Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.925
Filter
1.
J Transl Med ; 22(1): 663, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010157

ABSTRACT

The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.


Subject(s)
Immune Tolerance , Mesenchymal Stem Cells , Multiple Sclerosis , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Mesenchymal Stem Cells/immunology , Animals , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Mesenchymal Stem Cell Transplantation
2.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38949650

ABSTRACT

Germline activating mutations in STAT3 cause a multi-systemic autoimmune and autoinflammatory condition. By studying a mouse model, Toth et al. (https://doi.org/10.1084/jem.20232091) propose a role for dysregulated IL-22 production by Th17 cells in causing some aspects of immune-mediated skin inflammation in human STAT3 GOF syndrome.


Subject(s)
Interleukin-22 , STAT3 Transcription Factor , Skin , Th17 Cells , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Animals , Humans , Th17 Cells/immunology , Th17 Cells/metabolism , Skin/metabolism , Skin/pathology , Interleukins/genetics , Interleukins/metabolism , Gain of Function Mutation , Mice , Inflammation/metabolism
3.
Clin Exp Hypertens ; 46(1): 2373467, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38963020

ABSTRACT

BACKGROUND: Aortic endothelial diastolic dysfunction is an early complication of diabetes and the abnormal differentiation of Th17 cells is involved in the development of diabetes. However, the exact role of exercise on regulating the Th17 cells differentiation and the underlying molecular mechanisms remain to be elucidated in diabetic mice. METHODS: db/db and db/m+ mice were randomly divided into exercise and sedentary groups. Mice in exercise group were exercised daily, 6 days/week, for 6 weeks and mice in sedentary groups were placed on a nonmoving treadmill for 6 weeks. Vascular endothelial function was measured via wire myograph and the frequencies of Th17 from peripheral blood in mice were assessed via flow cytometry. RESULTS: Our data showed that exercise improved insulin resistance and aortic endothelial diastolic function in db/db mice. In addition, the proportion of Th17 cells and IL-17A level in peripheral blood of db/db mice were significantly increased, and exercise could promote Th17 cell differentiation and reduce IL-17A level. More importantly, STAT3 or ROR-γt inhibitors could promote Th17 cell differentiation in db/db mice, while exercise significantly down-regulated p-STAT3/ROR-γt signaling in db/db mice, suggesting that exercise regulated Th17 differentiation through STAT3/ROR-γt signaling. CONCLUSIONS: This study demonstrated that exercise improved vascular endothelial function in diabetic mice via reducing Th17 cell differentiation through p-STAT3/ROR-γt pathway, suggesting exercise may be an important non-pharmacological intervention strategy for the treatment of diabetes-related vascular complications.


Subject(s)
Cell Differentiation , Diabetes Mellitus, Experimental , Interleukin-17 , Physical Conditioning, Animal , STAT3 Transcription Factor , Th17 Cells , Vasodilation , Animals , Mice , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Vasodilation/physiology , STAT3 Transcription Factor/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/therapy , Male , Interleukin-17/blood , Interleukin-17/metabolism , Endothelium, Vascular/physiopathology , Insulin Resistance/physiology , Signal Transduction , Mice, Inbred C57BL , Aorta/physiopathology
4.
Front Immunol ; 15: 1408710, 2024.
Article in English | MEDLINE | ID: mdl-38947320

ABSTRACT

Background: Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods: We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results: IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion: IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.


Subject(s)
Interleukin-17 , Mice, Knockout , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Interleukin-17/metabolism , Mice , Humans , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice, Inbred C57BL , Signal Transduction , Disease Models, Animal
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 744-748, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948276

ABSTRACT

Objective: To investigate the roles of histone H3K27me3 methylation and its regulatory enzymes JMJD3 and EZH2 in the differentiation of Th17 cells in ankylosing spondylitis (AS), to unveil their potential involvement in the pathogenesis of AS, and to provide new strategies and targets for the clinical treatment of AS by analyzing the methylation state of H3K27me3 and its interactions with Th17-related factors. Methods: A total of 84 AS patients (42 active AS patiens and 42 patients in the stable phase of AS) were enrolled for the study, while 84 healthy volunteers were enrolled as the controls. Blood samples were collected. Peripheral blood mononuclear cells were isolated. ELISA assay was performed to examine Th17 cells and the relevant cytokines IL-21, IL-22, and IL-17. The mRNA expressions of RORc, JAK2, and STAT3 were analyzed by RT-PCR, the protein expressions of RORc, JAK2/STAT3 pathway protein, H3K27me3 and the relevant protease (EZH2 and JMJD3) were determined by Western blot. Correlation between H3K27me3, EZH2 and JMJD3 and the key signaling pathway molecules of Th cell differentiation was analyzed by Pearson correlation analysis. Results: The mRNA expressions of RORc, JAK2, and STAT3 were significantly higher in the active phase group than those in the stable phase group ( P<0.05). The relative grayscale values of H3K27me3 and EZH2 in the active phase group were lower than those of the stable phase group, which were lower than those of the control group, with the differences being statistically significant ( P<0.05). The relative grayscale values of JMJD3, RORc, JAK2, pJAK2, STAT3, and pSTAT3 proteins were significantly higher in the active phase group than those in the stable phase group, which were higher than those in the control group (all P<0.05). The proportion of Th17 and the expression level of inflammatory factors in the active period group were higher than those in the other two groups (P<0.05). H3K27me3 was negatively correlated with RORc, JAK2, STAT3, and IL-17, JMJD3 was positvely correlated with JAK2, STAT3, and IL-17, and EZH2 was negatively correlated with JAK2, STAT3, and IL-17 (all P<0.05). Conclusion: The low expression of H3K27me3 in AS is influenced by the gene loci JMJD3 and EZH2, which can regulate the differentiation of Th17 cells and thus play a role in the pathogenesis and progression of AS.


Subject(s)
Cell Differentiation , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Histones , Interleukin-17 , Jumonji Domain-Containing Histone Demethylases , Nuclear Receptor Subfamily 1, Group F, Member 3 , STAT3 Transcription Factor , Spondylitis, Ankylosing , Th17 Cells , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/metabolism , Th17 Cells/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Histones/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Methylation , Interleukins/metabolism , Interleukins/genetics , Interleukin-22 , Male , Female , Adult
6.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999800

ABSTRACT

In this study, we investigated the effect of monobutyrin (MB) on the gut microbiota and intestinal health of weaned mice. MB was administered via gavage to 21-day-old weaned mice. Samples of small intestinal and ileal contents were collected on day 1, day 7, and day 21 post-administration. Seven days of MB administration enhanced the mucin layer and morphological structure of the intestine and the integrity of the intestinal brush border. Both MB and sodium butyrate (SB) accelerated tight junction development. Compared to SB, MB modulated intestinal T cells in a distinct manner. MB increased the ratio of Treg cells in the small intestine upon the cessation of weaning. After 21 days of MB administration, enhancement of the villus structure of the ileum was observed. MB increased the proportion of Th17 cells in the ileum. MB facilitated the transition of the small intestinal microbiota toward an adult microbial community structure and enhanced the complexity of the microbial community structure. An increase in Th17 cells enhanced intestinal barrier function. The regulatory effect of MB on Th17 cells may occur through the intestinal microbiota. Therefore, MB can potentially be used to promote intestinal barrier function, especially for weaning animals, with promising application prospects.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Th17 Cells , Weaning , Animals , Gastrointestinal Microbiome/drug effects , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Male , Mice, Inbred C57BL , Ileum/microbiology , Intestine, Small/microbiology , Intestine, Small/drug effects , Butyric Acid/pharmacology , Butyric Acid/metabolism , Tight Junctions/metabolism , Tight Junctions/drug effects , T-Lymphocytes, Regulatory , Intestinal Barrier Function
7.
Bull Exp Biol Med ; 177(1): 15-21, 2024 May.
Article in English | MEDLINE | ID: mdl-38954298

ABSTRACT

Coronary heart disease (CHD) is related to aberrant aggregation of immune cells in the plaques. This study focused on identification of abnormal T cell subtypes and inflammatory factors in CHD patients. To this end, the subtypes of T cells in peripheral blood of CHD patients (n=141) and healthy controls (n=46) were analyzed by flow cytometry. Plasma concentrations of cytokines were analyzed by multiplex assay. It was shown that the number of T helper cells producing granulocyte-macrophage CSF (GM-CSF) was higher in CHD patients in comparison with healthy controls. In addition, the fractions of Th1 and Th17 cells as well as the levels of IL-4, IL-5, IL-6, and IL-10 in CHD patients also surpassed the control values (p<0.05). However, the level of GM-CSF was insignificantly lower in CHD patients. Thus, we revealed a relationship between the number of T cells producing GM-CSF and the severity of CHD. Our results can be used to develop new potential biomarkers for CHD detection.


Subject(s)
Biomarkers , Coronary Disease , Granulocyte-Macrophage Colony-Stimulating Factor , Interleukin-6 , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Male , Female , Coronary Disease/immunology , Coronary Disease/blood , Middle Aged , Biomarkers/blood , Interleukin-6/blood , Case-Control Studies , Interleukin-10/blood , Th17 Cells/immunology , Th17 Cells/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Interleukin-4/blood , Aged , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Adult , Flow Cytometry , Interleukin-5
8.
Am J Reprod Immunol ; 92(1): e13895, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001587

ABSTRACT

PROBLEM: Preeclampsia (PE) is a hypertensive pregnancy disorder that is a leading cause of maternal and fetal morbidity and mortality characterized by maternal vascular dysfunction, oxidative stress, chronic immune activation, and excessive inflammation. No cure exists beyond delivery of the fetal-placental unit and the mechanisms driving pathophysiology are not fully understood. However, aberrant immune responses have been extensively characterized in clinical studies and shown to mediate PE pathophysiology in animal studies. One pathway that may mediate aberrant immune responses in PE is deficiencies in the IL-33 signaling pathway. In this study, we aim to investigate the impact of IL-33 signaling inhibition on cNK, TH17, and TReg populations, vascular function, and maternal blood pressure during pregnancy. METHOD OF STUDY: In this study, IL-33 signaling was inhibited using two different methods: intraperitoneal administration of recombinant ST2 (which acts as a decoy receptor for IL-33) and administration of a specific IL-33 neutralizing antibody. Maternal blood pressure, uterine artery resistance index, renal and placental oxidative stress, cNK, TH17, and TReg populations, various cytokines, and pre-proendothelin-1 levels were measured. RESULTS: IL-33 signaling inhibition increased maternal blood pressure, uterine artery resistance, placental and renal oxidative stress. IL-33 signaling inhibition also increased placental cNK and TH17 and renal TH17 cells while decreasing placental TReg populations. IL-33 neutralization increased circulating cNK and TH17s and decreased circulating TRegs in addition to increasing pre-proendothelin-1 levels. CONCLUSIONS: Data presented in this study demonstrate a role for IL-33 signaling in controlling vascular function and maternal blood pressure during pregnancy possibly by mediating innate and adaptive immune inflammatory responses, identifying the IL-33 signaling pathway as a potential therapeutic target for managing preeclampsia.


Subject(s)
Interleukin-33 , Pre-Eclampsia , Signal Transduction , Female , Pregnancy , Interleukin-33/metabolism , Pre-Eclampsia/immunology , Animals , Rats , Rats, Sprague-Dawley , Th17 Cells/immunology , Disease Models, Animal , T-Lymphocytes, Regulatory/immunology , Humans , Oxidative Stress , Placenta/immunology , Placenta/metabolism , Blood Pressure , Interleukin-1 Receptor-Like 1 Protein/metabolism
9.
Stem Cell Res Ther ; 15(1): 190, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956621

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) demonstrate a wide range of therapeutic capabilities in the treatment of inflammatory bowel disease (IBD). The intraperitoneal injection of MSCs has exhibited superior therapeutic efficacy on IBD than intravenous injection. Nevertheless, the precise in vivo distribution of MSCs and their biological consequences following intraperitoneal injection remain inadequately understood. Additional studies are required to explore the correlation between MSCs distribution and their biological effects. METHODS: First, the distribution of human umbilical cord MSCs (hUC-MSCs) and the numbers of Treg and Th17 cells in mesenteric lymph nodes (MLNs) were analyzed after intraperitoneal injection of hUC-MSCs. Subsequently, the investigation focused on the levels of transforming growth factor beta1 (TGF-ß1), a key cytokine to the biology of both Treg and Th17 cells, in tissues of mice with colitis, particularly in MLNs. The study also delved into the impact of hUC-MSCs therapy on Treg cell counts in MLNs, as well as the consequence of TGFB1 knockdown hUC-MSCs on the differentiation of Treg cells and the treatment of IBD. RESULTS: The therapeutic effectiveness of intraperitoneally administered hUC-MSCs in the treatment of colitis was found to be significant, which was closely related to their quick migration to MLNs and secretion of TGF-ß1. The abundance of hUC-MSCs in MLNs of colitis mice is much higher than that in other organs even the inflamed sites of colon. Intraperitoneal injection of hUC-MSCs led to a significant increase in the number of Treg cells and a decrease in Th17 cells especially in MLNs. Furthermore, the concentration of TGF-ß1, the key cytokine for Treg differentiation, were also found to be significantly elevated in MLNs after hUC-MSCs treatment. Knockdown of TGFB1 in hUC-MSCs resulted in a noticeable reduction of Treg cells in MLNs and the eventually failure of hUC-MSCs therapy in colitis. CONCLUSIONS: MLNs may be a critical site for the regulatory effect of hUC-MSCs on Treg/Th17 cells and the therapeutic effect on colitis. TGF-ß1 derived from hUC-MSCs promotes local Treg differentiation in MLNs. This study will provide new ideas for the development of MSC-based therapeutic strategies in IBD patients.


Subject(s)
Cell Differentiation , Colitis , Lymph Nodes , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , T-Lymphocytes, Regulatory , Th17 Cells , Transforming Growth Factor beta1 , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Colitis/therapy , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Mesenchymal Stem Cell Transplantation/methods , Mice , Lymph Nodes/metabolism , Th17 Cells/metabolism , Th17 Cells/immunology , Umbilical Cord/cytology , Mesentery/metabolism , Mice, Inbred C57BL , Mice, Inbred BALB C , Male , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology
10.
BMC Immunol ; 25(1): 41, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972998

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by disturbance of pro-inflammatory and anti-inflammatory lymphocytes. Growing evidence shown that gut microbiota participated in the occurrence and development of SLE by affecting the differentiation and function of intestinal immune cells. The purpose of this study was to investigate the changes of gut microbiota in SLE and judge its associations with peripheral T lymphocytes. METHODS: A total of 19 SLE patients and 16 HCs were enrolled in this study. Flow cytometry was used to detect the number of peripheral T lymphocyte subsets, and 16 s rRNA was used to detect the relative abundance of gut microbiota. Analyzed the correlation between gut microbiota with SLEDAI, ESR, ds-DNA and complement. SPSS26.0 software was used to analyze the experimental data. Mann-Whitney U test was applied to compare T lymphocyte subsets. Spearman analysis was used for calculating correlation. RESULTS: Compared with HCs, the proportions of Tregs (P = 0.001), Tfh cells (P = 0.018) and Naïve CD4 + T cells (P = 0.004) significantly decreased in SLE patients, and proportions of Th17 cells (P = 0.020) and γδT cells (P = 0.018) increased in SLE. The diversity of SLE patients were significantly decreased. Addition, there were 11 species of flora were discovered to be distinctly different in SLE group (P < 0.05). In the correlation analysis of SLE, Tregs were positively correlated with Ruminococcus2 (P = 0.042), Th17 cells were positively correlated with Megamonas (P = 0.009), γδT cells were positively correlated with Megamonas (P = 0.003) and Streptococcus (P = 0.004), Tfh cells were positively correlated with Bacteroides (P = 0.040), and Th1 cells were negatively correlated with Bifidobacterium (P = 0.005). As for clinical indicators, the level of Tregs was negatively correlated with ESR (P = 0.031), but not with C3 and C4, and the remaining cells were not significantly correlated with ESR, C3 and C4. CONCLUSION: Gut microbiota and T lymphocyte subsets of SLE changed and related to each other, which may break the immune balance and affect the occurrence and development of SLE. Therefore, it is necessary to pay attention to the changes of gut microbiota and provide new ideas for the treatment of SLE.


Subject(s)
Gastrointestinal Microbiome , Lupus Erythematosus, Systemic , T-Lymphocyte Subsets , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/microbiology , Gastrointestinal Microbiome/immunology , Female , Adult , Male , T-Lymphocyte Subsets/immunology , Middle Aged , T-Lymphocytes, Regulatory/immunology , Young Adult , Th17 Cells/immunology
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 494-500, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952088

ABSTRACT

Objective To investigate the effect of Terminalia chebula water extract (TCWE) on the cellular immunity and PD-1/PD-L1 pathway in rats with collagen-induced arthritis (CIA). Methods SD rats were randomly divided into four groups: a control group, a CIA group, a TCWE group and a methotrexate (MTX) group, with 15 rats in each group. Except for the control group, SD rats in other groups were subcutaneously injected with type II collagen to establish the model of collagen-induced arthritis (CIA). The rats in the TCWE group were treated with 20 mg/(kg.d) TCWE and the rats in the MTX group were treated with 1.67 mg/(kg.d) MTX. After 14 days of treatment, the cartilage morphology was examined using hematoxylin-eosin (HE) staining, and splenic T lymphocyte apoptosis and Treg/Th17 cell ratio were detected by flow cytometry. The mRNA expressions of retinoid-related orphan nuclear receptor γt (RORγt), forkhead box P3 (FOXP3), PD-1 and PD-L1 in spleen were detected by reverse transcription PCR. The expression and localization of RORγt and FOXP3 were detected by immunohistochemical staining. The protein expressions of PD-1 and PD-L1 in splenic lymphocytes were detected by Western blot, and the levels of serum interleukin 17 (IL-17) and transforming growth factor ß (TGF-ß) in rats were detected by ELISA. Results Compared with CIA group, the pathological changes of cartilage and synovium were significantly alleviated in the TCWE group and the MTX group. Both the apoptosis rate of T lymphocytes in spleen and the ratio of Treg/Th17 cells increased. The expression of RORγt decreased, while the expressions of FOXP3, PD-1 and PD-L1 increased in spleen lymphocytes. The level of serum IL-17 decreased, while the level of serum TGF-ß increased. Conclusion TCWE treatment may activate PD-1/PD-L1 pathway in spleen cells to regulate cellular immunity, thus reducing cartilage injury in CIA rats.


Subject(s)
Arthritis, Experimental , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Rats, Sprague-Dawley , Spleen , Terminalia , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Spleen/drug effects , Spleen/immunology , Spleen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Rats , Terminalia/chemistry , Male , Immunity, Cellular/drug effects , Up-Regulation/drug effects , Plant Extracts/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism
12.
Pediatr Allergy Immunol ; 35(7): e14187, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967090

ABSTRACT

BACKGROUND: The immunological mechanisms behind the clinical association between asthma and obesity in adolescence are not fully understood. This study aimed to find new plasma protein biomarkers associated specifically with coincident asthma and obesity in adolescents. METHODS: This was a cross-sectional study in children and adolescents 10-19 years old (N = 390). Relative plasma concentrations of 113 protein biomarkers related to inflammation and immune response were determined by proximity extension assay (Target 96; Olink, Uppsala, Sweden). Differences in protein concentrations between healthy controls (n = 84), subjects with asthma (n = 138), subjects with obesity (n = 107), and subjects with both asthma and obesity (AO; n = 58) were analyzed by ANCOVA, adjusting for age and sex, and in a separate model adjusting also for the sum of specific IgE antibody concentrations to a mix of food allergens (fx5) and aeroallergens (Phadiatop). Proteins elevated in the AO group but not in the obesity or asthma groups were considered specifically elevated in asthma and obesity. RESULTS: Five proteins were elevated specifically in the AO group compared to controls (here sorted from largest to smallest effect of asthma and obesity combined): CCL8, IL-33, IL-17C, FGF-23, and CLEC7A. The effects of adjusting also for specific IgE were small but IL-33, IL-17C, and FGF-23 were no longer statistically significant. CONCLUSION: We identified several new potential plasma biomarkers specifically elevated in coincident asthma and obesity in adolescents. Four of the proteins, CCL8, IL-33, IL-17C, and CLEC7A, have previously been associated with viral mucosal host defense and Th17 cell differentiation.


Subject(s)
Asthma , Biomarkers , Blood Proteins , Cell Differentiation , Th17 Cells , Humans , Asthma/immunology , Asthma/blood , Asthma/diagnosis , Adolescent , Female , Male , Th17 Cells/immunology , Child , Cross-Sectional Studies , Biomarkers/blood , Young Adult , Obesity/immunology , Obesity/blood , Immunoglobulin E/blood
13.
Stem Cell Res Ther ; 15(1): 216, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020448

ABSTRACT

BACKGROUND: Human umbilical cord mesenchymal stem cells-derived extracellular vesicles (hUCMSC-EVs) have potent immunomodulatory properties similar to parent cells. This study investigated the therapeutic effects and immunomodulatory mechanisms of hUCMSC-EVs in an experimental lupus nephritis model. METHODS: The hUCMSC-EVs were isolated by using differential ultracentrifugation. In vivo, the therapeutic effects of hUCMSC-EVs in lupus-prone MRL/lpr mice were investigated, and the mechanisms of treatment were explored according to the abnormal T and B cell responses among both the spleen and kidney. RESULTS: MRL/lpr mice treated with hUCMSC-EVs reduced proteinuria extent, serum creatinine and renal pathological damage; decreased splenic index and serum anti-dsDNA IgG level; and improved survival rate. hUCMSC-EVs lowered the percentage of T helper (Th)1 cells, double-negative T (DNT) cells, and plasma cells among splenocytes; inhibited the infiltration of Th17 cells but promoted regulatory T (Treg) cells in the kidney, followed by a reduction in pro-inflammatory cytokine levels(IFN-γ, IL-2, IL-6, IL-21, and IL-17 A). In addition, hUCMSC-EVs inhibited the activation of STAT3 and down-regulated IL-17 A protein levels in the kidney. CONCLUSION: The results of this study demonstrated that hUCMSC-EVs had therapeutic effects on experimental lupus nephritis (LN) by regulating Th1/Th17/Treg imbalance and inhibiting DNT and plasma cells. Additionally, hUCMSC-EVs inhibited Th17 cell differentiation in kidney by regulating the IL-6/STAT3/IL-17 signal pathway, which might be an important mechanism for alleviating renal injury. Taken together, we demonstrated that hUCMSC-EVs regulating T and B cell immune responses might represent a novel mechanism of hUCMSCs in treating LN, thus providing a new strategy for treating LN.


Subject(s)
Extracellular Vesicles , Lupus Nephritis , Mesenchymal Stem Cells , Mice, Inbred MRL lpr , Lupus Nephritis/therapy , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Lupus Nephritis/metabolism , Animals , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Humans , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , STAT3 Transcription Factor/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Spleen , Disease Models, Animal , Kidney/pathology , Kidney/metabolism , Cytokines/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Umbilical Cord/cytology
14.
Skelet Muscle ; 14(1): 16, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026344

ABSTRACT

BACKGROUND: This study aims to investigate the involvement of acid sphingomyelinase (ASM) in the pathology of dermatomyositis (DM), making it a potential therapeutic target for DM. METHODS: Patients with DM and healthy controls (HCs) were included to assess the serum level and activity of ASM, and to explore the associations between ASM and clinical indicators. Subsequently, a myositis mouse model was established using ASM gene knockout and wild-type mice to study the significant role of ASM in the pathology and to assess the treatment effect of amitriptyline, an ASM inhibitor. Additionally, we investigated the potential treatment mechanism by targeting ASM both in vivo and in vitro. RESULTS: A total of 58 DM patients along with 30 HCs were included. The ASM levels were found to be significantly higher in DM patients compared to HCs, with median (quartile) values of 2.63 (1.80-4.94) ng/mL and 1.64 (1.47-1.96) ng/mL respectively. The activity of ASM in the serum of DM patients was significantly higher than that in HCs. Furthermore, the serum levels of ASM showed correlations with disease activity and muscle enzyme levels. Knockout of ASM or treatment with amitriptyline improved the severity of the disease, rebalanced the CD4 T cell subsets Th17 and Treg, and reduced the production of their secreted cytokines. Subsequent investigations revealed that targeting ASM could regulate the expression of relevant transcription factors and key regulatory proteins. CONCLUSION: ASM is involved in the pathology of DM by regulating the differentiation of naive CD4 + T cells and can be a potential treatment target.


Subject(s)
Amitriptyline , Cell Differentiation , Dermatomyositis , Mice, Knockout , Sphingomyelin Phosphodiesterase , T-Lymphocytes, Regulatory , Th17 Cells , Dermatomyositis/drug therapy , Dermatomyositis/immunology , Dermatomyositis/genetics , Humans , Animals , Cell Differentiation/drug effects , Male , Female , Middle Aged , Th17 Cells/drug effects , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Amitriptyline/pharmacology , Amitriptyline/therapeutic use , Adult , Mice , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Mice, Inbred C57BL
15.
Mol Cell Probes ; 76: 101969, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964425

ABSTRACT

The progression and pathogenesis of membranous glomerulonephritis (MGN) are inextricably linked to chronic inflammation. Despite improving clinical remission rates due to the application of cyclophosphamide (CYC), treatment of MGN still requires further exploration. Ruxolitinib (Ruxo) negatively affects the signaling pathways participating in the production of pro-inflammatory cytokines. Hence, we investigated whether the combination of CYC and Ruxo can modulate inflammation through influencing T helper 17 (Th17) lineages and regulatory T cells (Tregs). Passive Heymann nephritis (PHN), an experimental model of MGN, was induced in a population of rats. Then, the animals were divided into five groups: PHN, CYC-receiving, Ruxo-receiving, CYC-Ruxo-receiving PHN rats, and healthy controls. After 28 days of treatment, biochemistry analysis was performed and splenocytes were isolated for flowcytometry investigation of Th17 cells and Tregs. The correlative transcription factors of the cells, alongside their downstream cytokine gene expressions, were also assessed using real-time PCR. Furthermore, serum cytokine signatures for the lymphocytes were determined through ELISA. The combination of CYC and Ruxo significantly reduced the serum values of urea in rats versus the PHN group (24.62 ± 7.970 vs. 40.60 ± 10.81 mg/dL). In contrast to Treg's activities, the functionality of Th17 cells noticeably increased not only in PHN rats but also in CYC or Ruxo-receiving PHN animals when compared with the control (10.60 ± 2.236, 8.800 ± 1.465, 8.680 ± 1.314 vs. 4.420 ± 1.551 %). However, in comparison to the PHN group, the incidence of Th17 cells notably fell in rats receiving CYC and Ruxo (10.60 ± 2.236 vs. 6.000 ± 1.373 %) in favor of the Treg's percentage (5.020 ± 1.761 vs. 8.980 ± 1.178 %), which was verified by the gene expressions and cytokine productions correlative to these lymphocytes. The combination of CYC and Ruxo was able to decline Th17 cells in favor of Tregs improvement in PHN rats, suggesting an innovative combination therapy in MGN treatment approaches.


Subject(s)
Cyclophosphamide , Cytokines , Glomerulonephritis, Membranous , Nitriles , Pyrazoles , Pyrimidines , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Th17 Cells/drug effects , Th17 Cells/immunology , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Rats , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Cytokines/metabolism , Male , Disease Models, Animal , Drug Therapy, Combination
16.
Invest Ophthalmol Vis Sci ; 65(8): 26, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39017634

ABSTRACT

Purpose: CD25KO mice are a model of Sjögren disease (SjD) driven by autoreactive T cells. Cathepsin S (CTSS) is a protease crucial for major histocompatibility complex class II presentation that primes T cells. We investigated if a diet containing CTSS inhibitor would improve autoimmune signs in CD25KO mice. Methods: Four-week female CD25KO mice were randomly chosen to receive chow containing a CTSS inhibitor (R05461111, 262.5 mg/kg chow) or standard chow for 4 weeks. Cornea sensitivity was measured. Inflammatory score was assessed in lacrimal gland (LG) histologic sections. Flow cytometry of LG and ocular draining lymph nodes (dLNs) investigated expression of Th1 and Th17 cells. Expression of inflammatory, T- and B-cell, and apoptotic markers in the LG were assessed with quantitative PCR. The life span of mice receiving CTSS inhibitor or standard chow was compared. CD4+ T cells from both groups were isolated from spleens and adoptively transferred into RAG1KO female recipients. Results: Mice receiving CTSS inhibitor had better cornea sensitivity and improved LG inflammatory scores. There was a significant decrease in the frequency of CD4+ immune cells and a significant increase in the frequency of CD8+ immune cells in the dLNs of CTSS inhibitor mice. There was a significant decrease in Th1 and Th17 cells in CTSS inhibitor mice in both LGs and dLNs. Ifng, Ciita, and Casp8 mRNA in CTSS inhibitor mice decreased. Mice that received the CTSS inhibitor lived 30% longer. Adoptive transfer recipients with CTSS inhibitor-treated CD4+ T cells had improved cornea sensitivity and lower inflammation scores. Conclusions: Inhibiting CTSS could be a potential venue for the treatment of SjD in the eye and LG.


Subject(s)
Cathepsins , Disease Models, Animal , Flow Cytometry , Lacrimal Apparatus , Mice, Knockout , Sjogren's Syndrome , Animals , Mice , Sjogren's Syndrome/immunology , Sjogren's Syndrome/drug therapy , Female , Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Cathepsins/genetics , Lacrimal Apparatus/pathology , Lacrimal Apparatus/metabolism , Mice, Inbred C57BL , Adoptive Transfer , Th17 Cells/immunology , Real-Time Polymerase Chain Reaction , Th1 Cells/immunology , Interleukin-2 Receptor alpha Subunit
17.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39017670

ABSTRACT

Th17 cell plasticity is associated with pathogenicity in chronic inflammation. In a model of periodontitis, McClure et al. (https://doi.org/10.1084/jem.20232015) describe location-dependent divergence in Th17 plasticity, with surprisingly limited conversion in inflamed gingiva but emergence of protective exTh17-TfH cells in draining LN that enhance protective antibody.


Subject(s)
Th17 Cells , Animals , Th17 Cells/immunology , Humans , Periodontitis/immunology , Periodontitis/pathology , Inflammation/immunology , Inflammation/pathology , Gingiva/pathology , Gingiva/immunology , Cell Plasticity/immunology
18.
Front Immunol ; 15: 1395749, 2024.
Article in English | MEDLINE | ID: mdl-39021563

ABSTRACT

Objective: We present a case of multiple tumefactive demyelinating lesions (TDLs) emerging 24 months after the second cycle of alemtuzumab treatment. Methods: A woman with relapsing-remitting multiple sclerosis (MS) discontinued fingolimod treatment due to gestational desire, which resulted in a severe disease exacerbation. Alemtuzumab was initiated, accompanied by regular clinical, radiological, and immunological monitoring. Results: She relapsed prior to the second cycle, exhibiting 12 T1Gd+ lesions, and peripheral blood showed an increase in B-cells and a decrease in T-cells. At 24 months following the second cycle, she developed cognitive impairment and multiple T1Gd+ lesions, including TDLs, were evident on the brain MRI. We found not only an increase in B-cells but also in Th1 central memory cells. Th1/Th17 cells increased 3 months before the detection of TDLs. Conclusions: TDLs can appear 24 months after the second cycle of alemtuzumab treatment in MS. The increase in Th1/Th17 cells could be a candidate biomarker for TDLs in alemtuzumab-treated MS patients.


Subject(s)
Alemtuzumab , Biomarkers , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Humans , Alemtuzumab/adverse effects , Alemtuzumab/therapeutic use , Female , Adult , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Th17 Cells/immunology , Th1 Cells/immunology , B-Lymphocytes/immunology , B-Lymphocytes/drug effects , Brain/diagnostic imaging , Brain/pathology , Brain/immunology
19.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928413

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease that significantly impacts quality of life by disrupting CD4+ T cell immune homeostasis. The identification of a low-side-effect drug for RA treatment is urgently needed. Our previous study suggests that Trichinella spiralis paramyosin (Ts-Pmy) has immunomodulatory effects, but its potential effect on CD4+ T cell response in RA remains unclear. In this study, we used a murine model to investigate the role of rTs-Pmy in regulating CD4+ T cell differentiation in collagen-induced arthritis (CIA). Additionally, we assessed the impact of rTs-Pmy on CD4+ T cell differentiation towards the Th1 and Th17 phenotypes, which are associated with inflammatory responses in arthritis, using in vitro assays. The results demonstrated that rTs-Pmy administration reduced arthritis severity by inhibiting Th1 and Th17 response while enhancing Treg response. Prophylactic administration of Ts-Pmy showed superior efficacy on CIA compared to therapeutic administration. Furthermore, in vitro assays demonstrated that rTs-Pmy could inhibit the differentiation of CD4+ T cells into Th1 and Th17 while inducing the production of Tregs, suggesting a potential mechanism underlying its therapeutic effects. This study suggests that Ts-Pmy may ameliorate CIA by restoring the immune balance of CD4+ T cells and provides new insights into the mechanism through which helminth-derived proteins exert their effects on autoimmune diseases.


Subject(s)
Arthritis, Experimental , CD4-Positive T-Lymphocytes , Cell Differentiation , Th17 Cells , Trichinella spiralis , Tropomyosin , Animals , Trichinella spiralis/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Mice , Cell Differentiation/drug effects , Tropomyosin/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th1 Cells/immunology , Male , Helminth Proteins/pharmacology , Helminth Proteins/therapeutic use , Helminth Proteins/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/drug therapy , T-Lymphocytes, Regulatory/immunology , Disease Models, Animal , Mice, Inbred DBA
20.
J Clin Lab Anal ; 38(10): e25076, 2024 May.
Article in English | MEDLINE | ID: mdl-38853390

ABSTRACT

BACKGROUND: Severe acute pancreatitis (SAP) is associated with tremendous systemic inflammation, T-helper 17 (Th17) cells, and regulatory T (Treg) cells play an essential role in the inflammatory responses. Meanwhile, soluble fibrinogen-like protein 2 (Sfgl2) is a critical immunosuppressive effector cytokine of Treg cells and modulates immune responses. However, the impact of SAP induction on Sfgl2 expression and the role of Sfgl2 in immunomodulation under SAP conditions are largely unknown. METHODS: A taurocholate-induced mouse SAP model was established. The ratios of CD4+CD25+Foxp3+ Treg cells or CD4+IL-17+ Th17 cells in blood and pancreatic tissues as well as surface expression of CD80, CD86, and major histocompatibility complex class II (MHC-II) were determined by flow cytometry. Gene mRNA expression was determined by qPCR. Serum amylase and soluble factors were quantitated by commercial kits. Bone marrow-derived dendritic cells (DCs) were generated, and NF-κB/p65 translocation was measured by immunofluorescence staining. RESULTS: SAP induction in mice decreased the Th17/Treg ratio in the pancreatic tissue and increased the Th17/Treg ratio in the peripheral blood. In addition, SAP was associated with a reduced level of Sfgl2 in the pancreatic tissue and blood: higher levels of serum IL-17, IL-2, IFN-α, and TNF-α, and lower levels of serum IL-4 and IL-10. Furthermore, the SAP-induced reduction in Sfgl2 expression was accompanied by dysregulated maturation of bone marrow-derived DCs. CONCLUSIONS: SAP causes reduced Sfgl2 expression and Th17/Treg imbalance, thus providing critical insights for the development of Sfgl2- and Th17/Treg balance-targeted immunotherapies for patients with SAP.


Subject(s)
Disease Models, Animal , Fibrinogen , Pancreatitis , T-Lymphocytes, Regulatory , Taurocholic Acid , Th17 Cells , Animals , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Pancreatitis/immunology , Pancreatitis/chemically induced , Pancreatitis/metabolism , Mice , Fibrinogen/metabolism , Male , Mice, Inbred C57BL , Down-Regulation , Dendritic Cells/immunology , Dendritic Cells/metabolism , Acute Disease , Pancreas/immunology , Pancreas/pathology , Pancreas/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL