Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.125
Filter
1.
Curr Genet ; 70(1): 13, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101952

ABSTRACT

Bacillus thuringiensis is the most widely used biopesticide, targets a diversity of insect pests belonging to several orders. However, information regarding the B. thuringiensis strains and toxins targeting Zeugodacus cucurbitae is very limited. Therefore, in the present study, we isolated and identified five indigenous B. thuringiensisstrains toxic to larvae of Z. cucurbitae. However, of five strains NBAIR BtPl displayed the highest mortality (LC50 = 37.3 µg/mL) than reference strain B. thuringiensis var. israelensis (4Q1) (LC50 = 45.41 µg/mL). Therefore, the NBAIR BtPl was considered for whole genome sequencing to identify the cry genes present in it. Whole genome sequencing of our strain revealed genome size of 6.87 Mb with 34.95% GC content. Homology search through the BLAST algorithm revealed that NBAIR BtPl is 99.8% similar to B. thuringiensis serovar tolworthi, and gene prediction through Prokka revealed 7406 genes, 7168 proteins, 5 rRNAs, and 66 tRNAs. BtToxin_Digger analysis of NBAIR BtPl genome revealed four cry gene families: cry1, cry2, cry8Aa1, and cry70Aa1. When tested for the presence of these four cry genes in other indigenous strains, results showed that cry70Aa1 was absent. Thus, the study provided a basis for predicting cry70Aa1 be the possible reason for toxicity. In this study apart from novel genes, we also identified other virulent genes encoding zwittermicin, chitinase, fengycin, and bacillibactin. Thus, the current study aids in predicting potential toxin-encoding genes responsible for toxicity to Z. cucurbitae and thus paves the way for the development of B. thuringiensis-based formulations and transgenic crops for management of dipteran pests.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Genome, Bacterial , Whole Genome Sequencing , Bacillus thuringiensis/genetics , Animals , Bacterial Proteins/genetics , Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Pest Control, Biological , Tephritidae/genetics , Tephritidae/microbiology , Hemolysin Proteins/genetics , Larva/genetics , Phylogeny
2.
Neotrop Entomol ; 53(4): 854-867, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38958916

ABSTRACT

The genus Anastrepha contains some of the most important fruit pests in the Americas. It comprises more than 300 species, of which 129 occur in Brazil. The genus is divided into 26 species groups, including the pseudoparallela group with 31 species, whose known host plants are primarily fruits of the genus Passiflora (Passifloraceae). Fourteen species are recorded in Brazil. Here, a new species of Anastrepha reared from fruits of Passiflora actinia Hook. and Passiflora elegans Mast. from southern Brazil is described and illustrated. In addition, a synopsis of the Brazilian species of the pseudoparallela group is provided.


Subject(s)
Tephritidae , Animals , Brazil , Tephritidae/classification , Male , Female , Passiflora/parasitology , Fruit/parasitology
3.
Sci Rep ; 14(1): 17521, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080311

ABSTRACT

Determining movement parameters for pest insects such as tephritid fruit flies is critical to developing models which can be used to increase the effectiveness of surveillance and control strategies. In this study, harmonic radar was used to track wild-caught male Queensland fruit flies (Qflies), Bactrocera tryoni, in papaya fields. Experiment 1 continuously tracked single flies which were prodded to induce movement. Qfly movements from this experiment showed greater mean squared displacement than predicted by both a simple random walk (RW) or a correlated random walk (CRW) model, suggesting that movement parameters derived from the entire data set do not adequately describe the movement of individual Qfly at all spatial scales or for all behavioral states. This conclusion is supported by both fractal and hidden Markov model (HMM) analysis. Lower fractal dimensions (straighter movement paths) were observed at larger spatial scales (> 2.5 m) suggesting that Qflies have qualitatively distinct movement at different scales. Further, a two-state HMM fit the observed movement data better than the CRW or RW models. Experiment 2 identified individual landing locations, twice a day, for groups of released Qflies, demonstrating that flies could be tracked over longer periods of time.


Subject(s)
Carica , Movement , Tephritidae , Animals , Tephritidae/physiology , Male , Movement/physiology , Radar
4.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39023176

ABSTRACT

Tephritis angustipennis (Diptera: Tephritidae) and Campiglossa loewiana (Diptera: Tephritidae) are phytophagous pests in China. Their damage has significantly impacted the collection and cultivation of germplasm resources of native Asteraceae plants. However, the genetic characteristics and structure of their population are unclear. This study focused on the highly damaging species of T. angustipennis and C. loewiana collected from the three-river source region (TRSR). We amplified the mitochondrial cytochrome C oxidase subunit I (mtCOI) gene sequences of these pests collected from this area and compared them with COI sequences from GenBank. We also analyzed their genetic diversity and structure. In T. angustipennis, 5 haplotypes were identified from 5 geographic locations; the genetic differentiation between France population FRPY (from Nylandia, Uusimaa) and China populations GLJZ (from Dehe Longwa Village, Maqin County), GLDR (from Zhique Village, Dari County), and GLMQ (from Rijin Village, Maqin County) was the strongest. GLJZ exhibited strong genetic differentiation from GLDR and GLMQ, with relatively low gene flow. For C. loewiana, 11 haplotypes were identified from 5 geographic locations; the genetic differentiation between the Chinese population GLMQ-YY (from Yangyu Forest Farm, Maqin County) and Finnish population FDNL (from Nylandia, Uusimaa) was the strongest, with relatively low gene flow, possibly due to geographical barriers in the Qinghai-Tibet plateau. Only 1 haplotype was identified across GLDR, GLMQ, and GLBM. High gene flow between distant locations indicates that human activities or wind dispersal may facilitate the dispersal of fruit flies and across different geographic. Geostatistical analysis suggested a recent population expansion of these 2 species in TRSR. Our findings provide technical references for identifying pests in the TRSR region and theoretical support for managing resistance, monitoring pest occurrences, analyzing environmental adaptability, and formulating biological control strategies for Tephritidae pests on Asteraceae plants.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Genetic Variation , Tephritidae , Animals , Tephritidae/genetics , China , Electron Transport Complex IV/genetics , Haplotypes , Phylogeny , Insect Proteins/genetics
5.
PLoS One ; 19(7): e0304472, 2024.
Article in English | MEDLINE | ID: mdl-39024335

ABSTRACT

Fruit flies of genus Bactrocera are important insect pests of commercially cultivated mangos in Pakistan limiting its successful production in the country. Despite the economic risk, the genetic diversity and population dynamics of this pest have remained unexplored. This study aimed to morphologically identify Bactrocera species infesting Mango in major production areas of the country and to confirm the results with insect DNA barcode techniques. Infested mango fruits from the crop of 2022, were collected from 46 locations of 11major production districts of Punjab and Sindh provinces, and first-generation flies were obtained in the laboratory. All 10,653 first generation flies were morphologically identified as two species of Bactrocera; dorsalis and zonata showing geography-based relative abundance in the two provinces; Punjab and Sindh. Morphological identification was confirmed by mitochondrial cytochrome oxidase gene subunit I (mt-COI) based DNA barcoding. Genetic analysis of mtCOI gene region of 61 selected specimens by the presence of two definite clusters and reliable intraspecific distances validated the results of morphological identification. This study by morphological identification of a large number of fruit fly specimens from the fields across Pakistan validated by insect DNA barcode reports two species of Bactrocera infesting mango in the country.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Genetic Variation , Mangifera , Tephritidae , Animals , Tephritidae/genetics , Tephritidae/classification , Pakistan , Mangifera/parasitology , Mangifera/genetics , Electron Transport Complex IV/genetics , Phylogeny
6.
Mol Ecol Resour ; 24(6): e13987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956928

ABSTRACT

The utility of a universal DNA 'barcode' fragment (658 base pairs of the Cytochrome C Oxidase I [COI] gene) has been established as a useful tool for species identification, and widely criticized as one for understanding the evolutionary history of a group. Large amounts of COI sequence data have been produced that hold promise for rapid species identification, for example, for biosecurity. The fruit fly tribe Dacini holds about a thousand species, of which 80 are pests of economic concern. We generated a COI reference library for 265 species of Dacini containing 5601 sequences that span most of the COI gene using circular consensus sequencing. We compared distance metrics versus monophyly assessments for species identification and although we found a 'soft' barcode gap around 2% pairwise distance, the exceptions to this rule dictate that a monophyly assessment is the only reliable method for species identification. We found that all fragments regularly used for Dacini fruit fly identification >450 base pairs long provide similar resolution. 11.3% of the species in our dataset were non-monophyletic in a COI tree, which is mostly due to species complexes. We conclude with recommendations for the future generation and use of COI libraries. We revise the generic assignment of Dacus transversus stat. rev. Hardy 1982, and Dacus perpusillus stat. rev. Drew 1971 and we establish Dacus maculipterus White 1998 syn. nov. as a junior synonym of Dacus satanas Liang et al. 1993.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Animals , DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Phylogeny , Sequence Analysis, DNA/methods , Tephritidae/genetics , Tephritidae/classification
7.
Mol Ecol ; 33(17): e17485, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39080979

ABSTRACT

Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. Diachasmimorpha longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.


Subject(s)
Host Specificity , Symbiosis , Tephritidae , Wasps , Animals , Wasps/virology , Wasps/genetics , Symbiosis/genetics , Host Specificity/genetics , Tephritidae/virology , Tephritidae/parasitology , Tephritidae/genetics , Ceratitis capitata/virology , Ceratitis capitata/genetics , Ceratitis capitata/parasitology , Host-Parasite Interactions/genetics , Pest Control, Biological
8.
J Agric Food Chem ; 72(32): 17858-17867, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39081139

ABSTRACT

In Bactrocera dorsalis, both males and females release chemical signals to attract mates. In our previous study, we identified ethyl laurate, ethyl myristate, and ethyl palmitate as potent female-derived pheromones that contribute to mate attraction. However, the mechanisms underlying the olfactory recognition remain unclear. In this study, we observed strong antennal and behavioral responses in male B. dorsalis to these female-derived pheromones, and further investigation revealed significant upregulation of OBP49a and OBP83b following exposure to these compounds. Through fluorescence competitive binding assays and RNA interference techniques, we demonstrated the crucial roles of OBP49a and OBP83b in detecting female-derived pheromones. Finally, molecular docking analysis identified key residues, including His134 in OBP83b and a lysine residue in OBP49a, which formed hydrogen bonds with female-derived pheromones, facilitating their binding. These findings not only advance our understanding of olfactory recognition of pheromones in B. dorsalis but also offer potential targets for developing olfaction-interfering techniques for pest control.


Subject(s)
Insect Proteins , Tephritidae , Animals , Female , Tephritidae/metabolism , Tephritidae/chemistry , Tephritidae/physiology , Tephritidae/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Male , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Sex Attractants/chemistry , Sex Attractants/metabolism , Molecular Docking Simulation , Pheromones/metabolism , Pheromones/chemistry , Smell
9.
Pestic Biochem Physiol ; 202: 105919, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879322

ABSTRACT

G-protein coupled receptors (GPCRs) are the largest and most diverse transmembrane receptor family in the cell. They are involved in regulating a wide range of biological processes, including behavior, reproduction, and development. However, GPCRs have not yet been identified in Zeugodacus cucurbitae. The current study focuses on the GPCRs identification, classification, distribution, and their expression analysis under ß-cypermethrin stress to uncover novel targets for pest management and assist in the development of effective strategies for controlling the melon fly population. We identified 80 GPCRs genes including 50 GPCRs identified in family A, 17 GPCRs identified in family B, 8 identified in family C, and 5 identified in family F. Z. cucurbitae GPCRs showed significant differences in both the number of genes in families or subfamilies, as well as the sequencing of the genes. Interestingly, newly identified GPCRs genes are expressed differently at various developmental stages of Z. cucurbitae. Further, we evaluated these 80 GPCRs using Realtime quantitative PCR to confirm their expression between ß-cypermethrin-resistant (RS) strain and susceptible strain (SS) of Z. cucurbitae. We identified 50 GPCR genes were highly overexpressed in a RS. Among these genes, eight genes were strongly induced by the 30% lethal concentration (LC) while two genes were significantly increased by the 50% LC of ß-cypermethrin. This first genome-wide profiling and characterization of GPCRs could lay foundation for unraveling detoxification mechanism and target site modifications which may improve the insect resistance and could be effective insecticide targets for Z. cucurbitae management.


Subject(s)
Insecticides , Pyrethrins , Receptors, G-Protein-Coupled , Pyrethrins/pharmacology , Pyrethrins/toxicity , Animals , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Insecticides/pharmacology , Insecticides/toxicity , Insecticide Resistance/genetics , Tephritidae/genetics , Tephritidae/drug effects , Insect Proteins/genetics , Insect Proteins/metabolism
10.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829379

ABSTRACT

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Tephritidae , Wasps , Animals , Tephritidae/microbiology , Tephritidae/parasitology , Wasps/microbiology , Wasps/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Larva/microbiology , Larva/parasitology , Larva/growth & development , RNA, Ribosomal, 16S/genetics , Fungi/genetics , Fungi/physiology , Host-Parasite Interactions , Microbiota , Dysbiosis/microbiology , Dysbiosis/parasitology
11.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38913610

ABSTRACT

Bactrocera tryoni (Froggatt) and Bactrocera neohumeralis (Hardy) are sibling fruit fly species that are sympatric over much of their ranges. Premating isolation of these close relatives is thought to be maintained in part by allochrony-mating activity in B. tryoni peaks at dusk, whereas in B. neohumeralis, it peaks earlier in the day. To ascertain whether differences in pheromone composition may also contribute to premating isolation between them, this study used solid-phase microextraction and gas chromatography-mass spectrometry to characterize the rectal gland volatiles of a recently collected and a more domesticated strain of each species. These glands are typical production sites and reservoirs of pheromones in bactrocerans. A total of 120 peaks were detected and 50 were identified. Differences were found in the composition of the rectal gland emissions between the sexes, species, and recently collected versus domesticated strains of each species. The compositional variation included several presence/absence and many quantitative differences. Species and strain differences in males included several relatively small alcohols, esters, and aliphatic amides. Species and strain differences in females also included some of the amides but additionally involved many fatty acid esters and 3 spiroacetals. While the strain differences indicate there is also heritable variation in rectal gland emissions within each species, the species differences imply that compositional differences in pheromones emitted from rectal glands could contribute to the premating isolation between B. tryoni and B. neohumeralis. The changes during domestication could also have significant implications for the efficacy of Sterile Insect Technique control programs.


Subject(s)
Pheromones , Tephritidae , Animals , Male , Female , Tephritidae/genetics , Tephritidae/physiology , Tephritidae/metabolism , Sympatry , Gas Chromatography-Mass Spectrometry , Species Specificity , Reproductive Isolation , Sexual Behavior, Animal , Solid Phase Microextraction
12.
Insect Biochem Mol Biol ; 170: 104130, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734116

ABSTRACT

Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome. We expressed and purified B. dorsalis AgmNAT in Escherichia coli and used the purified enzyme to define the substrate specificity for acyl-CoA and amine substrates. Our application of the screening strategy to BdorAgmNAT led to the identification of agmatine as the best amine substrate for this enzyme, with the highest kcat/Km value. We successfully obtained a BdorAgmNAT knockout strain based on a wild-type strain (WT) using the CRISPR/Cas9 technique. The ovary development of the BdorAgmNAT knockout mutants was delayed for 10 days compared with the WT specimens. Moreover, mutants had a much smaller mature ovary size and laid far fewer eggs than WT. Loss of function of BdorAgmNAT caused by RNAi with mature WT females did not affect their fecundity. These findings indicate that BdorAgmNAT is critical for oogenesis. Our data provide the first evidence for AgmNAT in regulating ovary development.


Subject(s)
Acetyltransferases , Ovary , Tephritidae , Animals , Ovary/growth & development , Ovary/metabolism , Ovary/enzymology , Female , Tephritidae/genetics , Tephritidae/enzymology , Tephritidae/growth & development , Tephritidae/metabolism , Acetyltransferases/genetics , Acetyltransferases/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Agmatine/metabolism
13.
Dalton Trans ; 53(23): 9995-10006, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38814123

ABSTRACT

A set of organic/inorganic layered materials was obtained by functionalizing a montmorillonite-containing bentonite natural clay with linear aliphatic C6 or C7 aldehydes through a cost-effective and technologically simple incipient-wetness deposition method. The solids were investigated by means of a multi-technique approach (X-ray powder diffraction, XRPD, scanning electron microscopy, SEM, Fourier-transform infrared spectroscopy, FT-IR, thermogravimetric analysis, TGA, elemental analysis and solid-state nuclear magnetic resonance, ssNMR) to clarify the nature of the deposited organic species and the mode of interaction between the aldehyde and the clay. Since both natural clays and short-chain linear aldehydes find application as alternative strategies in the control of the olive fruit fly, Bactrocera oleae, the hybrid layered materials were tested under real-life conditions and their insect-inhibiting capability was evaluated in open-field trials on olive tree orchards in Tuscany, Central Italy. Specific tests were conducted to evaluate the resistance of the solids to weathering and their capability to provide a constant and long-lasting release of the bioactive ingredient. Aldehyde-containing bentonite clays have shown promising performance in controlling B. oleae infestation (with up to 86-95% reduction of affected olive fruits) in open-field trials across two years in two locations with different pedological and meteo-climatic characteristics.


Subject(s)
Aldehydes , Olea , Tephritidae , Aldehydes/chemistry , Animals , Olea/chemistry , Olea/parasitology , Clay/chemistry , Bentonite/chemistry , Insecticides/chemistry , Insecticides/pharmacology
14.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38703099

ABSTRACT

This study was carried out in 3 types of biotopes where vegetable crops are not grown to highlight their contribution to the dynamics of vegetable-infesting flies. To this end, a trapping system based on a sexual attractant, the Cuelure associated with an insecticide was set up in 18 biotopes (6 natural areas, 6 mango orchards, and 6 agroforestry parks) in the regions of Hauts Bassins and Cascades in the South-West of Burkina Faso. During the trapping monitoring, which was done every 2 wk to collect insects captured, fruits present in 3 types of biotopes were sampled and incubated for insect emergence. Ten Dacus (Fabricius) [Diptera: Tephritidae] species and Zeugodacus cucurbitae (Coquillett) [Diptera: Tephritidae] were trapped in the study area. The predominant species captured was Z. cucurbitae (52.93%) followed by Dacus punctatifrons (Karsch) [Diptera: Tephritidae] (29.89%) and Dacus humeralis (Bezzi) (12.71%). Six tephritid species were emerged from 6 wild fruit species belonging to Cucurbitaceae, Apocynaceae, and Passifloraceae families. Fruit flies were more abundant from Jul to Nov with peaks observed in Aug or Oct depending on the species. Citrullus colocynthis L. (Cucurbitaceae), Lagenaria sp. (Cucurbitaceae), Passiflora foetida L. (Passifloraceae), and Passiflora sp. acted as reservoir host plants of Dacus ciliatus (Loew), Dacus bivittatus (Bigot), Dacus vertebratus (Bezzi) [Diptera: Tephritidae], D. punctatifrons, and Z. cucurbitae, the major vegetable insect pests in West Africa. The 3 types of biotopes acted as suitable refuge areas of vegetable crop-infesting fruit flies either for the favorable microclimate or for the alternative host plants.


Subject(s)
Seasons , Tephritidae , Animals , Tephritidae/physiology , Tephritidae/growth & development , Burkina Faso , Crops, Agricultural/growth & development , Vegetables/growth & development , Population Dynamics , Fruit
15.
Parasit Vectors ; 17(1): 217, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734668

ABSTRACT

BACKGROUND: Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS: In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS: A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS: The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.


Subject(s)
Bacteria , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Behavior, Animal , Feeding Behavior , Tephritidae/microbiology , Tephritidae/physiology
16.
Am Nat ; 203(6): E200-E217, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781522

ABSTRACT

AbstractPhysiological time is important for understanding the development and seasonal timing of ectothermic animals but has largely been applied to developmental processes that occur during spring and summer, such as morphogenesis. There is a substantial knowledge gap in the relationship between temperature and development during winter, a season that is increasingly impacted by climate change. Most temperate insects overwinter in diapause, a developmental process with little obvious morphological change. We used principles from the physiological time literature to measure and model the thermal sensitivity of diapause development rate in the apple maggot fly Rhagoletis pomonella, a univoltine fly whose diapause duration varies substantially within and among populations. We show that diapause duration can be predicted by modeling a relationship between temperature and development rate that is shifted toward lower temperatures compared with typical models of morphogenic, nondiapause development. However, incorporating interindividual variation and ontogenetic variation in the temperature-to-development rate relationship was critical for accurately predicting fly emergence, as diapause development proceeded more quickly at high temperatures later in diapause. We conclude that the conceptual framework may be flexibly applied to other insects and discuss possible mechanisms of diapause timers and implications for phenology with warming winters.


Subject(s)
Diapause, Insect , Tephritidae , Animals , Tephritidae/growth & development , Tephritidae/physiology , Temperature , Seasons , Larva/growth & development , Larva/physiology , Models, Biological , Female
17.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38618721

ABSTRACT

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Subject(s)
Gastrointestinal Microbiome , Insecticide Resistance , Pyrethrins , Reactive Oxygen Species , Tephritidae , Animals , Reactive Oxygen Species/metabolism , Pyrethrins/pharmacology , Pyrethrins/metabolism , Insecticide Resistance/genetics , Tephritidae/microbiology , Tephritidae/genetics , Insecticides/pharmacology , Insecticides/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lactobacillales/genetics , Lactobacillales/metabolism , Lactobacillales/drug effects , Lactobacillales/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Enterococcus/genetics , Enterococcus/metabolism , Enterococcus/drug effects , Glutathione Transferase/genetics , Glutathione Transferase/metabolism
18.
J Econ Entomol ; 117(3): 876-886, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38648180

ABSTRACT

The Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), is a crop pest of global economic importance because of its wide range of hosts and its invasiveness capacities. To develop a novel integrated and sustainable crop protection, we have investigated the insecticidal properties of different varieties of kava (Piper methysticum [Frost]) extracted by two methods and the attractive effects of six plant volatiles identified from B. tryoni host plants to female, mated or not. We did not identify any significant insecticidal effect of the traditional Pacific kava plant at the tested concentrations. Among mated females, ethyl acetate compared to the no odor control elicited the highest attraction (87%, of which 60% for this odor), while ethyl butyrate was preferred compared with ethyl acetate in dual choice assays. Flies' preferences for specific odors depended on their mating status and the odor landscape they were confronted with. Combination with the commercial ingestion insecticide (Success 4: spinosad, 480 g/l, Dow AgroSciences, Valbonne, France) with the plant volatiles were tested to detect an increase in mortality related to the addition of an attractant. The 2-heptanone slightly showed a tend to increase the attractiveness of mated females within 4-6 h to the food bait, but the results were not statistically significant after 8 h. Further tests should be performed with other concentrations or mixtures of the identified host plant volatiles to develop a strong lure and kill strategy.


Subject(s)
Drug Combinations , Insecticides , Macrolides , Tephritidae , Animals , Tephritidae/drug effects , Female , Insecticides/pharmacology , Macrolides/pharmacology , Insect Control , Male , Volatile Organic Compounds/pharmacology , Kava , Pheromones/pharmacology
19.
J Insect Physiol ; 155: 104636, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38609008

ABSTRACT

Photic entrainment is an essential function of the circadian clock, which enables organisms to set the appropriate timing of daily behavioral and physiological events. Recent studies have shown that the mechanisms of the circadian clock and photic entrainment vary among insect species. This study aimed to elucidate the circadian photoreceptors necessary for photic entrainment in firebrats Thermobia domestica, one of the most primitive apterygote insects. A homology search of publicly available RNA sequence (RNA-seq) data from T. domestica exhibited a cryptochrome 2 (cry2) gene and three opsin genes, opsin long wavelength 1 (opLW1), opLW2, and opUV, as candidate circadian photoreceptors. We examined the possible involvement of these genes in photic entrainment of firebrat locomotor rhythms. Firebrats had the highest entrainability to the light-dark cycle of green light. Treatment with dsRNA of the candidate genes strongly downregulated the respective targeted genes, and in the case of opsin genes, other untargeted genes were occasionally downregulated to various degrees. Under constant light, most control firebrats became arrhythmic, whereas a fraction of those treated with double RNAi of the two opLWs remained rhythmic. Behavioral experiments revealed that the transient cycles necessary for re-entrainment to shifted light cycles were lengthened when opLW2 expression was reduced. These results suggest that opLW2 is involved in the photic entrainment of circadian rhythm in firebrats.


Subject(s)
Circadian Rhythm , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Locomotion , Tephritidae/genetics , Tephritidae/physiology , Opsins/genetics , Opsins/metabolism , Light , Photoreceptor Cells, Invertebrate/physiology , Photoreceptor Cells, Invertebrate/metabolism , Circadian Clocks/genetics
20.
Environ Entomol ; 53(3): 442-446, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38570731

ABSTRACT

Chitosan is a naturally derived polymer that has significant potential for use as a bioinsecticide. Despite this, there is a lack of research as to the efficacy of chitosan for many insect pest species. The apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), is one such pest for which chitosan toxicity has not been explored. In this study, the toxicity of chitosan for R. pomonella adults was tested via no-choice feeding assays. An aging trial was further used to test the mortality of flies provided dried chitosan-sucrose treatments (CST), which were aged for 0 or 3 days in greenhouse conditions. This study found that the CST is toxic for R. pomonella adults when ingested, leading to a significant increase in the rate of mortality compared to control groups. The use of dried chitosan, however, did not change the mortality of flies, suggesting this will not be an effective delivery mechanism. Effective biopesticide delivery systems have not been defined for chitosan use outside of a laboratory, indicating the need for further research testing delivery mechanisms. It is suggested that an effective method of delivery can be as a food-based bait in attract-and-kill traps, as chitosan must be ingested to kill flies. Forming a viscous solution, chitosan may be best suited to these lure systems.


Subject(s)
Chitosan , Tephritidae , Animals , Tephritidae/drug effects , Chitosan/pharmacology , Insecticides/pharmacology , Female , Insect Control , Male , Feeding Behavior/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL