ABSTRACT
Salmonella represents one of the most common foodborne pathogens, frequently associated with the contamination of poultry products, constituting a prominent worldwide public health concern. This study determined the prevalence and antimicrobial resistance of Salmonella spp. in chilled chicken meat (115 samples) commercialized at retail in the Federal District, Brazil. Microbiological tests were performed to screen for Salmonella spp. in the chicken meat samples, and the isolated strains were confirmed by the invA gene presence (PCR technique). The strains were evaluated for antimicrobial susceptibility by the disk diffusion technique (Kirby-Bauer method) and tested for the presence of the sul2, blaCTX, and tetB antimicrobial resistance genes. The Salmonella spp. prevalence in chilled chicken meat sold at retail in the Federal District, Brazil, was 46.1% (53 of 115 chicken meat samples analyzed had invA gene-positive strains). Seventy-eight strains of Salmonella spp. isolated from the 53 contaminated samples showed higher resistance to amoxicillin/clavulanic acid (83.3%), followed by sulfonamide (64.1%) and tetracycline (46.2%); 53.8% of the isolates were multidrug-resistant (MDR). The sul2 gene that confers resistance to sulfonamide was found in 53 strains (68.0%), the blaCTX gene that confers resistance to beta-lactams was identified in 39 strains (50.0%), and the tetB gene that confers resistance to tetracycline was identified in 29 strains (37.2%). The high percentage of Salmonella contamination in chicken meat can pose a risk to consumers' health due to the possibility of causing salmonellosis. In addition, many isolates were MDR and carried antimicrobial resistance genes. Public agencies can use these results to develop effective public health policies and strategies to ensure the safety of these food products.
Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Anti-Bacterial Agents/pharmacology , Chickens/microbiology , Drug Resistance, Bacterial , Prevalence , Brazil/epidemiology , Meat/microbiology , Salmonella , Anti-Infective Agents/pharmacology , Sulfanilamide/pharmacology , Tetracyclines/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/geneticsABSTRACT
In this study, the chemical composition of the essential oil (EO) extracted from Croton blanchetianus Baill leaves was identified, and antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli strains were determined. Moreover, the effects of EO in combination with ampicillin and tetracycline were investigated. Thirty-four components, mainly mono-and sesquiterpenes that represented 94.05 % of the chemical composition, were identified in the EO. The EO showed bacteriostatic and bactericidal activities against all strains tested. Furthermore, the EO showed a synergistic effect with ampicillin and tetracycline. EO significantly inhibited biofilm formation and reduced the number of viable cells in biofilms. The EO may be a promising natural product for preventing bacterial biofilm infections.
Subject(s)
Anti-Infective Agents , Croton , Euphorbiaceae , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ampicillin/pharmacology , Staphylococcus aureus , Tetracyclines/pharmacology , Biofilms , Microbial Sensitivity TestsABSTRACT
Helicobacter pylori is a Gram-negative, microaerophilic, curved-rod, flagellated bacterium commonly found in the stomach mucosa and associated with different gastrointestinal diseases. With high levels of prevalence worldwide, it has developed resistance to the antibiotics used in its therapy. Brazilian red propolis has been studied due to its biological properties, and in the literature, it has shown promising antibacterial activities. The aim of this study was to evaluate anti-H. pylori from the crude hydroalcoholic extract of Brazilian red propolis (CHEBRP). For this, in vitro determination of the minimum inhibitory and bactericidal concentration (MIC/MBC) and synergistic activity and in vivo, microbiological, and histopathological analyses using Wistar rats were carried out using CHEBRP against H. pylori strains (ATCC 46523 and clinical isolate). CHEBRP presented MIC/MBC of 50 and 100 µg/mL against H. pylori strains (ATCC 43526 and clinical isolate, respectively) and tetracycline MIC/MBC of 0.74 µg/mL. The association of CHEBRP with tetracycline had an indifferent effect. In the stomach mucosa of rats, all treatments performed significantly decreased the number of H. pylori, and a concentration of 300 mg/kg was able to modulate the inflammatory response in the tissue. Therefore, CHEBRP showed promising anti-H. pylori in in vitro and in vivo assays.
Subject(s)
Helicobacter Infections , Helicobacter pylori , Propolis , Rats , Animals , Propolis/pharmacology , Propolis/therapeutic use , Brazil , Rats, Wistar , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Immunity , Tetracyclines/pharmacology , Microbial Sensitivity Tests , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiologyABSTRACT
Allosteric inhibitors regulate enzyme activity from remote and usually specific pockets. As they promise an avenue for less toxic and safer drugs, the identification and characterization of allosteric inhibitors has gained great academic and biomedical interest in recent years. Research on falcipain-2 (FP-2), the major papain-like cysteine hemoglobinase of Plasmodium falciparum, might benefit from this strategy to overcome the low selectivity against human cathepsins shown by active site-directed inhibitors. Encouraged by our previous finding that methacycline inhibits FP-2 noncompetitively, here we assessed other five tetracycline derivatives against this target and characterized their inhibition mechanism. As previously shown for methacycline, tetracycline derivatives inhibited FP-2 in a noncompetitive fashion, with Ki values ranging from 121 to 190 µM. A possible binding to the S' side of the FP-2 active site, similar to that described by X-ray crystallography (PDB: 6SSZ) for the noncompetitive inhibitor E-chalcone 48 (EC48), was experimentally discarded by kinetic analysis using a large peptidyl substrate spanning the whole active site. By combining lengthy molecular dynamics (MD) simulations that allowed methacycline to diffuse from solution to different FP-2 surface regions and free energy calculations, we predicted the most likely binding mode of the ligand. Of note, the proposed binding pose explains the low differences in Ki values observed for the tested tetracycline derivatives and the calculated binding free energies match the experimental values. Overall, this study has implications for the design of novel allosteric inhibitors against FP-2 and sets the basis for further optimization of the tetracycline scaffold to produce more potent and selective inhibitors.
Subject(s)
Antimalarials , Cysteine Proteases , Allosteric Site , Antimalarials/pharmacology , Cysteine Endopeptidases , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Humans , Kinetics , Plasmodium falciparum , Tetracyclines/pharmacologyABSTRACT
Neospora caninum is an apicomplexan parasite that causes abortion in cattle, resulting in significant economic losses. There is no commercial treatment for neosporosis, and drug repositioning is a fast strategy to test possible candidates against N. caninum. In this article, we describe the effects of atovaquone, chloroquine, quinine, primaquine and tetracycline on N. caninum proliferation. The IC50 concentrations in N. caninum were compared to the current information based on previous studies for Plasmodium and Toxoplasma gondii, correlating to the described mechanisms of action of each tested drug. The inhibitory patterns indicate similarities and differences among N. caninum, Plasmodium and T. gondii. For example, atovaquone demonstrates high antiparasitic activity in all the analyzed models, while chloroquine does not inhibit N. caninum. On the other hand, tetracycline is effective against Plasmodium and N. caninum, despite its low activity in T. gondii models. The repurposing of antimalarial drugs in N. caninum is a fast and inexpensive way to develop novel formulations using well-established compounds.
Subject(s)
Antimalarials , Neospora/drug effects , Antimalarials/pharmacology , Atovaquone/pharmacology , Chloroquine/pharmacology , Primaquine/pharmacology , Quinine/pharmacology , Tetracyclines/pharmacologyABSTRACT
Background: Worldwide, chicken meat is widely consumed due to its low cost, high nutritional value and non-interference with religious or cultural beliefs. However, during animal husbandry chickens are exposed to many chemical substances, including tetracyclines and ß-lactams, which are used to prevent and cure several infections. Some residues of these compounds may bioaccumulate and be present in chicken meat after slaughtering, promoting oxidative reactions. Methods: In order to evaluate in vitro carbonylation induced by tetracyclines and ß-lactams residues, a proteomic approach was used. For this, chicken muscle was individually contaminated with tetracyclines (tetracycline, chlortetracycline, oxytetracycline, and doxycycline) and ß-lactams (ampicillin, benzathine penicillin, dicloxacillin and oxacillin) at 0.5, 1.0 and 1.5 times their maximum residue level (MRL). Then, sarcoplasmic, myofibrillar and insoluble proteins were extracted and their content were measured using the Bradford method. Protein carbonylation was measured using the 2,4-Dinitrophenylhydrazine alkaline method. Results: Residues of tetracyclines and ß-lactams induced in vitro carbonylation on sarcoplasmic, myofibrillar and insoluble proteins even at 0.5MRL concentrations ( p<0.05). When comparing the carbonylation induced by both antibiotics no differences were found ( p>0.05). Variables such as the partition coefficient (log P) and the concentration of these antibiotics showed a high correlation with the oxidative capacity of tetracyclines and ß-lactams on chicken breast proteins. Conclusions: This study shows that the presence of tetracyclines and ß-lactams residues at MRLs concentrations promotes in vitro carbonylation on chicken breast proteins. Our results provide important insights about the impact of antibiotics on the integrity of meat proteins intended for human consumption.
Subject(s)
Drug Residues , Tetracyclines , Animals , Anti-Bacterial Agents/pharmacology , Chickens , Drug Residues/analysis , Food Contamination/analysis , Meat/analysis , Proteomics , Tetracyclines/pharmacology , beta-Lactams/analysisABSTRACT
INTRODUCTION: Infectious diseases have been responsible for an increasing number of deaths worldwide. Staphylococcus aureus has been recognized as one of the most notable causative agents of severe infections, while efflux pump (EP) expression is one of the main mechanisms associated with S. aureus resistance to antibiotics. OBJECTIVE: This study aimed to investigate the potential of α-pinene as an efflux pump inhibitor in species of S. aureus carrying the TetK and MrsA proteins. METHODS: The minimum inhibitory concentrations (MIC) of α-pinene and other efflux pump inhibitors were assessed using serial dilutions of each compound at an initial concentration above 1024 µg/mL. Solutions containing culture medium and bacterial inoculums were prepared in test tubes and subsequently transferred to 96-well microdilution plates. The modulation of ethidium bromide (EtBr) and antibiotics (tetracycline and erythromycin) was investigated through analysis of the modification in their MICs in the presence of a subinhibitory concentration of α-pinene (MIC/8). Wells containing only culture medium and bacterial inoculums were used as negative control. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used as a positive control. RESULTS: The MIC of ethidium bromide against S. aureus strains RN-4220 and IS-58 was reduced by association with α-pinene. This monoterpene potentiated the effect of tetracycline against the IS-58 strain but failed in modulating the antibacterial effect of erythromycin against RN-4220, suggesting a selective inhibitory effect on the TetK EP by α- pinene. CONCLUSION: In conclusion, α-pinene has promising effects against S.aureus strains, which should be useful in the combat of antibacterial resistance associated with EP expression. Nevertheless, further research is required to fully characterize its molecular mechanism of action as an EP inhibitor.
Subject(s)
Bacterial Proteins , Bicyclic Monoterpenes/pharmacology , Staphylococcus aureus , Tetracyclines , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/physiology , Drug Synergism , Erythromycin/pharmacology , Ethidium/pharmacology , Microbial Sensitivity Tests , Monoterpenes/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Tetracyclines/pharmacologyABSTRACT
Abstract Neospora caninum is an apicomplexan parasite that causes abortion in cattle, resulting in significant economic losses. There is no commercial treatment for neosporosis, and drug repositioning is a fast strategy to test possible candidates against N. caninum. In this article, we describe the effects of atovaquone, chloroquine, quinine, primaquine and tetracycline on N. caninum proliferation. The IC50 concentrations in N. caninum were compared to the current information based on previous studies for Plasmodium and Toxoplasma gondii, correlating to the described mechanisms of action of each tested drug. The inhibitory patterns indicate similarities and differences among N. caninum, Plasmodium and T. gondii. For example, atovaquone demonstrates high antiparasitic activity in all the analyzed models, while chloroquine does not inhibit N. caninum. On the other hand, tetracycline is effective against Plasmodium and N. caninum, despite its low activity in T. gondii models. The repurposing of antimalarial drugs in N. caninum is a fast and inexpensive way to develop novel formulations using well-established compounds.
Resumo Neospora caninum é um parasita Apicomplexa relacionado a abortos no gado bovino, que resultam em impactos econômicos. Não há tratamento comercial para neosporosis e o reposicionamento de drogas indica uma estratégia rápida para testar candidatos anti-N. caninum. Neste artigo, são descritos os efeitos da atovaquona, cloroquina, quinino, primaquine e tetraciclina na proliferação de N. caninum. As concentrações IC50 em N. caninum foram comparadas com a informação disponível, baseada em estudos publicados previamente para Plasmodium e Toxoplasma gondii, incluindo a correlação com os mecanismos de ação descritos para cada droga testada. Os padrões de inibição indicam pontos de similaridades e diferenças entre N. caninum, Plasmodium e T. gondii. Por exemplo, a atovaquona demonstra uma alta atividade antiparasitária em todos os modelos testados, enquanto a cloroquina não inibe N. caninum. Por outro lado, a tetraciclina é efetiva contra Plasmodium e N. caninum, em contraste com a baixa atividade em modelos de T. gondii. O reposicionamento de drogas antimaláricas em N. caninum é uma forma rápida e de baixo custo para o desenvolvimento de novas formulações que usam compostos bem estabelecidos.
Subject(s)
Neospora/drug effects , Antimalarials/pharmacology , Primaquine/pharmacology , Quinine/pharmacology , Tetracyclines/pharmacology , Chloroquine/pharmacology , Atovaquone/pharmacologyABSTRACT
Parkinson's disease (PD) is a neurodegenerative disorder for which only symptomatic treatments are available. Repurposing drugs that target α-synuclein aggregation, considered one of the main drivers of PD progression, could accelerate the development of disease-modifying therapies. In this work, we focused on chemically modified tetracycline 3 (CMT-3), a derivative with reduced antibiotic activity that crosses the blood-brain barrier and is pharmacologically safe. We found that CMT-3 inhibited α-synuclein amyloid aggregation and led to the formation of non-toxic molecular species, unlike minocycline. Furthermore, CMT-3 disassembled preformed α-synuclein amyloid fibrils into smaller fragments that were unable to seed in subsequent aggregation reactions. Most interestingly, disaggregated species were non-toxic and less inflammogenic on brain microglial cells. Finally, we modelled the interactions between CMT-3 and α-synuclein aggregates by molecular simulations. In this way, we propose a mechanism for fibril disassembly. Our results place CMT-3 as a potential disease modifier for PD and possibly other synucleinopathies.
Subject(s)
Inflammation/chemically induced , Tetracyclines/pharmacology , alpha-Synuclein/toxicity , Drug Repositioning , Humans , Parkinson Disease/drug therapy , Protein Aggregates , Tetracyclines/therapeutic use , alpha-Synuclein/metabolismABSTRACT
Tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) interactions with the allergenic milk protein casein (CAS) were here evaluated simulating food conditions. The antibiotics assessed interact with CAS through static quenching and form non-fluorescent complexes. At 30 °C, the binding constant (Kb) varied from 0.05 to 1.23 × 106 M-1. Tetracycline interacts with CAS preferably through electrostatic forces, while oxytetracycline and chlortetracycline interactions occur by hydrogen bonds and van der Waals forces. The interaction process is spontaneous, and the magnitude of interaction based on Kb values, followed the order: TC < CTC < OTC. The distances between the donor (protein) and the receptors (TC, OTC, and CTC) were determined by Förster resonance energy transfer (FRET) and varied from 3.67 to 4.08 nm. Under natural feeding conditions, the citrate decreased the affinity between TC and CAS; a similar effect was observed for OTC in the presence of Ca(II), Fe(III) and lactose. Synchronized and three-dimensional (3D) fluorescence studies indicated alterations in the original protein conformation due to the interaction process, which may influence allergenic processes. In addition, complexation with CAS modulated the antimicrobial activity of CTC against S. aureus, demonstrated that the interaction process possibly alters the biological properties of antibiotics and the own protein, in the food conditions.Communicated by Ramaswamy H. Sarma.
Subject(s)
Allergens , Caseins , Milk Proteins , Tetracyclines , Anti-Bacterial Agents/pharmacology , Caseins/chemistry , Ferric Compounds , Staphylococcus aureus , Tetracyclines/pharmacologyABSTRACT
The prevalence of Parkinson's disease, which affects millions of people worldwide, is increasing due to the aging population. In addition to the classic motor symptoms caused by the death of dopaminergic neurons, Parkinson's disease encompasses a wide range of nonmotor symptoms. Although novel disease-modifying medications that slow or stop Parkinson's disease progression are being developed, drug repurposing, which is the use of existing drugs that have passed numerous toxicity and clinical safety tests for new indications, can be used to identify treatment compounds. This strategy has revealed that tetracyclines are promising candidates for the treatment of Parkinson's disease. Tetracyclines, which are neuroprotective, inhibit proinflammatory molecule production, matrix metalloproteinase activity, mitochondrial dysfunction, protein misfolding/aggregation, and microglial activation. Two commonly used semisynthetic second-generation tetracycline derivatives, minocycline and doxycycline, exhibit effective neuroprotective activity in experimental models of neurodegenerative/ neuropsychiatric diseases and no substantial toxicity. Moreover, novel synthetic tetracyclines with different biological properties due to chemical tuning are now available. In this review, we discuss the multiple effects and clinical properties of tetracyclines and their potential use in Parkinson's disease treatment. In addition, we examine the hypothesis that the anti-inflammatory activities of tetracyclines regulate inflammasome signaling. Based on their excellent safety profiles in humans from their use for over 50 years as antibiotics, we propose the repurposing of tetracyclines, a multitarget antibiotic, to treat Parkinson's disease.
Subject(s)
Drug Repositioning , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Tetracyclines/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/drug effects , Doxycycline/pharmacology , Doxycycline/therapeutic use , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Humans , Inflammasomes/antagonists & inhibitors , Minocycline/pharmacology , Minocycline/therapeutic use , Mitochondria/drug effects , Molecular Structure , Neuroprotective Agents/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protein Aggregates/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/administration & dosage , Structure-Activity Relationship , Tetracyclines/chemistry , Tetracyclines/pharmacologyABSTRACT
A series of organotin(IV) derivatives was investigated in vitro for their antibiotic and adjuvant antibiotic properties (efflux pump inhibitors) against Staphylococcus aureus strains that overexpress efflux pump proteins for norfloxacin (SA-1199B), erythromycin (RN-4220) and tetracycline (IS-58). Most organotin(IV) compounds showed significant antibacterial activity with small Minimum Inhibitory Concentration (MIC) values, some of which were close to 1.0µg/mL (3.1µM), but this feature was also associated with substantial cytotoxicity. Nevertheless, the cytotoxicity of these organotin(IV) compounds can be overcome when they are used as antibiotic adjuvants. Their remarkable adjuvant antibiotic properties allow potentiation of the action of tetracycline (against IS-58 strain) by up to 128-fold. This likely indicates that they can act as putative inhibitors of bacterial efflux pumps. These results reinforce organotin(IV) complexes as promising antibacterial agents, and many of these complexes, if associated with antibiotics, can act as potential adjuvant antibiotic candidates.
Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Organotin Compounds/chemical synthesis , Organotin Compounds/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Cell Line , Mice , Microbial Sensitivity Tests , Organotin Compounds/chemistry , Staphylococcus aureus/drug effects , Tetracyclines/pharmacologyABSTRACT
Synergy could be an effective strategy to potentiate and recover antibiotics nowadays useless in clinical treatments against multi-resistant bacteria. In this study, synergic interactions between antibiotics and grape pomace extract that contains high concentration of phenolic compounds were evaluated by the checkerboard method in clinical isolates of Staphylococcus aureus and Escherichia coli. To define which component of the extract is responsible for the synergic effect, phenolic compounds were identified by RP-HPLC and their relative abundance was determined. Combinations of extract with pure compounds identified there in were also evaluated. Results showed that the grape pomace extract combined with representatives of different classes of antibiotics as ß-lactam, quinolone, fluoroquinolone, tetracycline and amphenicol act in synergy in all S. aureus and E. coli strains tested with FICI values varying from 0.031 to 0.155. The minimal inhibitory concentration (MIC) was reduced 4 to 75 times. The most abundant phenolic compounds identified in the extract were quercetin, gallic acid, protocatechuic acid and luteolin with relative abundance of 26.3, 24.4, 16.7 and 11.4%, respectively. All combinations of the extract with the components also showed synergy with FICI values varying from 0.031 to 0.5 and MIC reductions of 4 to 125 times with both bacteria strains. The relative abundance of phenolic compounds has no correlation with the obtained synergic effect, suggesting that the mechanism by which the synergic effect occurs is by a multi-objective action. It was also shown that combinations of grape pomace extract with antibiotics are not toxic for the HeLa cell line at concentrations in which the synergistic effect was observed (47 µg/mL of extract and 0.6-375 µg/mL antibiotics). Therefore, these combinations are good candidates for testing in animal models in order to enhance the effect of antibiotics of different classes and thus restore the currently unused clinical antibiotics due to the phenomenon of resistance. Moreover, the use of grape pomace is a good and low-cost alternative for this purpose being a waste residue of the wine industry.
Subject(s)
Drug Synergism , Escherichia coli Infections/drug therapy , Phenols/pharmacology , Plant Extracts/pharmacology , Staphylococcal Infections/drug therapy , Animals , Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Chromatography, High Pressure Liquid , Drug Resistance, Microbial/drug effects , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , HeLa Cells , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Phenols/chemistry , Plant Extracts/chemistry , Staphylococcal Infections/microbiology , Tetracyclines/pharmacology , Vitis/chemistryABSTRACT
The sterile insect technique (SIT) involves the mass release of sterile males to suppress insect pest populations. SIT has been improved for larval pests by the development of strains for female-specific tetracycline-suppressible (Tet-off) embryonic lethal systems for male-only populations. Here we describe the extension of this approach to the Mexican fruit fly, Anastrepha ludens, using a Tet-off driver construct with the Tet-transactivator (tTA) under embryo-specific Anastrepha suspensa serendipity α (As-sry-α) promoter regulation. In the absence of tetracycline, tTA acts upon a Tet-response element linked to the pro-apoptotic cell death gene lethal effector, head involuation defective (hid), from A. ludens (Alhid(Ala2) ) that contains a sex-specific intron splicing cassette, resulting in female-specific expression of the lethal effector. Parental adults double-homozygous for the driver/effector vectors were expected to yield male-only progeny when reared on Tet-free diet, but a complete lack of oviposited eggs resulted for each of the three strains tested. Ovary dissection revealed nonvitellogenic oocytes in all strains that was reversible by feeding females tetracycline for 5 days after eclosion, resulting in male-only adults in one strain. Presumably the sry-α promoter exhibits prezygotic maternal expression as well as zygotic embryonic expression in A. ludens, resulting in a Tet-off sterility effect in addition to female-specific lethality.
Subject(s)
Pest Control, Biological , Tephritidae/drug effects , Tetracyclines/pharmacology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/physiology , Anti-Bacterial Agents/pharmacology , Female , Genes, Lethal , Larva/drug effects , Larva/genetics , Larva/growth & development , Larva/physiology , Reproduction/drug effects , Tephritidae/genetics , Tephritidae/growth & development , Tephritidae/physiologyABSTRACT
Tetracyclines are used for the prevention and control of dairy cattle diseases. Residues of these drugs can be excreted into milk. Thus, the aim of this study was to develop a microbiological method using Bacillus megaterium to detect tetracyclines (chlortetracycline, oxytetracycline and tetracycline) in milk. In order to approximate the limits of detection of the bioassay to the Maximum Residue Limit (100µg/l) for milk tetracycline, different concentrations of chloramphenicol (0, 1000, 1500 and 2000µg/l) were tested. The detection limits calculated were similar to the Maximum Residue Limits when a bioassay using B. megaterium ATCC 9885 spores (2.8×10(8)spores/ml) and chloramphenicol (2000µg/l) was utilized. This bioassay detects 105µg/l of chlortetracycline, 100µg/l of oxytetracycline and 134µg/l of tetracycline in 5h. Therefore, this method is suitable to be incorporated into a microbiological multi-residue system for the identification of tetracyclines in milk.
Subject(s)
Anti-Bacterial Agents/analysis , Bacillus megaterium/drug effects , Biological Assay/methods , Drug Residues/analysis , Food Contamination/analysis , Milk/chemistry , Tetracyclines/analysis , Animals , Anti-Bacterial Agents/pharmacology , Argentina , Bacillus megaterium/physiology , Chloramphenicol/analysis , Chloramphenicol/pharmacology , Drug Residues/pharmacology , Food Contamination/legislation & jurisprudence , Maximum Allowable Concentration , Sensitivity and Specificity , Spores, Bacterial/drug effects , Tetracyclines/pharmacologyABSTRACT
Systemic antibiotic therapy (SAT) has usually been recommended after tooth replantation, but its actual value has been questioned. As there are no reports in the literature about its influence on tooth replantation, the aim of this study was to evaluate the influence of systemic administration of antibiotics (amoxicillin and tetracycline) at the different phases of the repair process (7, 15, 30 days) in delayed rat tooth replantation. Ninety Wistar rats (Rattus norvegicus albinus) had their maxillary right incisors extracted and bench-dried for 60 min. The dental papilla, enamel organ, pulp tissue, and root surface-adhered periodontal ligament were removed, and the teeth were replanted. The animals received no antibiotics (n = 30) or were medicated systemically with amoxicillin (n = 30) and tetracycline (n = 30), and were euthanized after 7, 15, and 30 days. Regardless of the evaluation period, the acute inflammatory infiltrate was less intense and root resorption presented smaller extent and depth in the group treated with amoxicillin. The results suggest that SAT has a positive influence on the repair process in delayed tooth replantation and that amoxicillin is an excellent treatment option.
Subject(s)
Amoxicillin/pharmacology , Tetracyclines/pharmacology , Tooth Replantation/methods , Wound Healing/drug effects , Animals , Inflammation/drug therapy , Male , Rats , Rats, Wistar , Root Resorption/drug therapyABSTRACT
The tetracyclines (TCs) are widely used in the treatment of several diseases of cattle and their residues may be present in milk. To control these residues it is necessary to have available inexpensive screening methods, user-friendly and capable of analysing a high number of samples. The purpose of this study was to design a bioassay of microbiological inhibition in microtiter plates with spores of Bacillus pumilus to detect TCs at concentrations corresponding to the Maximum Residue Limits (MRLs). Several complementary experiments were performed to design the bioassay. In the first study, we determined the concentration of spores that produce a change in the bioassay's relative absorbance in a short time period. Subsequently, we assessed the concentration of chloramphenicol required to decrease the detection limit (DL) of TCs at MRLs levels. Thereafter, specificity, DL and cross-specificity of the bioassay were estimated. The most appropriate microbiological inhibition assay had a B. pumilus concentration of 1.6 × 10(9) spores/ml, fortified with 2500 µg chloramphenicol/l (CAP) in Mueller Hinton culture medium using brilliant black and toluidine blue as redox indicator. This bioassay detected 117 µg chlortetracycline/l, 142 µg oxytetracycline/l and 105 µg tetracycline/l by means of a change in the indicator's colour in a period of 5 h. The method showed good specificity (97.9%) which decreased slightly (93.3%) in milk samples with high somatic cell counts (>250,000 cells/ml). Furthermore, other antimicrobials studied (except neomycin) must be present in milk at high concentrations (from >5 to >100 MRLs) to produce positive results in this assay, indicating a low cross specificity.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus/classification , Bacillus/physiology , Milk/chemistry , Tetracyclines/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Biological Assay/veterinary , Cattle , Drug Residues , Female , Food Microbiology , Logistic Models , Tetracyclines/chemistryABSTRACT
La resistencia antibiótica es un problema emergente a nivel mundial presente en diversas bacterias, en especial en la Escherichia coli, que tiene altos porcentajes de resistencia hacia ampicilina, trimetoprim-sulfametoxazol, tetraciclina, cloramfenicol y ácido nalidíxico, lo que supone grandes complicaciones en el tratamiento antibiótico cuando este es requerido. Este aumento de resistencia antibiótica se debe a la adquisición de diferentes mecanismos moleculares de resistencia mediante mutaciones puntuales a nivel cromosómico o transferencia horizontal de material genético entre especies relacionadas o diferentes, facilitada por algunos elementos genéticos tales como los integrones. Esta revisión discute los efectos de los mecanismos moleculares de resistencia más comunes en E.coli: inactivación enzimática, alteraciones en el sitio blanco y alteraciones de la permeabilidad. El conocer los mecanismos de resistencia implicados, como lo recomienda la Organización Mundial de la Salud, permitirá optimizar la vigilancia de resistencia y las políticas de control y uso de antibióticos a nivel nacional.
Antibiotic resistance is an emerging problem worldwide present in many bacteria, specially in Escherichia coli, which has high percentages of resistance to ampicilline, thrimethoprim-sulfamethoxazole, tetracycline, chloramphenicol and nalidixic acid, which implies important complications in antibiotic treatment when required. The increasing antibiotic resistance is due to the acquisition of different molecular mechanisms of resistance through point chromosomal mutations and /or horizontal transfer of genetic material between related or different species facilitated by some genetic elements such as integrons. This review discusses the effects of the most common molecular mechanisms of antibiotic resistance in E. coli: enzymatic inactivation, changes in the target site and permeability disturbances. Getting to know the mechanisms of resistance which are involved, as the World Health Organization recommends, will allow us to improve the surveillance of the antibiotic resistance, the control policies and the antibiotic utilization at a national level.
Subject(s)
Humans , Diarrhea/microbiology , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Integrons , Quinolones/pharmacology , Tetracyclines/pharmacology , beta-Lactams/pharmacologyABSTRACT
This study evaluated the effect of modified tetracycline on the resin-dentin bond strength (µTBS), silver nitrate uptake (SNU) and solution homogeneity (SH) of two adhesives. Dentin surfaces were treated with phosphoric acid, rinsed off and either rewetted with water (control group - CO), 2% minocycline (MI), 2% doxycyline (DO) or 2% chlorhexidine (CH). Adhesive systems (Adper Single Bond 2 and Prime Bond NT) and composite were applied and light-polymerized. Specimens were sectioned to obtain bonded sticks (0.8 mm²) to test under tension at 0.5 mm/min. For SNU, specimens were immersed in silver nitrate and analyzed by EDX-SEM. SH was qualitatively analyzed after mixing the adhesives with different solvent-based solutions containing MI, DO and CH. Lower µTBS values were observed in the DO group compared with MI and CH (p = 0.01). Lower SNU was observed for MI and CH. The lowest µTBS for both adhesives was observed for the DO group (p = 0.01). Signs of phase separation were observed for DO with both adhesives. MI or CH used as rewetting solutions after acid etching did not affect the µTBS and hybrid layer quality.
Subject(s)
Dental Bonding/methods , Dentin Desensitizing Agents/chemistry , Dentin/chemistry , Tetracyclines/pharmacology , Analysis of Variance , Anti-Infective Agents, Local/chemistry , Chlorhexidine/chemistry , Humans , Metalloproteases/chemistry , Microscopy, Electron, Scanning , Silver Nitrate/chemistry , Surface Properties , Tensile Strength , Time FactorsABSTRACT
This study evaluated the effect of modified tetracycline on the resin-dentin bond strength (µTBS), silver nitrate uptake (SNU) and solution homogeneity (SH) of two adhesives. Dentin surfaces were treated with phosphoric acid, rinsed off and either rewetted with water (control group - CO), 2 percent minocycline (MI), 2 percent doxycyline (DO) or 2 percent chlorhexidine (CH). Adhesive systems (Adper Single Bond 2 and Prime Bond NT) and composite were applied and light-polymerized. Specimens were sectioned to obtain bonded sticks (0.8 mm²) to test under tension at 0.5 mm/min. For SNU, specimens were immersed in silver nitrate and analyzed by EDX-SEM. SH was qualitatively analyzed after mixing the adhesives with different solvent-based solutions containing MI, DO and CH. Lower µTBS values were observed in the DO group compared with MI and CH (p = 0.01). Lower SNU was observed for MI and CH. The lowest µTBS for both adhesives was observed for the DO group (p = 0.01). Signs of phase separation were observed for DO with both adhesives. MI or CH used as rewetting solutions after acid etching did not affect the µTBS and hybrid layer quality.