Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 313
1.
Lakartidningen ; 1212024 Feb 27.
Article Sv | MEDLINE | ID: mdl-38712675

Anaplastic and poorly differentiated thyroid cancer (ATC, PDTC) are rare and highly aggressive tumors that historically have been associated with a short life expectancy and low chance of cure. Molecular pathology and the introduction of highly effective targeted drugs have revolutionized the possibilities of management of patients with ATC and PDTC, with BRAF and MEK inhibitors as the most prominent example. Here we provide updated recommendations regarding diagnostics and management, including primary surgical management and targeted therapies based on specific molecular pathological findings.


Molecular Targeted Therapy , Proto-Oncogene Proteins B-raf , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/diagnosis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/diagnosis , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use
2.
Int Immunopharmacol ; 133: 112102, 2024 May 30.
Article En | MEDLINE | ID: mdl-38652971

Anaplastic thyroid carcinoma (ATC) is the most aggressive subtype of thyroid cancer with few effective therapies. Though immunotherapies such as targeting PD-1/PD-L1 axis have benefited patients with solid tumor, the druggable immune checkpoints are quite limited in ATC. In our study, we focused on the anti-tumor potential of sialic acid-binding Ig-like lectins (Siglecs) in ATC. Through screening by integrating microarray datasets including 216 thyroid-cancer tissues and single-cell RNA-sequencing, SIGLEC family members CD33, SIGLEC1, SIGLEC10 and SIGLEC15 were significantly overexpressed in ATC, among which SIGLEC15 increased highest and mainly expressed on cancer cells. SIGLEC15high ATC cells are characterized by high expression of serine protease PRSS23 and cancer stem cell marker CD44. Compared with SIGLEC15low cancer cells, SIGLEC15high ATC cells exhibited higher interaction frequency with tumor microenvironment cells. Further study showed that SIGLEC15high cancer cells mainly interacted with T cells by immunosuppressive signals such as MIF-TNFRSF14 and CXCL12-CXCR4. Notably, treatment of anti-SIGLEC15 antibody profoundly increased the cytotoxic ability of CD8+ T cells in a co-culture model and zebrafish-derived ATC xenografts. Consistently, administration of anti-SIGLEC15 antibody significantly inhibited tumor growth and prolonged mouse survival in an immunocompetent model of murine ATC, which was associated with increase of M1/M2, natural killer (NK) cells and CD8+ T cells, and decrease of myeloid-derived suppressor cells (MDSCs). SIGLEC15 inhibited T cell activation by reducing NFAT1, NFAT2, and NF-κB signals. Blocking SIGLEC15 increased the secretion of IFN-γ and IL-2 in vitro and in vivo. In conclusion, our finding demonstrates that SIGLEC15 is an emerging and promising target for immunotherapy in ATC.


Immunotherapy , Lectins , Thyroid Carcinoma, Anaplastic , Humans , Animals , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/immunology , Thyroid Carcinoma, Anaplastic/genetics , Immunotherapy/methods , Mice , Cell Line, Tumor , Lectins/genetics , Lectins/metabolism , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Thyroid Neoplasms/genetics , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , Xenograft Model Antitumor Assays , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Immunoglobulins , Membrane Proteins
3.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Article En | MEDLINE | ID: mdl-38498903

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Mice , Humans , Thyroid Carcinoma, Anaplastic/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Mice, Nude , Zebrafish/metabolism , Chromosomal Instability , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Cell Line, Tumor , Oncogene Proteins/genetics , Kinesins/genetics
4.
Thyroid ; 34(4): 467-476, 2024 Apr.
Article En | MEDLINE | ID: mdl-38343359

Background: Driver mutations at BRAF V600 are frequently identified in papillary thyroid cancer and anaplastic thyroid cancer (ATC), in which BRAF inhibitors have shown clinical effectiveness. This Japanese phase 2 study evaluated the efficacy and safety of a BRAF inhibitor, encorafenib, combined with an MEK inhibitor, binimetinib, in patients with BRAF V600-mutated thyroid cancer. Methods: This phase 2, open-label, uncontrolled study was conducted at 10 institutions targeted patients with BRAF V600-mutated locally advanced or distant metastatic thyroid cancer not amenable to curative treatment who became refractory/intolerant to ≥1 previous vascular endothelial growth factor receptor-targeted regimen(s) or were considered ineligible for those. The primary endpoint was centrally assessed objective response rate (ORR). The secondary endpoints included duration of response (DOR), progression-free survival (PFS), overall survival (OS), and safety. Results: We enrolled 22 patients with BRAFV600E-mutated thyroid cancer: 17 had differentiated thyroid cancer (DTC), and 5 had ATC. At data cutoff (October 26, 2022), the median follow-up was 11.5 (range = 3.4-19.0) months. The primary endpoint of centrally assessed ORR was 54.5% (95% confidence interval [CI] 32.2-75.6; partial response in 12 patients and stable disease in 10). The ORRs in patients with DTC and ATC were 47.1% (8 of 17) and 80.0% (4 of 5), respectively. The medians for DOR and PFS by central assessment and for OS were not reached in the overall population, the DTC subgroup, or the ATC subgroup. At 12 months, the rate of ongoing response was 90.9%, and the PFS and OS rates were 78.8% and 81.8%, respectively. All patients developed ≥1 adverse events (AEs): grade 3 AEs in 6 patients (27.3%). No patients developed grade 4-5 AEs. The most common grade 3 AE was lipase increased (4 patients [18.2%]). Those toxicities were mostly manageable with appropriate monitoring and dose adjustment. Conclusions: Treatment with encorafenib plus binimetinib met the primary endpoint criteria and demonstrated clinical benefit in patients with BRAFV600E-mutated thyroid cancer regardless of its histological type, such as DTC or ATC, with no new safety concerns identified. Encorafenib plus binimetinib could thus be a new treatment option for BRAF V600-mutated thyroid cancer. Clinical Trial Registration number: Japan Registry of Clinical Trials: jRCT2011200018.


Benzimidazoles , Carbamates , Sulfonamides , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Japan , Mutation , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf/genetics , Thyroid Carcinoma, Anaplastic/chemically induced , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/chemically induced , Vascular Endothelial Growth Factor A/genetics
5.
Cell Rep ; 43(3): 113826, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38412093

Anaplastic thyroid carcinoma is arguably the most lethal human malignancy. It often co-occurs with differentiated thyroid cancers, yet the molecular origins of its aggressivity are unknown. We sequenced tumor DNA from 329 regions of thyroid cancer, including 213 from patients with primary anaplastic thyroid carcinomas. We also whole genome sequenced 9 patients using multi-region sequencing of both differentiated and anaplastic thyroid cancer components. Using these data, we demonstrate thatanaplastic thyroid carcinomas have a higher burden of mutations than other thyroid cancers, with distinct mutational signatures and molecular subtypes. Further, different cancer driver genes are mutated in anaplastic and differentiated thyroid carcinomas, even those arising in a single patient. Finally, we unambiguously demonstrate that anaplastic thyroid carcinomas share a genomic origin with co-occurring differentiated carcinomas and emerge from a common malignant field through acquisition of characteristic clonal driver mutations.


Adenocarcinoma , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Mutation/genetics , Genomics
6.
Cell Death Dis ; 15(2): 125, 2024 02 09.
Article En | MEDLINE | ID: mdl-38336839

Anaplastic thyroid carcinoma (ATC) has a 100% disease-specific mortality rate. The JAK1/2-STAT3 pathway presents a promising target for treating hematologic and solid tumors. However, it is unknown whether the JAK1/2-STAT3 pathway is activated in ATC, and the anti-cancer effects and the mechanism of action of its inhibitor, ruxolitinib (Ruxo, a clinical JAK1/2 inhibitor), remain elusive. Our data indicated that the JAK1/2-STAT3 signaling pathway is significantly upregulated in ATC tumor tissues than in normal thyroid and papillary thyroid cancer tissues. Apoptosis and GSDME-pyroptosis were observed in ATC cells following the in vitro and in vivo administration of Ruxo. Mechanistically, Ruxo suppresses the phosphorylation of STAT3, resulting in the repression of DRP1 transactivation and causing mitochondrial fission deficiency. This deficiency is essential for activating caspase 9/3-dependent apoptosis and GSDME-mediated pyroptosis within ATC cells. In conclusion, our findings indicate DRP1 is directly regulated and transactivated by STAT3; this exhibits a novel and crucial aspect of JAK1/2-STAT3 on the regulation of mitochondrial dynamics. In ATC, the transcriptional inhibition of DRP1 by Ruxo hampered mitochondrial division and triggered apoptosis and GSDME-pyroptosis through caspase 9/3-dependent mechanisms. These results provide compelling evidence for the potential therapeutic effectiveness of Ruxo in treating ATC.


Nitriles , Pyrazoles , Pyrimidines , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Mitochondrial Dynamics , Pyroptosis , Caspase 9/metabolism , Cell Proliferation , Cell Line, Tumor , Apoptosis
7.
BMC Cancer ; 24(1): 210, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38360598

OBJECTIVE: This study was designed to investigate the regulatory effects of kinesin family member (KIF) 23 on anaplastic thyroid cancer (ATC) cell viability and migration and the underlying mechanism. METHODS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to analyze the levels of KIF23 in ATC cells. Besides, the effects of KIF23 and sirtuin (SIRT) 7 on the viability and migration of ATC cells were detected using cell counting kit-8, transwell and wound healing assays. The interaction between SIRT7 and KIF23 was evaluated by co-immunoprecipitation (Co-IP) assay. The succinylation (succ) of KIF23 was analyzed by western blot. RESULTS: The KIF23 expression was upregulated in ATC cells. Silencing of KIF23 suppressed the viability and migration of 8505C and BCPAP cells. The KIF23-succ level was decreased in ATC cells. SIRT7 interacted with KIF23 to inhibit the succinylation of KIF23 at K537 site in human embryonic kidney (HEK)-293T cells. Overexpression of SIRT7 enhanced the protein stability of KIF23 in HEK-293T cells. Besides, overexpression of KIF23 promoted the viability and migration of 8505C and BCPAP cells, which was partly blocked by silenced SIRT7. CONCLUSIONS: SIRT7 promoted the proliferation and migration of ATC cells by regulating the desuccinylation of KIF23.


Sirtuins , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Cell Line, Tumor , Apoptosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Cell Proliferation/genetics , Microtubule-Associated Proteins , Sirtuins/genetics , Sirtuins/pharmacology
8.
Thyroid ; 34(3): 336-346, 2024 Mar.
Article En | MEDLINE | ID: mdl-38226606

Background: The dabrafenib plus trametinib combination (DT) has revolutionized the treatment of BRAFV600E-mutated anaplastic thyroid carcinoma (BRAFm-ATC). However, patients eventually develop resistance and progress. Single-agent anti-PD-1 inhibitor spartalizumab has shown a median overall survival (mOS) of 5.9 months. Combination of immunotherapy with BRAF/MEK inhibitors (BRAF/MEKi) seems to improve outcomes compared with BRAF/MEKi alone, although no direct comparison is available. BRAF-targeted therapy before surgery (neoadjuvant approach) has also shown improvement in survival. We studied the efficacy and safety of DT plus pembrolizumab (DTP) compared with current standard-of-care DT alone as an initial treatment, as well as in the neoadjuvant setting. Methods: Retrospective single-center study of patients with BRAFm-ATC treated with first-line BRAF-directed therapy between January 2014 and March 2023. Three groups were evaluated: DT, DTP (pembrolizumab added upfront or at progression), and neoadjuvant (DT before surgery, and pembrolizumab added before or after surgery). The primary endpoint was mOS between DT and DTP. Secondary endpoints included median progression-free survival (mPFS) and response rate with DT versus DTP as initial treatments, and the exploratory endpoint was mOS in the neoadjuvant group. Results: Seventy-one patients were included in the primary analysis: n = 23 in DT and n = 48 in DTP. Baseline demographics were similar between groups, including the presence of metastatic disease at start of treatment (p = 0.427) and prior treatments with surgery (p = 0.864) and radiation (p = 0.678). mOS was significantly longer with DTP (17.0 months [confidence interval CI, 11.9-22.1]) compared with DT alone (9.0 months [CI, 4.5-13.5]), p = 0.037. mPFS was also significantly improved with DTP as the initial treatment (11.0 months [CI, 7.0-15.0]) compared with DT alone (4.0 months [CI, 0.7-7.3]), p = 0.049. Twenty-three patients were in the exploratory neoadjuvant group, where mOS was the longest (63.0 months [CI, 15.5-110.5]). No grade 5 adverse events (AEs) occurred in all three cohorts, and 32.4% had immune-related AEs, most frequently hepatitis and colitis. Conclusions: Our results show that in BRAFm-ATC, addition of pembrolizumab to dabrafenib/trametinib may significantly prolong survival. Surgical resection of the primary tumor after initial BRAF-targeted therapy in selected patients may provide further survival benefit. However, conclusions are limited by the retrospective nature of the study. Additional prospective data are needed to confirm this observation.


Imidazoles , Pyridones , Pyrimidinones , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Retrospective Studies , Proto-Oncogene Proteins B-raf/genetics , Prospective Studies , Antineoplastic Combined Chemotherapy Protocols , Oximes , Protein Kinase Inhibitors/therapeutic use , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Mutation
9.
Rev Endocr Metab Disord ; 25(1): 123-147, 2024 Feb.
Article En | MEDLINE | ID: mdl-37648897

Anaplastic thyroid cancer (ATC) is an infrequent thyroid tumor that usually occurs in elderly patients. There is often a history of previous differentiated thyroid cancer suggesting a biological progression. It is clinically characterized by a locally invasive cervical mass of rapid onset. Metastases are found at diagnosis in 50% of patients. Due to its adverse prognosis, a prompt diagnosis is crucial. In patients with unresectable or metastatic disease, multimodal therapy (chemotherapy and external beam radiotherapy) has yielded poor outcomes with 12-month overall survival of less than 20%. Recently, significant progress has been made in understanding the oncogenic pathways of ATC, leading to the identification of BRAF V600E mutations as the driver oncogene in nearly 40% of cases. The combination of the BRAF inhibitor dabrafenib (D) and MEK inhibitor trametinib (T) showed outstanding response rates in BRAF-mutated ATC and is now considered the standard of care in this setting. Recently, it was shown that neoadjuvant use of DT followed by surgery achieved 24-month overall survival rates of 80%. Although these approaches have changed the management of ATC, effective therapies are still needed for patients with BRAF wild-type ATC, and high-quality evidence is lacking for most aspects of this neoplasia. Additionally, in real-world settings, timely access to multidisciplinary care, molecular testing, and targeted therapies continues to be a challenge. Health policies are warranted to ensure specialized treatment for ATC.The expanding knowledge of ATC´s molecular biology, in addition to the ongoing clinical trials provides hope for the development of further therapeutic options.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Aged , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/therapeutic use , Thyroid Neoplasms/genetics , Mutation
10.
Chirurgie (Heidelb) ; 95(3): 192-199, 2024 Mar.
Article De | MEDLINE | ID: mdl-37973622

BACKGROUND: Anaplastic thyroid carcinoma (ATC) represents the rarest but most aggressive tumor entity of the thyroid gland. In this respect, the treatment of advanced ATC has rapidly evolved in recent years. Recently, new personalized forms of treatment that address the somatic mutational status of the tumor have been increasingly used. The aim of this article is to provide an overview of current molecular-based and personalized treatment options for ATC. METHODS: A current literature search was performed with a focus on personalized molecular-based treatment options for ATC. RESULTS: The majority of patients suffering from ATC have an advanced tumor disease at the time of initial diagnosis. Despite multimodal treatment approaches consisting of surgery, external beam radiation therapy (EBRT) and chemotherapy (CTX), the prognosis of ATC is still poor. Accordingly, the focus of innovative treatment approaches is on molecular-based, individualized tumor therapy, including in particular BRAFV600E and multikinase inhibitors. The potential of the latter seems to lie particularly in combination therapy with immune checkpoint inhibitors. These treatment options can be used in both adjuvant and neoadjuvant settings. Neoadjuvant treatment of advanced ATC can achieve a potentially resectable treatment setting and improve the poor prognosis of affected patients; however, larger prospective and randomized studies on these combination therapies are currently pending. CONCLUSION: The focus of future treatment approaches for ATC will be on individualized, molecular-based tumor therapy. In particular, the neoadjuvant use of these therapies may change the paradigm of ATC surgery as locally advanced as well as metastatic carcinomas can be converted to a potentially resectable status and made amenable to surgery.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/diagnosis , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Prospective Studies , Prognosis
11.
Surgeon ; 22(1): e48-e53, 2024 Feb.
Article En | MEDLINE | ID: mdl-37866980

BACKGROUND: Anaplastic thyroid cancer (ATC) is a rare, undifferentiated form of thyroid cancer accounting for less that 2 % of thyroid cancers. Here we provide an overview of the contemporary understanding of ATC as well as discussing in detail any pertinent updates in the molecular understanding and treatment of this disease with reference to the 2021 American Thyroid Association (ATA) guidelines. METHODS: A review of the literature regarding the understanding, management and prognosis of ATC was undertaken using both Pubmed and Cochrane databases along with local institutional experience. Studies published in the last 5 years were prioritised for inclusion. RESULTS: Between 80 and 90 % of patients will have disease that has spread beyond the thyroid gland at presentation. Despite the use of aggressive, multimodal, conventional treatment strategies encompassing surgery and chemoradiotherapy, the median overall survival has remained between 3 and 6 months. Our understanding has evolved regarding the key oncogenic mutations involved in the development of ATC. These include BRAF, RAS, PI3K, PTEN, TP53 and TERT mutations. There is growing evidence that novel targeted therapies against these mutations may improve outcomes in this disease which has led to FDA approval of dabrafenib/trametinib combined BRAF/Mek inhibition. CONCLUSIONS: The prognosis of ATC remains dismal. Recent development and approval of targeted therapies offers hope of improved oncologic outcomes with further data eagerly awaited surrounding the impact of these targeted therapies.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/therapy , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Prognosis , Mutation
12.
Endocr Relat Cancer ; 31(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38015791

The genetic repertoire of primary thyroid cancers (TCs) is well documented, but there is a considerable lack of molecular profiling in metastatic TCs. Here, we retrieved and analyzed the molecular and clinical features of 475 primary and metastatic TCs subjected to targeted DNA sequencing, from the cBioPortal database. The cohort included primary and metastatic samples from 276 papillary thyroid carcinomas (PTCs), 5 follicular thyroid carcinomas, 22 Hürthle cell carcinomas (HCCs), 127 poorly differentiated thyroid carcinomas (PDTCs), 30 anaplastic thyroid carcinomas (ATCs) and 15 medullary thyroid carcinomas. The ATCs had the highest tumor mutational burden and the HCCs the highest fraction of the genome altered. Compared to primary PTCs, the metastases had a significantly higher frequency of genetic alterations affecting TERT (51% vs 77%, P < 0.001), CDKN2A (2% vs 10%, P < 0.01), RET (2% vs 7%, P < 0.05), CDKN2B (1% vs 6%, P < 0.05) and BCOR (0% vs 4%, P < 0.05). The distant metastases had a significantly lower frequency of BRAF (64% vs 85%, P < 0.01) and a significantly higher frequency of NRAS (13% vs 3%, P < 0.05) hotspot mutations than the lymph node metastases. Metastases from HCCs and PDTCs were found to be enriched for NF1 (29%) and TP53 (18%) biallelic alterations, respectively. The frequency of subclonal mutations in ATCs was significantly higher than in PTCs (43% vs 25%, P < 0.01) and PDTCs (43% vs 22%, P < 0.01). Metastatic TCs are enriched in clinically informative genetic alterations such as RET translocations, BRAF hotspot mutations and NF1 biallelic losses that may be explored therapeutically.


Carcinoma, Papillary , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins B-raf/genetics , Carcinoma, Papillary/genetics , Carcinoma, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Cancer, Papillary/genetics , Mutation , Genomics
13.
J Transl Med ; 21(1): 817, 2023 11 16.
Article En | MEDLINE | ID: mdl-37974228

Anaplastic thyroid carcinoma (ATC) is a deadly disease with a poor prognosis. Thus, there is a pressing need to determine the mechanism of ATC progression. The homeobox D9 (HOXD9) transcription factor has been associated with numerous malignancies but its role in ATC is unclear. In the present study, the carcinogenic potential of HOXD9 in ATC was investigated. We assessed the differential expression of HOXD9 on cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT) in ATC and explored the interactions between HOXD9, microRNA-451a (miR-451a), and proteasome 20S subunit beta 8 (PSMB8). In addition, subcutaneous tumorigenesis and lung metastasis in mouse models were established to investigate the role of HOXD9 in ATC progression and metastasis in vivo. HOXD9 expression was enhanced in ATC tissues and cells. Knockdown of HOXD9 inhibited cell proliferation, migration, invasion, and EMT but increased apoptosis in ATC cells. The UCSC Genome Browser and JASPAR database identified HOXD9 as an upstream regulator of miR-451a. The direct binding of miR-451a to the untranslated region (3'-UTR) of PSMB8 was established using a luciferase experiment. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of HOXD9 interference or overexpression on ATC progression. The PI3K/AKT signaling pathway was involved in HOXD9-stimulated ATC cell proliferation and EMT. Consistent with in vitro findings, the downregulation of HOXD9 in ATC cells impeded tumor growth and lung metastasis in vivo. Our research suggests that through PI3K/AKT signaling, the HOXD9/miR-451a/PSMB8 axis may have significance in the control of cell proliferation and metastasis in ATC. Thus, HOXD9 could serve as a potential target for the diagnosis of ATC.


Lung Neoplasms , MicroRNAs , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lung Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathology
14.
Clin Transl Med ; 13(11): e1466, 2023 11.
Article En | MEDLINE | ID: mdl-37983928

BACKGROUND: Translation dysregulation plays a crucial role in tumourigenesis and cancer progression. Oncogenic translation relies on the stability and availability of tRNAs for protein synthesis, making them potential targets for cancer therapy. METHODS: This study performed immunohistochemistry analysis to assess NSUN2 levels in thyroid cancer. Furthermore, to elucidate the impact of NSUN2 on anaplastic thyroid cancer (ATC) malignancy, phenotypic assays were conducted. Drug inhibition and time-dependent plots were employed to analyse drug resistance. Liquid chromatography-mass spectrometry and bisulphite sequencing were used to investigate the m5 C methylation of tRNA at both global and single-base levels. Puromycin intake and high-frequency codon reporter assays verified the protein translation level. By combining mRNA and ribosome profiling, a series of downstream proteins and codon usage bias were identified. The acquired data were further validated by tRNA sequencing. RESULTS: This study observed that the tRNA m5 C methyltransferase NSUN2 was up-regulated in ATC and is associated with dedifferentiation. Furthermore, NSUN2 knockdown repressed ATC formation, proliferation, invasion and migration both in vivo and in vitro. Moreover, NSUN2 repression enhanced the sensitivity of ATC to genotoxic drugs. Mechanically, NSUN2 catalyses tRNA structure-related m5 C modification, stabilising tRNA that maintains homeostasis and rapidly transports amino acids, particularly leucine. This stable tRNA has a substantially increased efficiency necessary to support a pro-cancer translation program including c-Myc, BCL2, RAB31, JUNB and TRAF2. Additionally, the NSUN2-mediated variations in m5C levels and different tRNA Leu iso-decoder families, partially contribute to a codon-dependent translation bias. Surprisingly, targeting NSUN2 disrupted the c-Myc to NSUN2 cycle in ATC. CONCLUSIONS: This research revealed that a pro-tumour m5C methyltransferase, dynamic tRNA stability regulation and downstream oncogenes, c-Myc, elicits a codon-dependent oncogenic translation network that enhances ATC growth and formation. Furthermore, it provides new opportunities for targeting translation reprogramming in cancer cells.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Codon , Thyroid Neoplasms/genetics , RNA, Transfer/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
15.
BMC Cancer ; 23(1): 1131, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37990304

Anaplastic thyroid carcinoma (ATC) was a rare malignancy featured with the weak immunotherapeutic response. So far, disorders of immunogenic cell death genes (ICDGs) were identified as the driving factors in cancer progression, while their roles in ATC remained poorly clear. Datasets analysis identified that most ICDGs were high expressed in ATC, while DE-ICDGs were located in module c1_112, which was mainly enriched in Toll-like receptor signalings. Subsequently, the ICD score was established to classify ATC samples into the high and low ICD score groups, and function analysis indicated that high ICD score was associated with the immune characteristics. The high ICD score group had higher proportions of specific immune and stromal cells, as well as increased expression of immune checkpoints. Additionally, TLR4, ENTPD1, LY96, CASP1 and PDIA3 were identified as the dynamic signature in the malignant progression of ATC. Notably, TLR4 was significantly upregulated in ATC tissues, associated with poor prognosis. Silence of TLR4 inhibited the proliferation, metastasis and clone formation of ATC cells. Eventually, silence of TLR4 synergistically enhanced paclitaxel-induced proliferation inhibition, apoptosis, CALR exposure and release of ATP. Our findings highlighted that the aberrant expression of TLR4 drove the malignant progression of ATC, which contributed to our understanding of the roles of ICDGs in ATC.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Toll-Like Receptor 4/genetics , Immunogenic Cell Death , Paclitaxel/therapeutic use , Thyroid Neoplasms/pathology , Cell Line, Tumor
16.
Immunol Invest ; 52(8): 1039-1064, 2023 Nov.
Article En | MEDLINE | ID: mdl-37846977

Thyroid cancer (TC) is the most common endocrine malignancy worldwide, and the incidence of TC has gradually increased in recent decades. Differentiated thyroid cancer (DTC) is the most common subtype and has a good prognosis. However, advanced DTC patients with recurrence, metastasis and iodine refractoriness, as well as more aggressive subtypes such as poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC), still pose a great challenge for clinical management. Therefore, it is necessary to continue to explore the inherent molecular heterogeneity of different TC subtypes and the global landscape of the tumor immune microenvironment (TIME) to find new potential therapeutic targets. Immunotherapy is a promising therapeutic strategy that can be used alone or in combination with drugs targeting tumor-driven genes. This article focuses on the genomic characteristics, tumor-associated immune cell infiltration and immune checkpoint expression of different subtypes of TC patients to provide guidance for immunotherapy.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/therapy , Thyroid Neoplasms/metabolism , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/therapy , Thyroid Carcinoma, Anaplastic/pathology , Immunotherapy , Tumor Microenvironment
17.
J Nanobiotechnology ; 21(1): 374, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37833748

Anaplastic thyroid cancer (ATC) is a rare but highly aggressive kind of thyroid cancer. Various therapeutic methods have been considered for the treatment of ATC, but its prognosis remains poor. With the advent of the nanomedicine era, the use of nanotechnology has been introduced in the treatment of various cancers and has shown great potential and broad prospects in ATC treatment. The current review meticulously describes and summarizes the research progress of various nanomedicine-based therapeutic methods of ATC, including chemotherapy, differentiation therapy, radioiodine therapy, gene therapy, targeted therapy, photothermal therapy, and combination therapy. Furthermore, potential future challenges and opportunities for the currently developed nanomedicines for ATC treatment are discussed. As far as we know, there are few reviews focusing on the nanomedicine of ATC therapy, and it is believed that this review will generate widespread interest from researchers in a variety of fields to further expedite preclinical research and clinical translation of ATC nanomedicines.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Iodine Radioisotopes , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Combined Modality Therapy , Prognosis
18.
Thyroid ; 33(10): 1201-1214, 2023 10.
Article En | MEDLINE | ID: mdl-37675898

Background: Anaplastic thyroid cancer (ATC) is uniformly lethal. BRAFV600E mutation is present in 45% of patients with ATC. Targeted therapy with combined BRAF and MEK inhibition in BRAFV600E-mutant ATC can be effective, but acquired resistance is common because this combination targets the same pathway. Drug matrix screening, in BRAFV600E ATC cells, of highly active compounds in combination with BRAF inhibition showed multitargeting tyrosine kinase inhibitors (MTKIs) had the highest synergistic/additive activity. Thus, we hypothesized that the combination of BRAFV600E inhibition and an MTKI is more effective than a single drug or combined BRAF and MEK inhibition in BRAFV600E-mutant ATC. We evaluated the effect of BRAFV600E inhibitors in combination with the MTKI axitinib and its mechanism(s) of action. Methods: We evaluated the effects of BRAFV600E inhibitors and axitinib alone and in combination in in vitro and in vivo models of BRAFV600E-mutant and wild-type ATC. Results: The combination of axitinib and BRAFV600E inhibitors (dabrafenib and PLX4720) showed an additive effect on inhibiting cell proliferation based on the Chou-Talalay algorithm in BRAFV600E-mutant ATC cell lines. This combination also significantly inhibited cell invasion and migration (p < 0.001) compared with the control. Dabrafenib and PLX4720 arrested ATC cells in the G0/G1 phase. Axitinib arrested ATC cells in the G2/M phase by decreasing phosphorylation of aurora kinase B (Thr232) and histone H3 (Ser10) proteins and by upregulating the c-JUN signaling pathway. The combination of BRAF inhibition and axitinib significantly inhibited tumor growth and was associated with improved survival in an orthotopic ATC model. Conclusions: The novel combination of axitinib and BRAFV600E inhibition enhanced anticancer activity in in vitro and in vivo models of BRAFV600E-mutant ATC. This combination may have clinical utility in BRAFV600E-mutant ATC that is refractory to current standard therapy, namely combined BRAF and MEK inhibition.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Axitinib/pharmacology , Axitinib/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/therapeutic use , Mutation , Cell Line, Tumor
19.
Cancer Gene Ther ; 30(12): 1598-1609, 2023 12.
Article En | MEDLINE | ID: mdl-37679527

The tumor immune microenvironment (TIME) in ATC is a complex and diverse ecosystem. It is essential to have a comprehensive understanding to improve cancer treatment and prognosis. However, TIME of ATC and the dynamic changes with PTC has not been revealed at the single-cell level. Here, we performed an integrative single-cell analysis of PTC and ATC primary tumor samples. We found that immunosuppressive cells and molecules dominated the TIME in ATC. Specifically, the level of infiltration of exhausted CD8+ T cells, and M2 macrophages was increased, and that of NK cells, B cells, and M1 macrophages was decreased. The cytotoxicity of CD8+ T cells, γδT cells, and NK cells was decreased, and immune checkpoint molecules, such as LAG3, PD1, HAVCR2, and TIGIT were highly expressed in ATC. Our findings contribute to the comprehension of TIME in both PTC and ATC, offering insights into the immunosuppressive factors specifically associated with ATC. Targeting these immunosuppressive factors may activate the anti-tumor immune response in ATC.


Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathology , Ecosystem , Single-Cell Gene Expression Analysis , Macrophages/pathology , Tumor Microenvironment/genetics
20.
Mol Med ; 29(1): 121, 2023 09 08.
Article En | MEDLINE | ID: mdl-37684566

BACKGROUND: As the tissue with the highest selenium content in the body, the occurrence and development of thyroid cancer are closely related to selenium and selenoproteins. Selenium-binding protein 1 (SBP1) has been repeatedly implicated in several cancers, but its role and molecular mechanisms in thyroid cancer remains largely undefined. METHODS: The expression of SBP1, sodium/iodide symporter (NIS) and thioredoxin (TXN) were analyzed in clinical samples and cell lines. Cell counting kit-8 (CCK-8) and tube formation assays were used to analyze the cell viability and tube formation of cells. Immunofluorescence was used to determine the expression of the NIS. Co-immunoprecipitation (Co-IP) assay was carried out to verify the interaction of SBP1 with TXN. The mouse xenograft experiment was performed to investigate the growth of thyroid cancer cells with SBP1 knockdown in vivo. RESULTS: SBP1 was significantly increased in human thyroid cancer tissues and cells, especially in anaplastic thyroid cancer. Overexpression of SBP1 promoted FTC-133 cell proliferation, and the culture supernatant of SBP1-overexpression FTC-133 cells promoted tube formation of human retinal microvascular endothelial cells. Knockdown of SBP1, however, inhibited cell proliferation and tube formation. Furthermore, overexpression of SBP1 inhibited cellular differentiation of differentiated thyroid cancer cell line FTC-133, as indicated by decreased expression of thyroid stimulating hormone receptors, thyroglobulin and NIS. Knockdown of SBP1, however, promoted differentiation of BHT101 cells, an anaplastic thyroid cancer cell line. Notably, TXN, a negative regulator of NIS, was found to be significantly upregulated in human thyroid cancer tissues, and it was positively regulated by SBP1. Co-IP assay implied a direct interaction of SBP1 with TXN. Additionally, TXN overexpression reversed the effect of SBP1 knockdown on BHT101 cell viability, tube formation and cell differentiation. An in vivo study found that knockdown of SBP1 promoted the expression of thyroid stimulating hormone receptors, thyroglobulin and NIS, as well as inhibited the growth and progression of thyroid cancer tumors. CONCLUSION: SBP1 promoted tumorigenesis and dedifferentiation of thyroid cancer through positively regulating TXN.


Selenium , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Endothelial Cells , Receptors, Thyrotropin , Thioredoxins , Thyroglobulin , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Neoplasms/genetics , Selenium-Binding Proteins/metabolism
...