Pharm Res ; 37(11): 219, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33037471

ABSTRACT

PURPOSE: This study aims to understand the impact of spray drying nozzles on particle surface composition and aerosol stability. METHODS: The combination formulations of colistin and azithromycin were formulated by 2-fluid nozzle (2 N) or 3-fluid (3 N) spray drying in a molar ratio of 1:1. A 3-factor, 2-level (23) factorial design was selected to investigate effects of flow rate, inlet temperature and feed concentration on yield of spray drying and the performance of the spray dried formulations for the 3 N. RESULTS: FPF values for the 2 N formulation (72.9 ± 1.9% for azithromycin & 73.4 ± 0.8% for colistin) were higher than those for the 3 N formulation (56.5 ± 3.8% for azithromycin & 55.1 ± 1.6% for colistin) when stored at 20% RH for 1 day, which could be attributed to smaller physical size for the 2 N. There was no change in FPF for both drugs in the 2 N formulation after storage at 75% RH for 90 days; however, there was a slight increase in FPF for colistin in the 3 N formulation at the same storage conditions. Surface enrichment of hydrophobic azithromycin was measured by X-ray photoelectron spectroscopy for both 2 N and 3 N formulations and interactions were studied using FTIR. CONCLUSIONS: The 3-fluid nozzle provides flexibility in choosing different solvents and has the capability to spray dry at higher feed solid concentrations. This study highlights the impact of hydrophobic azithromycin enrichment on particle surface irrespective of the nozzle type, on the prevention of moisture-induced deterioration of FPF for hygroscopic colistin.


Subject(s)
Anti-Bacterial Agents/chemistry , Azithromycin/chemistry , Colistin/chemistry , Technology, Pharmaceutical/instrumentation , Administration, Inhalation , Aerosols , Anti-Bacterial Agents/administration & dosage , Azithromycin/administration & dosage , Colistin/administration & dosage , Drug Compounding , Drug Stability , Equipment Design , Humidity , Hydrophobic and Hydrophilic Interactions , Particle Size , Powders , Solubility , Solvents/chemistry , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL