Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 634
Filter
1.
Parasit Vectors ; 17(1): 380, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238018

ABSTRACT

BACKGROUND: Ticks carry a variety of microorganisms, some of which are pathogenic to humans. The human risk of tick-borne diseases depends on, among others, the prevalence of pathogens in ticks biting humans. To follow-up on this prevalence over time, a Belgian study from 2017 was repeated in 2021. METHODS: During the tick season 2021, citizens were invited to have ticks removed from their skin, send them and fill in a short questionnaire on an existing citizen science platform for the notification of tick bites (TekenNet). Ticks were morphologically identified to species and life stage level and screened using multiplex qPCR targeting, among others, Borrelia burgdorferi (sensu lato), Anaplasma phagocytophilum, Borrelia miyamotoi, Neoehrlichia mikurensis, Babesia spp., Rickettsia helvetica and tick-borne encephalitis virus (TBEV). The same methodology as in 2017 was used. RESULTS: In 2021, the same tick species as in 2017 were identified in similar proportions; of 1094 ticks, 98.7% were Ixodes ricinus, 0.8% Ixodes hexagonus and 0.5% Dermacentor reticulatus. A total of 928 nymphs and adults could be screened for the presence of pathogens. Borrelia burgdorferi (s.l.) was detected in 9.9% (95% CI 8.2-12.0%), which is significantly lower than the prevalence of 13.9% (95% CI 12.2-15.7%) in 2017 (P = 0.004). The prevalences of A. phagocytophilum (4.7%; 95% CI 3.5-6.3%) and R. helvetica (13.3%; 95% CI 11.2-15.6%) in 2021 were significantly higher compared to 2017 (1.8%; 95% CI 1.3-2.7% and 6.8%; 95% CI 5.6-8.2% respectively) (P < 0.001 for both). For the other pathogens tested, no statistical differences compared to 2017 were found, with prevalences ranging between 1.5 and 2.9% in 2021. Rickettsia raoultii was again found in D. reticulatus ticks (n = 3/5 in 2021). Similar to 2017, no TBEV was detected in the ticks. Co-infections were found in 5.1% of ticks. When combining co-infection occurrence in 2017 and 2021, a positive correlation was observed between B. burgdorferi (s.l.) and N. mikurensis and B. burgdorferi (s.l.) and B. miyamotoi (P < 0.001 for both). CONCLUSIONS: Although the 2021 prevalences fell within expectations, differences were found compared to 2017. Further research to understand the explanations behind these differences is needed.


Subject(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia , Encephalitis Viruses, Tick-Borne , Ixodes , Animals , Belgium/epidemiology , Humans , Prevalence , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis Viruses, Tick-Borne/genetics , Borrelia/isolation & purification , Borrelia/genetics , Borrelia/classification , Ixodes/microbiology , Ixodes/virology , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/genetics , Babesia/isolation & purification , Babesia/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Female , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Male , Dermacentor/microbiology , Dermacentor/virology , Nymph/microbiology , Nymph/virology , Ticks/microbiology , Ticks/virology , Tick Bites/epidemiology
2.
Vet Parasitol Reg Stud Reports ; 54: 101089, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39237233

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral zoonosis caused by a Nairovirus, Crimean-Congo hemorrhagic fever virus (CCHFV). Despite its wide geographical distribution, the epidemiology of CCHF in northern Africa is incompletely understood and its occurrence in Algeria is virtually unknown. The present survey aimed to determine the prevalence of CCHF antibodies and to identify the potential risk factors associated with CCHFV seropositivity among the one-humped camel (Camelus dromedarius) in southern Algeria. A total of 269 camels selected randomly from slaughterhouses in three wilayas were employed in the study. Sera sampled were tested for the presence of CCHFV-specific IgG antibodies using enzyme-linked immunosorbent assay (ELISA). CCHFV seropositivity was recorded in 255 out of 269 camels accounting for a prevalence rate of 94.8% (95%CI = 92.14-97.45). The seroprevalence by origin was determined to be 97% (193/199) in imported camels and 86% (49/57) in local ones (p > 0.25). Tick presence (OR = 12.35, 95%CI = 1.41-107.43, p < 0.05) was recorded as the only potential risk factor for contracting CCHFV. This study shows for the first time that camels are exposed to CCHFV in Algeria with a significantly high seroprevalence. It also underlines the need for further research to investigate the broader extent of circulating CCHFV in the country, whether in humans, animals, or ticks.


Subject(s)
Antibodies, Viral , Camelus , Enzyme-Linked Immunosorbent Assay , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Animals , Camelus/virology , Algeria/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/virology , Seroepidemiologic Studies , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Male , Female , Risk Factors , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Prevalence , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Tick-Borne Diseases/virology , Immunoglobulin G/blood , Ticks/virology
3.
Sci Rep ; 14(1): 18945, 2024 08 15.
Article in English | MEDLINE | ID: mdl-39147851

ABSTRACT

Hyalomma marginatum, a vector for the high-consequence pathogen, the Crimean-Congo hemorrhagic fever virus (CCHFV), needs particular attention due to its impact on public health. Although it is a known vector for CCHFV, its general virome is largely unexplored. Here, we report findings from a citizen science monitoring program aimed to understand the prevalence and diversity of tick-borne pathogens, particularly focusing on Hyalomma ticks in Hungary. In 2021, we identified one adult specimen of Hyalomma marginatum and subjected it to Illumina-based viral metagenomic sequencing. Our analysis revealed sequences of the uncharacterized Volzhskoe tick virus, an unclassified member of the class Bunyaviricetes. The in silico analysis uncovered key genetic regions, including the glycoprotein and the RNA-dependent RNA polymerase (RdRp) coding regions. Phylogenetic analysis indicated a close relationship between our Volzhskoe tick virus sequences and other unclassified Bunyaviricetes species. These related species of unclassified Bunyaviricetes were detected in vastly different geolocations. These findings highlight the remarkable diversity of tick specific viruses and emphasize the need for further research to understand the transmissibility, seroreactivity or the potential pathogenicity of Volzhskoe tick virus and related species.


Subject(s)
Genome, Viral , Phylogeny , Animals , Hungary , Ixodidae/virology , Ticks/virology , Genomics/methods , Metagenomics/methods
4.
Mol Biol Evol ; 41(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39191515

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus recognized by the World Health Organization as an emerging infectious disease of growing concern. Utilizing phylodynamic and phylogeographic methods, we have reconstructed the origin and transmission patterns of SFTSV lineages and the roles demographic, ecological, and climatic factors have played in shaping its emergence and spread throughout Asia. Environmental changes and fluctuations in tick populations, exacerbated by the widespread use of pesticides, have contributed significantly to its geographic expansion. The increased adaptability of Lineage L2 strains to the Haemaphysalis longicornis vector has facilitated the dispersal of SFTSV through Southeast Asia. Increased surveillance and proactive measures are needed to prevent further spread to Australia, Indonesia, and North America.


Subject(s)
Phlebovirus , Phylogeography , Severe Fever with Thrombocytopenia Syndrome , Phlebovirus/genetics , Animals , Asia, Southeastern , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/transmission , Humans , Phylogeny , Arachnid Vectors/virology , Ticks/virology , Ixodidae/virology , Introduced Species
5.
Viruses ; 16(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39205156

ABSTRACT

Arboviruses are pathogens transmitted mainly by mosquitoes, ticks, and sandflies [...].


Subject(s)
Arbovirus Infections , Arboviruses , Humans , Arboviruses/classification , Animals , Arbovirus Infections/virology , Arbovirus Infections/transmission , Ticks/virology , Culicidae/virology
6.
Viruses ; 16(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39205266

ABSTRACT

Hemorrhagic fever with renal syndrome (HFRS) and tick-borne encephalitis (TBE) are the most common viral diseases in Russia. HFRS is caused by six different types of hantaviruses: Hantaan, Amur, Seoul, Puumala, Kurkino, and Sochi, which are transmitted to humans through small mammals of the Muridae and Cricetidae families. TBE is caused by viruses belonging to five different phylogenetic subtypes. The similarities in the ecology of HFRS and TBE pathogens is presented here. Hantavirus-infected small mammals can transmit the virus to uninfected animals, and ticks can also transmit hantavirus to other ticks and mammals. Hantavirus transmission from ticks to humans is possible only hypothetically based on indirect data. Over the past 23 years, 164,582 cases of HFRS (4.9 per 105 people) and 71,579 cases of TBE (2.5 per 105 people) were registered in Russia. The mortality rate was 0.4% (668 cases) in HFRS and 1.6% deaths (1136 cases) in TBE. There were 4030 HFRS (2.5%) and 9414 TBE (13%) cases in children under 14 years old. HFRS and TBE cases were registered in 42 out of 85 Russian regions; in 18-only HFRS, in 13-only TBE, and 12 had no reported cases. The prospects of applying a combined vaccine for HFRS and TBE prevention are shown in this paper.


Subject(s)
Encephalitis, Tick-Borne , Hemorrhagic Fever with Renal Syndrome , Viral Vaccines , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/transmission , Russia/epidemiology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/prevention & control , Hemorrhagic Fever with Renal Syndrome/virology , Humans , Animals , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Orthohantavirus/immunology , Orthohantavirus/genetics , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/genetics , Vaccines, Combined/immunology , Vaccines, Combined/administration & dosage , Ticks/virology
7.
PLoS Pathog ; 20(7): e1012348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39008518

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) virus, a tick-borne bunyavirus, causes a severe/fatal disease termed SFTS; however, the viral virulence is not fully understood. The viral non-structural protein, NSs, is the sole known virulence factor. NSs disturbs host innate immune responses and an NSs-mutant SFTS virus causes no disease in an SFTS animal model. The present study reports a novel determinant of viral tropism as well as virulence in animal models, within the glycoprotein (GP) of SFTS virus and an SFTS-related tick-borne bunyavirus. Infection with mutant SFTS viruses lacking the N-linked glycosylation of GP resulted in negligible usage of calcium-dependent lectins in cells, less efficient infection, high susceptibility to a neutralizing antibody, low cytokine production in macrophage-like cells, and reduced virulence in Ifnar-/- mice, when compared with wildtype virus. Three SFTS virus-related bunyaviruses had N-glycosylation motifs at similar positions within their GP and a glycan-deficient mutant of Heartland virus showed in vitro and in vivo phenotypes like those of the SFTS virus. Thus, N-linked glycosylation of viral GP is a novel determinant for the tropism and virulence of SFTS virus and of a related virus. These findings will help us understand the process of severe/fatal diseases caused by tick-borne bunyaviruses.


Subject(s)
Glycoproteins , Phlebovirus , Viral Tropism , Animals , Glycosylation , Mice , Virulence , Phlebovirus/pathogenicity , Phlebovirus/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Humans , Severe Fever with Thrombocytopenia Syndrome/virology , Mice, Inbred C57BL , Bunyaviridae Infections/virology , Bunyaviridae Infections/metabolism , Ticks/virology , Mice, Knockout , Orthobunyavirus/pathogenicity , Orthobunyavirus/genetics , Orthobunyavirus/metabolism
8.
Viruses ; 16(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38932256

ABSTRACT

Dugbe virus (DUGV) is a tick-borne arbovirus first isolated in Nigeria in 1964. It has been detected in many African countries using such diverse methods as serological tests, virus isolation, and molecular detection. In Senegal, reports of DUGV isolates mainly occurred in the 1970s and 1980s. Here, we report a contemporary detection of three novel DUGV isolates upon screening of a total of 2877 individual ticks regrouped into 844 pools. The three positive pools were identified as Amblyomma variegatum, the main known vector of DUGV, collected in the southern part of the country (Kolda region). Interestingly, phylogenetic analysis indicates that the newly sequenced isolates are globally related to the previously characterized isolates in West Africa, thus highlighting potentially endemic, unnoticed viral transmission. This study was also an opportunity to develop a rapid and affordable protocol for full-genome sequencing of DUGV using nanopore technology. The results suggest a relatively low mutation rate and relatively conservative evolution of DUGV isolates.


Subject(s)
Genome, Viral , Phylogeny , Ticks , Animals , Senegal , Ticks/virology , Amblyomma/virology , Arboviruses/genetics , Arboviruses/isolation & purification , Arboviruses/classification
9.
Emerg Med Clin North Am ; 42(3): 597-611, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925777

ABSTRACT

This review highlights the causative organisms, clinical features, diagnosis, and treatment of the most common tick-borne illnesses in the United States, including Lyme disease, Rocky Mountain spotted fever, anaplasmosis, ehrlichiosis, tularemia, Powassan virus, and alpha-gal syndrome. Tick bite prevention strategies and some basic tick removal recommendations are also provided.


Subject(s)
Tick-Borne Diseases , Humans , Tick-Borne Diseases/diagnosis , Tick-Borne Diseases/therapy , Tick-Borne Diseases/epidemiology , Animals , Wilderness Medicine , Lyme Disease/diagnosis , Lyme Disease/therapy , Lyme Disease/epidemiology , Rocky Mountain Spotted Fever/diagnosis , Rocky Mountain Spotted Fever/therapy , Rocky Mountain Spotted Fever/epidemiology , United States/epidemiology , Ticks/virology , Tick Bites/therapy , Ehrlichiosis/diagnosis , Ehrlichiosis/epidemiology , Ehrlichiosis/therapy , Ehrlichiosis/drug therapy , Anaplasmosis/diagnosis , Anaplasmosis/epidemiology , Anaplasmosis/therapy
10.
Parasit Vectors ; 17(1): 265, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902842

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonosis caused by the SFTS virus (SFTSV). Understanding the prevalence of SFTSV RNA in humans, vertebrate hosts and ticks is crucial for SFTS control. METHODS: A systematic review and meta-analysis were conducted to determine the prevalence of SFTSV RNA in humans, vertebrate hosts and questing ticks. Nine electronic databases were searched for relevant publications, and data on SFTSV RNA prevalence were extracted. Pooled prevalence was estimated using a random effects model. Subgroup analysis and multivariable meta-regression were performed to investigate sources of heterogeneity. RESULTS: The pooled prevalence of SFTSV RNA in humans was 5.59% (95% confidence interval [CI] 2.78-9.15%) in those in close contact (close contacts) with infected individuals (infected cases) and 0.05% (95% CI 0.00-0.65%) in healthy individuals in endemic areas. The SFTSV infection rates in artiodactyls (5.60%; 95% CI 2.95-8.96%) and carnivores (6.34%; 95% CI 3.27-10.23%) were higher than those in rodents (0.45%; 95% CI 0.00-1.50%). Other animals, such as rabbits, hedgehogs and birds, also played significant roles in SFTSV transmission. The genus Haemaphysalis was the primary transmission vector, with members of Ixodes, Dermacentor, and Amblyomma also identified as potential vectors. The highest pooled prevalence was observed in adult ticks (1.03%; 95% CI 0.35-1.96%), followed by nymphs (0.66%; 95% CI 0.11-1.50%) and larvae (0.01%; 95% CI 0.00-0.46%). The pooled prevalence in ticks collected from endemic areas (1.86%; 95% CI 0.86-3.14%) was higher than that in ticks collected in other regions (0.41%; 95% CI 0.12-0.81%). CONCLUSIONS: Latent SFTSV infections are present in healthy individuals residing in endemic areas, and close contacts with SFTS cases are at a significantly higher risk of infection. The type of animal is linked to infection rates in vertebrate hosts, while infection rates in ticks are associated with the developmental stage. Further research is needed to investigate the impact of various environmental factors on SFTSV prevalence in vertebrate hosts and ticks.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Humans , Phlebovirus/isolation & purification , Phlebovirus/genetics , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/virology , Severe Fever with Thrombocytopenia Syndrome/transmission , Ticks/virology , Vertebrates/virology , Vertebrates/parasitology , Prevalence , RNA, Viral/genetics
11.
Acta Trop ; 257: 107279, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871069

ABSTRACT

The causative agent of severe fever with thrombocytopenia syndrome (SFTS) is Bandavirus dabieense, an emerging tick-borne zoonotic pathogen. Migratory birds have often been suggested as potential carriers of ticks that can transmit Bandavirus dabieense; however, their role remains unclear. The Republic of Korea (ROK) holds an important position as a stopover on the East Asian-Australasian Flyway. The present study aimed to investigate the potential involvement of migratory birds in the transmission of the SFTS virus (SFTSV) in the ROK. A total of 4,497 ticks were collected across various regions, including Heuksando and Daecheongdo, in the ROK, from bird migration seasons in 2022 and 2023. Genetic analysis of the SFTSV was performed for 96 ticks collected from 20 different species of migratory birds. Polymerase chain reaction (PCR) fragments of SFTSV were detected in one Haemaphysalis concinna nymph collected from a Black-faced Bunting (Emberiza spodocephala) and one Ixodes turdus nymph collected from an Olive-backed Pipit (Anthus hodgsoni) on Daecheongdo and Heuksando, respectively, during their northward migration in two spring seasons. This finding suggests that migratory birds can be considered as possible carriers and long-distance dispersers of ticks and associated tick-borne diseases. This study highlights the importance of clarifying the role and impact of migratory birds in the rapid expansion of tick-borne diseases, facilitating enhanced preparedness and the development of mitigation measures against emerging SFTS across and beyond East Asia.


Subject(s)
Animal Migration , Birds , Phlebovirus , Phylogeny , Animals , Republic of Korea , Phlebovirus/isolation & purification , Phlebovirus/genetics , Phlebovirus/classification , Birds/virology , Bird Diseases/virology , Bird Diseases/parasitology , Ixodes/virology , Ticks/virology , Ticks/classification , Severe Fever with Thrombocytopenia Syndrome/virology
13.
Emerg Infect Dis ; 30(7): 1319-1325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916548

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) is a lethal viral disease that has severe public health effects throughout Africa and a case fatality rate of 10%-40%. CCHF virus was first discovered in Crimea in 1944 and has since caused a substantial disease burden in Africa. The shortage of diagnostic tools, ineffective tick control efforts, slow adoption of preventive measures, and cultural hurdles to public education are among the problems associated with continued CCHF virus transmission. Progress in preventing virus spread is also hampered by the dearth of effective serodiagnostic testing for animals and absence of precise surveillance protocols. Intergovernmental coordination, creation of regional reference laboratories, multiinstitutional public education partnerships, investments in healthcare infrastructure, vaccine development, and a One Health approach are strategic methods for solving prevention challenges. Coordinated efforts and financial commitments are needed to combat Crimean-Congo hemorrhagic fever and improve all-around readiness for newly developing infectious illnesses in Africa.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/transmission , Humans , Africa/epidemiology , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Animals , Ticks/virology
14.
Vopr Virusol ; 69(2): 151-161, 2024 May 06.
Article in Russian | MEDLINE | ID: mdl-38843021

ABSTRACT

INTRODUCTION: Tick-borne infections are of great importance for many regions of Russia, including Eastern Siberia. This unfavorable epidemiological situation can be characterized not only by the circulation of well-known tick-borne infections, but also by the identification of new pathogens, the role of which remains little or generally unexplored. Multicomponent flavi-like viruses can cause infectious diseases in humans and pose a threat to public health. The purpose of the study was the identification and molecular genetic characterization of the Alongshan virus (Flaviviridae, ALSV) isolates, transmitted by ticks in the south of Eastern Siberia. MATERIALS AND METHODS: Total 1060 ticks were collected and analyzed from the territory of the Republics of Khakassia, Tuva, Buryatia, Irkutsk Region and Transbaikal Territory (Zabaykalsky Krai) in the spring-summer period 2023. ALSV RNA was detected by RT-PCR followed by nucleotide sequence determination and phylogenetic analysis for each segment of the genome. RESULTS: The ALSV infection rate in Ixodes persulcatus ticks collected in the Republic of Khakassia was 3.3% (95% CI: 1.4-7.5); in Irkutsk Oblast - 1.0% (95% CI: 0.3-3.7); in the Republic of Tuva - 0.9% (95% CI: 0.3-3.4) and in Transbaikal Krai - 0.7% (95% CI: 0.2-3.6). Sequences of all four segments of ALSV genetic variants circulating in I. persulcatus ticks in the south of Eastern Siberia are grouped with sequences found in China and clustered into the Asian subgroup transmitted by taiga ticks. The level of difference in the nucleotide sequences of genome fragments among the identified genetic variants of ALSV ranged from 2 to 3%. CONCLUSION: The article shows the widespread distribution of ALSV in I. persulcatus ticks in the Republics of Khakassia and Tyva, Irkutsk Oblast and Transbaikal Territory. The obtained data actualize monitoring of changes in the area of distribution of potentially dangerous for humans flavi-like viruses and their vectors.


Subject(s)
Genetic Variation , Ixodes , Phylogeny , Animals , Siberia/epidemiology , Ixodes/virology , Humans , Prevalence , Genome, Viral , Ticks/virology
15.
Cell Rep ; 43(6): 114298, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38819991

ABSTRACT

Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.


Subject(s)
Antibodies, Neutralizing , Humans , Brazil , Antibodies, Neutralizing/immunology , Mexico , Antibodies, Viral/immunology , Animals , Encephalitis Viruses, Tick-Borne/immunology , Flavivirus/immunology , Epitopes/immunology , Antibodies, Monoclonal/immunology , Ticks/virology , Ticks/immunology , Female , Male
16.
Vet Parasitol ; 328: 110190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714064

ABSTRACT

In Europe, tick-borne diseases (TBDs) cause significant morbidity and mortality, affecting both human and animal health. Ticks can transmit a wide variety of pathogens (bacteria, viruses, and parasites) and feed on many vertebrate hosts. The incidence and public health burden of TBDs are tending to intensify in Europe due to various factors, mainly anthropogenic and often combined. Early detection of tick-borne pathogens (TBPs), preventive measures and treatment are of great importance to control TBDs and their expansion. However, there are various limitations in terms of the sensitivity and/or specificity of detection and prevention methods, and even in terms of feasibility. Aptamers are single-stranded DNA or RNA that could address these issues as they are able to bind with high affinity and specificity to a wide range of targets (e.g., proteins, small compounds, and cells) due to their unique three-dimensional structure. To date, aptamers have been selected against TBPs such as tick-borne encephalitis virus, Francisella tularensis, and Rickettsia typhi. These studies have demonstrated the benefits of aptamer-based assays for pathogen detection and medical diagnosis. In this review, we address the applications of aptamers to TBDs and discuss their potential for improving prevention measures (use of chemical acaricides, vaccination), diagnosis and therapeutic strategies to control TBDs.


Subject(s)
Aptamers, Nucleotide , Tick-Borne Diseases , Tick-Borne Diseases/prevention & control , Tick-Borne Diseases/epidemiology , Animals , Humans , Europe/epidemiology , Ticks/microbiology , Ticks/virology , Tick Control/methods
17.
BMC Vet Res ; 20(1): 190, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734647

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.


Subject(s)
Horse Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Animals , Horses , Seroepidemiologic Studies , Japan/epidemiology , Horse Diseases/epidemiology , Horse Diseases/virology , Horse Diseases/blood , Phlebovirus/isolation & purification , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Severe Fever with Thrombocytopenia Syndrome/virology , Female , Male , Antibodies, Viral/blood , Ticks/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Animals, Wild/virology
18.
PLoS One ; 19(5): e0303099, 2024.
Article in English | MEDLINE | ID: mdl-38723009

ABSTRACT

Crimean-Congo haemorrhagic fever virus (CCHFV) is a globally significant tick-borne zoonotic pathogen that causes fatal haemorrhagic disease in humans. Despite constituting an ongoing public health threat, limited research exists on the presence of CCHFV among herdsmen, an occupationally exposed population that has prolonged contact with ruminants and ticks. This cross-sectional study, conducted between October 2018 and February 2020 in Kwara State, Nigeria, was aimed at assessing CCHFV seroprevalence among herdsmen and non-herdsmen febrile patients, and identifying the associated risk factors. Blood samples from herdsmen (n = 91) and febrile patients in hospitals (n = 646) were analyzed for anti-CCHFV IgG antibodies and CCHFV S-segment RNA using ELISA and RT-PCR, respectively. Results revealed a remarkably high CCHFV seroprevalence of 92.3% (84/91) among herdsmen compared to 7.1% (46/646) in febrile patients. Occupational risk factors like animal and tick contact, tick bites, and hand crushing of ticks significantly contributed to higher seroprevalence in the herdsmen (p<0.0001). Herdsmen were 156.5 times more likely (p<0.0001) to be exposed to CCHFV than febrile patients. Notably, the odds of exposure were significantly higher (OR = 191.3; p<0.0001) in herdsmen with a history of tick bites. Although CCHFV genome was not detectable in the tested sera, our findings reveal that the virus is endemic among herdsmen in Kwara State, Nigeria. CCHFV should be considered as a probable cause of febrile illness among humans in the study area. Given the nomadic lifestyle of herdsmen, further investigations into CCHF epidemiology in this neglected population are crucial. This study enhances our understanding of CCHFV dynamics and emphasizes the need for targeted interventions in at-risk communities.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Occupational Exposure , Humans , Nigeria/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Male , Risk Factors , Seroepidemiologic Studies , Adult , Female , Middle Aged , Occupational Exposure/adverse effects , Cross-Sectional Studies , Animals , Young Adult , Fever/epidemiology , Antibodies, Viral/blood , Ticks/virology , Adolescent
19.
Sci Rep ; 14(1): 12336, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811622

ABSTRACT

Hard ticks are known vectors of various pathogens, including the severe fever with thrombocytopenia syndrome virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma phagocytophilum, and Ehrlichia spp. This study aims to investigate the distribution and prevalence of tick-borne pathogens in southwestern Korea from 2019 to 2022. A total of 13,280 ticks were collected during the study period, with H. longicornis accounting for 86.1% of the collected ticks. H. flava, I. nipponensis and A. testudinarium comprised 9.4%, 3.6%, and 0.8% of the ticks, respectively. Among 983 pools tested, Rickettsia spp. (216 pools, 1.6% MIR) were the most prevalent pathogens across all tick species, with R. japonica and R. monacensis frequently detected in I. nipponensis and Haemaphysalis spp., respectively. Borrelia spp. (28 pools, 0.2% MIR) were predominantly detected in I. nipponensis (27 pools, 13.8% MIR, P < 0.001). Co-infections, mainly involving Rickettsia monacensis and Borrelia afzelii, were detected in I. nipponensis. Notably, this study identified R. monacensis for the first time in A. testudinarium in South Korea. These findings offer valuable insights into the tick population and associated pathogens in the region, underscoring the importance of tick-borne disease surveillance and prevention measures.


Subject(s)
Rickettsia , Animals , Republic of Korea/epidemiology , Rickettsia/isolation & purification , Rickettsia/genetics , Ticks/microbiology , Ticks/virology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Prevalence , Borrelia/isolation & purification , Borrelia/genetics , Anaplasma phagocytophilum/isolation & purification , Ehrlichia/isolation & purification , Ehrlichia/genetics , Coxiella burnetii/isolation & purification , Coxiella burnetii/genetics , Phlebovirus/isolation & purification , Phlebovirus/genetics
20.
Zoonoses Public Health ; 71(5): 578-583, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38590023

ABSTRACT

Crimean-Congo haemorrhagic fever (CCHF) unexpectedly emerged in humans in Northwest Spain in 2021, and two additional cases were reported in the region in 2022. The 2021 case was associated with a tick bite on the outskirts of the city where the patient lived. PCR analysis of 95 questing ticks collected in the outskirts of that city in 2021, none of the genus Hyalomma, revealed a prevalence of confirmed CCHF virus (CCHFV) infection of 10.5%. Our results in this emerging scenario suggest the need to consider that CCHFV may be effectively spreading to Northwest Spain and to urgently understand any possible role of non-Hyalomma spp. ticks in the eco-epidemiological dynamics of CCHFV.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ticks , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Animals , Spain/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/transmission , Hemorrhagic Fever, Crimean/virology , Humans , Ticks/virology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL