ABSTRACT
Tilapia is a model fish species used as a pollution biomonitor due to its tolerance and availability in many contaminated sites. Blue tilapia Oreochromis aureus specimens (n = 320) were collected in eleven dams influenced by mining in the SE Gulf of California region (dams 1, 2 and, 3 comprise 55 mining sites; dam 4 comprises 8; dams 6, 8, 10, and 11, ≤ 6; and dams 5, 7, and 9 include 19, 20, and 16 mining sites, respectively). Cadmium, Cu, Pb, and Zn concentrations were analyzed in the muscle, liver, gills, and guts to identify metal pollution and evaluate risks and seasonal changes. The distinct tissues exhibited different metal accumulation capacities, therefore allowed develop a diagnosis comparative between the eleven dams. In general, metal concentrations were higher in dams 1, 2, 5, and 9, which are associated with more mining sites in their sub-basins. The four metals exhibited the highest levels in the tilapia liver in dams 1 and 2, which can be related to the present and past mining activity in the lower watershed (55 sites) and the geothermal activity in these dams. In general, Zn exhibited the highest level in the tilapia livers from dams 1, 2, 3, 4, 5, and 10 compared to the maximum mean (220 µg/g) concentrations previously recorded. The non-carcinogenic risks indicated that the Pb risk was enhanced when the intake was ≥ 231.5 g week-1 of tilapia muscle, indicating a potential risk of adverse health effects for the entire population.
Subject(s)
Metals, Heavy , Mining , Tilapia , Water Pollutants, Chemical , Animals , Tilapia/metabolism , Water Pollutants, Chemical/analysis , Risk Assessment , Metals, Heavy/analysis , Liver/metabolism , Liver/chemistry , Biological Monitoring , Muscles/chemistry , Muscles/metabolism , Environmental Monitoring/methods , Gills/metabolism , Gills/chemistryABSTRACT
A total of 381 specimens of the tilapia Oreochromis mossambicus collected monthly from May 2017 to May 2018 in the Laguna de Los Patos, Cumaná, Venezuela, to evaluate reproductive parameters of this non-native species. Significant differences were found in relation to average height and weight between males and females, with the highest values in males. The sex ratio was 1:1.5 (males:females), which deviates significantly from the expected 1:1 ratio. The mean length of sexual maturity (Lm50) was 18.0 cm in females and 20.1 cm in males, reflecting that females mature at smaller sizes than males. The monthly variations of the gonadosomatic index (GSI) and the stages of sexual maturity show two reproductive peaks during the study, in October 2017 and April 2018, coinciding with the rainy and dry seasons in the region respectively. The condition factor (CF) showed significant differences between months, but not between sexes, with an average of 1.87 in females and 1.84 in males. The average absolute fecundity was 921 ± 604.6 eggs per fish, with a relative fecundity of 8.36 ± 3.09 eggs per gram of fish. Differences in oocyte size in mature females confirm that the species can spawn repeatedly over a period, which is considered an important factor for the establishment of tilapia in non-native environments.
Subject(s)
Reproduction , Seasons , Sex Ratio , Sexual Maturation , Tilapia , Animals , Venezuela , Male , Female , Tilapia/physiology , Tilapia/growth & development , Tilapia/anatomy & histology , Reproduction/physiology , Sexual Maturation/physiology , Fertility/physiologyABSTRACT
This study investigated the sediment geochemistry of a fish farming area in net cage tanks in the Rosário reservoir, Brazil. Three areas were investigated: reference (RA), fish farming (FFA), and dispersion (DA). The results were analyzed through correlation, similarity, principal component analysis, comparison with legislation, sediment quality guidelines, and sediment pollution indices. The mean concentrations for RA, FFA, and DA areas were respectively: Cu (mg.kg-1) 37.74, 62.23, and 71.83; Mn (mg.kg-1) 22.55, 66.48, and 55.90; Zn (mg.kg-1) 9.13, 114.83, and 94.27; Fe (%) 0.28, 0.40, and 0.43; OM (%) 15.84, 21.95, and 18.45; TOC (%) 1.86, 3.69, and 6.05; TN (mg.kg-1) 2365.00, 5015.00, and 3447.51; TP (mg.kg-1) 780.00, 6896.00, and 2585.50; ORP (mV) -95.50, -135.20, and -127.10; pH 6.60, 6.58, and 6.05; <63 µm 90.59, 78.68, and 87.30. Statistically, the influence of fish farming on sediment, organic matter, and pollutant sedimentation was demonstrated. Cu and Zn concentrations were below sediment quality guidelines. Regarding legal limits (resolution 454/2012/CONAMA), nutrients in the FFA area exceeded by 60% (TN) and 100% (TP), while in DA and RA areas they were 100% lower. TOC was 100% lower in all areas. Organic matter exceeded the limit by 100% in all areas. Pollution indices resulted in: low contamination factor 78%; unpolluted for 87% of pollution load and 83% of combined pollution; moderately polluted for 75% of the Nemerow index. The greatest impacts and influence of farming on pollutant sedimentation were more concentrated in the fish farming area. In terms of legal aspects and pollution indices, fish farming produced low levels of trace metal pollution and nutrient concentrations exceeded legal limits.
Subject(s)
Aquaculture , Environmental Monitoring , Geologic Sediments , Tilapia , Water Pollutants, Chemical , Brazil , Geologic Sediments/analysis , Geologic Sediments/chemistry , Animals , Water Pollutants, Chemical/analysisABSTRACT
The indiscriminate and, very often, incorrect use of pesticides in Brazil, as well as in other countries, results in severe levels of environmental pollution and intoxication of human life. Herein, we studied plasma membrane models (monolayer and bilayer) of the phospholipid Dioleoyl-sn-glycerol-3-phosphocholine (DOPC) using Langmuir films, and large (LUVs) and giant (GUVs) unilamellar vesicles, to determine the effect of the pesticides chlorantraniliprole (CLTP), isoxaflutole (ISF), and simazine (SMZ), used in sugarcane. CLTP affects the lipid organization of the bioinspired models of DOPC π-A isotherms, while ISF and SMZ pesticides significantly affect the LUVs and GUVs. Furthermore, the in vivo study of the gill tissue in fish in the presence of pesticides (2.0 × 10-10 mol/L for CLTP, 8.3 × 10-9 mol/L for ISF, and SMZ at 9.9 × 10-9 mol/L) was performed using optical and fluorescence images. This investigation was motivated by the gill lipid membranes, which are vital for regulating transporter activity through transmembrane proteins, crucial for maintaining ionic balance in fish gills. In this way, the presence of phospholipids in gills offers a model for understanding their effects on fish health. Histological results show that exposure to CLTP, ISF, and SMZ may interfere with vital gill functions, leading to respiratory disorders and osmoregulation dysfunction. The results indicate that exposure to pesticides caused severe morphological alterations in fish, which could be correlated with their impact on the bioinspired membrane models. Moreover, the effect does not depend on the exposure period (24h and 96h), showing that animals exposed to pesticides for a short period suffer irreparable damage to gill tissue. In summary, we can conclude that the harm caused by pesticides, both in membrane models and in fish gills, occurs due to contamination of the aquatic system with pesticides. Therefore, water quality is vital for the preservation of ecosystems.
Subject(s)
Gills , Pesticides , Phospholipids , Tilapia , ortho-Aminobenzoates , Animals , Gills/drug effects , Gills/metabolism , Phospholipids/metabolism , Pesticides/toxicity , Tilapia/metabolism , ortho-Aminobenzoates/toxicity , Water Pollutants, Chemical/toxicity , Cell Membrane/drug effects , BrazilABSTRACT
In the present study, we examined 30 individuals of introduced African cichlids, Oreochromis niloticus and Coptodon rendalli, collected in a river spring of the Pardo River, Paranapanema River basin, southeastern Brazil. Based on morphological and molecular analyses of the partial LSU rDNA gene, we identified four species of monogeneans, Cichlidogyrus tilapiae, C. thurstonae, C. mbirizei, and Scutogyrus longicornis on the gills of O. niloticus, whereas individuals of C. rendalli were infested only with C. papernastrema. This is the first record of C. mbirizei and C. papernastrema in tilapias from Brazil. The ecological consequences of the introduction of exotic species of tilapia such as O. niloticus and C. rendalli along with their monogenean parasites in a wild environment represented by a river spring are discussed. Our new molecular data on Cichlidogyrus and Scutogyrus contribute to the investigation of the phylogenetic interrelationships of these widely distributed genera of monogeneans since their species composition is still unsettled.
Title: Parasites (Monogenea) des tilapias Oreochromis niloticus et Coptodon rendalli (Cichlidae) dans une source au Brésil. Abstract: Dans la présente étude, nous avons examiné 30 individus de cichlidés africains introduits, Oreochromis niloticus et Coptodon rendalli, collectés dans une source fluviale du fleuve Pardo, bassin du fleuve Paranapanema, dans le sud-est du Brésil. Sur la base d'analyses morphologiques et moléculaires du gène partiel de l'ADNr LSU, nous avons identifié quatre espèces de monogènes, Cichlidogyrus tilapiae, C. thurstonae, C. mbirizei et Scutogyrus longicornis sur les branchies d'O. niloticus, alors que les individus de C. rendalli étaient infestés uniquement par C. papernastrema. Il s'agit du premier signalement de C. mbirizei et C. papernastrema chez des tilapias du Brésil. Les conséquences écologiques de l'introduction d'espèces exotiques de tilapia telles que O. niloticus et C. rendalli ainsi que leurs monogènes parasites dans un environnement sauvage représenté par une source fluviale sont discutées. Nos nouvelles données moléculaires sur Cichlidogyrus et Scutogyrus contribuent à l'étude des interrelations phylogénétiques de ces genres de monogènes largement distribués puisque leur composition spécifique est encore incertaine.
Subject(s)
Cichlids , Fish Diseases , Parasites , Tilapia , Trematoda , Humans , Animals , Tilapia/parasitology , Cichlids/parasitology , Rivers , Phylogeny , Brazil/epidemiology , Gills/parasitology , Fish Diseases/epidemiology , Fish Diseases/parasitologyABSTRACT
Although banned in food-producing animals, residues of malachite green (MG) and its primary metabolite, leucomalachite green (LMG), have been found in fish due to illegal use in aquaculture and the release of industrial wastewater, which represent a serious risk to food and environmental securities. This study aimed to investigate the residue depletion profile of MG and LMG in edible tissues of Nile tilapia (Oreochromis niloticus) and pacu (Piaractus mesopotamicus) cultured simultaneously under the same environmental conditions to support control measures in case of abuse. An analytical method involving QuEChERS sample preparation and liquid chromatography coupled to tandem mass spectrometry was developed, validated, and applied to quantify MG and LMG residues in fish fillets from two depletion experiments after treatment by immersion bath (MG at 0.10 mg L-1 for 60 min). During the experiment, the average water temperature was 30 ºC, while the pH was 6.9. The method is selective, precise (CV = 0.4 - 22%) and accurate (recovery 92 - 114%). The limits of detection and quantification are 0.15 and 0.5 ng g-1, respectively. In both species, the sum of MG and LMG residues were quantified up to the 32nd day post-exposure, and the concentrations were significantly higher in the pacu fillets (up to 3284 ng g-1) than in Nile tilapia (up to 432 ng g-1). The sums of MG and LMG residues were below 2 ng g-1 at 44 days and 342 days for Nile tilapia and pacu, respectively - the Minimum Required Performance Limit (MRPL) for analytical methods intended to monitor forbidden substances in food according to old European Commission guidelines. The persistence of MG residues in pacu may be attributed to its higher lipid content, which favors the accumulation of the non-polar metabolite LMG. These results provide insights into the concern about human, animal, and environmental health risks resulting from unauthorized use or aquatic contamination by industrial wastewater containing MG residues.
Subject(s)
Cichlids , Tilapia , Animals , Humans , Wastewater , Rosaniline DyesABSTRACT
The present study investigates molecular-based PCR techniques to estimate the prevalence of fish pathogens in southwest Mexico where recurrent mortality in the tilapia cultures has been observed. Sample of internal organs and lesions of Nile tilapia were taken and analysed in 2018, 2019, 2020 and 2022 to detect bacterial pathogens using PCR. No samples were taken in 2021 due to the COVID-19 pandemic. The real-time PCR conditions were optimized to allow a qualitative reliable detection of the bacteria from fixed fish tissue. A total of 599 pond- and cage-cultured tilapia from the southwestern Mexican Pacific (Guerrero, Oaxaca and Chiapas states) were analysed. In this tropical region, during 2018 and 2019 water temperatures of the tilapia cultures were generally with the optimal range to grow Nile tilapia, although extreme values were recorded on some farms. Most of the tilapia sampled were apparently healthy. No Francisella sp. was detected in any sample, and Staphylococcus sp. was the most prevalent (from 0% to 64%) bacteria from the three states over time. Low prevalence of Aeromonas sp. was found, from 0% to 4.3%, although the fish pathogen Aeromonas dhakensis was not detected. Sterptococcus iniae was only detected in Chiapas in 2019 at a low prevalence (1.4%), while the major tilapia pathogen S. agalactiae was detected at a high prevalence (from 0% to 59%) in the three Mexican states. This is the first detection of these pathogenic bacteria in rural farms using real-time PCR and constitutes a great risk for tilapia aquaculture in Mexico, as well as a potential dispersion of these pathogens to other aquaculture areas.
Subject(s)
Cichlids , Fish Diseases , Tilapia , Animals , Cichlids/microbiology , Real-Time Polymerase Chain Reaction/veterinary , Mexico/epidemiology , Prevalence , Pandemics , Fish Diseases/microbiology , AquacultureABSTRACT
There is limited knowledge regarding the blockade of cysteinyl leukotriene receptors (CysLTRs) and their effects in teleost fish. The present study investigated the effects of Zafirlukast, antagonist of CysLTR1 receptor, on the foreign body inflammatory reaction in Nile tilapia (Oreochromis niloticus). Zafirlukast-treated tilapia demonstrated a decrease in the formation of multinucleated foreign body giant cells and Langhans cells on the round glass coverslips implanted in the subcutaneous tissue, along with a significant reduction in white blood cell counts and decreased production of reactive oxygen species. There was an increase in serum levels of α2-macroglobulins, as well as a decrease in ceruloplasmin and haptoglobin. Zafirlukast treatment led to a significant decrease in the area of splenic melanomacrophage centers and a reduction in the presence of lipofuscin. These findings highlight the potential anti-inflammatory effects of zafirlukast treatment in tilapia and indicate its action on CysLTR1 receptor, modulating the innate immune response of tilapia during the foreign body reaction. The comprehension of chronic inflammation mechanisms in fish has become increasingly relevant, especially concerning the utilization of biomaterials for vaccine and drug delivery.
Subject(s)
Cichlids , Fish Diseases , Foreign Bodies , Indoles , Phenylcarbamates , Sulfonamides , Tilapia , Animals , Immunity, Innate , Inflammation/prevention & controlABSTRACT
Nocardiosis has caused high mortalities among fish cultures; however, the effects of Nocardia infections in the fish gastrointestinal microbiota are unknown. In this research, tilapia was infected with Nocardia sp., to analyze the effect of infection on the gastrointestinal microbiota. Tilapia infected with Nocardia sp. reported a 46 % survival (100 % in non-infected). Moreover, the infection caused severe damage to the stomach microbiota, with a loss of diversity and a significant increase of Proteobacteria (94.8 %), resulting in a negative correlation network between Proteobacteria and other important phyla. Nocardia sp. is an emerging pathogen capable of inducing dysbiosis and causing significant mortalities.
Subject(s)
Gastrointestinal Microbiome , Nocardia Infections , Nocardia , Tilapia , Animals , Dysbiosis , Nocardia Infections/veterinary , Nocardia Infections/microbiologyABSTRACT
In current study, different feeding levels of Moringa oleifera formulated diet was compared to analyze the growth performance, feed conversion ratio, feed conversion efficiency and gut microbiology of Oreochromis niloticus. The study was comprised of four treatment groups including 4%, 8% and 12% Moringa oleifera and one control group which was devoid of Moringa leaves. The experimental trial was conducted at the Zoology laboratory of Pakistan Institute of Applied and Social Sciences, (PIASS) Kasur. The physicochemical parameters of water such as temperature, dissolve oxygen, pH, total dissolved solids and salinity in all aquaria were found non-significantly different from each other. In control condition T1, the average weight gain was 14.89±16.90a grams, while average length gain was 11.52±7.444a cm. However, the total viable count on Eosin methylene blue was 7.4×107, 5.8×107 on Tryptic soy agar and 5.8×107on Nutrient agar. In T2, the average weight gain was 16.22±16.09b grams and average length gain was 12.97±7.79b cm. The total viable count on Eosin methylene blue was 7×107, 5.5×107 on Tryptic soy agar and 5.8×107on Nutrient agar. In T3, the average weight gain was 37.88±27.43c grams, while the average length gain was recorded as 16.48±12.56c cm. However, the total viable count for treatment 3 was 6.4×10 on Eosin methylene blue, 4.8×107 on Tryptic soy agar and 5.2×107on Nutrient agar. In T4, the average weight gain was 44.22±31.67d grams, while the average length gain was 15.25±10.49d cm. The total viable count was 4.3×107on Eosin methylene blue, 3.1×107 on Tryptic soy agar and 3.8×107 on Nutrient agar. The effect of Moringa oleifera on the growth of Oreochromis niloticus was found to be significant and 12% Moringa extract showed maximum length and weight gain and minimum feed conversion ratio with the least microbial count in fish intestine.
No presente estudo, diferentes níveis de alimentação da dieta formulada com Moringa oleifera foram comparados para analisar o desempenho de crescimento, taxa de conversão alimentar, eficiência de conversão alimentar e microbiologia intestinal de Oreochromis niloticus. O estudo foi composto por quatro grupos de tratamento, incluindo 4%, 8% e 12% de Moringa oleifera e um grupo de controle sem folhas de Moringa. O ensaio experimental foi realizado no laboratório de Zoologia do Instituto de Ciências Aplicadas e Sociais do Paquistão (PIASS), Kasur. Os parâmetros físico-químicos da água como temperatura, oxigênio dissolvido, pH, sólidos totais dissolvidos e salinidade em todos os aquários foram encontrados não significativamente diferentes entre si. Na condição controle T1, o ganho médio de peso foi de 14,89±16,90a gramas, enquanto o ganho médio de comprimento foi de 11,52±7,444a cm. No entanto, a contagem total viável em azul de metileno de eosina foi de 7,4×107, 5,8×107 em ágar de soja Tryptic e 5,8×107 em ágar Nutriente. Em T2, o ganho médio de peso foi de 16,22±16,09b gramas e o ganho médio de comprimento foi de 12,97±7,79b cm. A contagem total viável em azul de metileno de eosina foi 7×107, 5,5×107 em ágar de soja Tryptic e 5,8×107 em ágar Nutriente. Em T3, o ganho médio de peso foi de 37,88±27,43c gramas, enquanto o ganho médio de comprimento foi registrado como 16,48±12,56c cm. No entanto, a contagem total viável para o tratamento 3 foi de 6,4×10 em azul de metileno de eosina, 4,8×107 em ágar soja Tryptic e 5,2×107 em ágar Nutriente. Em T4, o ganho médio de peso foi de 44,22±31,67d gramas, enquanto o ganho médio de comprimento foi de 15,25±10,49d cm. A contagem total viável foi de 4,3×107 em Eosin metileno blue, 3,1×107 em Tryptic soy agar e 3,8×107 em Nutrient agar. O efeito da Moringa oleifera no crescimento de Oreochromis niloticus foi significativo e o extrato de Moringa a 12% apresentou ganho máximo de comprimento e peso e conversão alimentar mínima com a menor contagem microbiana no intestino dos peixes.
Subject(s)
Animals , Tilapia/growth & development , Tilapia/microbiology , Moringa oleifera , DietABSTRACT
Tilapia has high-temperature tolerance, can breed in captivity, grow fast, and have excellent cost-benefit. Because of these characteristics, this species is of great interest in aquaculture and, currently, the most produced fish in Brazil. However, by increasing tilapia production, there was also a rise in the amount of organic waste, mainly from filleting, which discards 70% of waste. There are many studies on collagen extraction from tilapia skin as an alternative to reduce these residues and add commercial value. In this work, the extraction of protein concentrate was tested using an acid protocol, in which the tilapia skins underwent a pre-treatment in an acid medium and saline precipitation, with variations in time and concentration. After its extraction, the skin was evaluated for ash, moisture, protein, solubility, and pH. The protein concentrate obtained showed low ash contents, and the humidity is within those presented by the literature. The protein concentrate showed levels from 68.73 to 80.58% of protein and a low solubility between 4.03 to 6.93%. In conclusion, acid extraction is a possible means of collagen extraction, and tilapia skin is a good alternative to reuse waste generated in the fish industry.
A tilápia tem tolerância a altas temperaturas, pode se reproduzir em cativeiro, crescer rápido e tem excelente custo-benefício. Por essas características, esta espécie é de grande interesse na aquicultura e, atualmente, o pescado mais produzido no Brasil. No entanto, com o aumento da produção de tilápias, houve também um aumento na quantidade de resíduos orgânicos, principalmente da filetagem, que descarta 70% dos resíduos. Existem muitos estudos sobre a extração de colágeno da pele de tilápia como alternativa para reduzir esses resíduos e agregar valor comercial. Neste trabalho, a extração do concentrado protéico foi testada utilizando um protocolo ácido, no qual as peles de tilápia foram submetidas a um pré-tratamento em meio ácido e precipitação salina, com variações de tempo e concentração. Após sua extração, a pele foi avaliada quanto a cinzas, umidade, proteína, solubilidade e pH. O concentrado protéico obtido apresentou baixos teores de cinzas, e a umidade está dentro dos apresentados pela literatura. O concentrado protéico apresentou teores de 68,73 a 80,58% de proteína e uma baixa solubilidade entre 4,03 a 6,93%. Em conclusão, a extração ácida é um possível meio de extração de colágeno, e a pele de tilápia é uma boa alternativa para reaproveitar os resíduos gerados na indústria de pescados.
Subject(s)
Animals , Skin , Acids , Waste Products , Collagen/chemistry , TilapiaABSTRACT
In the present study, a film based on the gelatin skin of tilapia (Oreochromis niloticus) was developed, using surfactants and adding plant extract of pitomba seed (Talisia esculenta). The aim was to investigate the mechanical and barrier properties of the cover, as well as its effectiveness in conserving papayas against diseases caused by fungi. The film presented tensile strength of 38.78 MPa, elongation of 120.49%, and water vapor permeability of 5.90 g.mm.h-1.m2.kPa-1 when equally composed of SDS and Tween 80, in a percentage of 40% in relation to the total mass of the film. The films lasted 12 d in an environment with a relative humidity of 75% (25 ºC), longer than the shelf life of papaya (limited to 8 d). With applying the film with the extract, the incidence of diseases such as anthracnose, fusariosis, and stem rot caused by these microorganisms in papaya was reduced.
Subject(s)
Carica , Cichlids , Sapindaceae , Tilapia , Animals , Gelatin , Plant Extracts , Hawaii , Tensile Strength , Permeability , Food PackagingABSTRACT
The increase in the number of Brazilian protected areas has been progressive and, although it is essential for the conservation of biodiversity, it is important to monitor and properly manage these areas, as they present several cases of biological invasions. The Lençóis Maranhenses constitute the peculiar delta of the Americas and are under the consequences of the bioinvasion of tilapias and peacock bass. Collections were carried out in the Lençóis Maranhenses National Park from March/2016 to November/2020, with the aid of gill nets and cast nets. The species were identified with the help of specialized literature and a historical comparison with previous works was carried out. Cytochrome oxidase subunit I was sequenced to confirm identification of non-native species. We recorded the expansion of the occurrence of Oreochromis niloticus, and the first record of the species Oreochromis mossambicus and Cichla monoculus. A total of 31 species belonging to eight orders, eighteen families and twenty-nine genera were identified, indicating a lag in the diversity of species found in relation to previous studies. After 20 years of the first record of invasive fish, there is an expansion of bioinvasion and new cases that indicate a lack of monitoring and containment measures for the species, indicating the fragility of conservation in the area.
Subject(s)
Cichlids , Tilapia , Humans , Animals , Introduced Species , Brazil , BiodiversityABSTRACT
Tilapia species are among the most cultivated fish worldwide due to their biological advantages but face several challenges, including environmental impact and disease outbreaks. Feed additives, such as probiotics, prebiotics, and other microorganisms, have emerged as strategies to protect against pathogens and promote immune system activation and other host responses, with consequent reductions in antibiotic use. Because these additives also influence tilapia's gut microbiota and positively affect the tilapia culture, we assume it is a flexible annex organ capable of being subject to significant modifications without affecting the biological performance of the host. Therefore, we evaluated the effect of probiotics and other additives ingested by tilapia on its gut microbiota through a meta-analysis of several bioprojects studying the tilapia gut microbiota exposed to feed additives (probiotic, prebiotic, biofloc). A total of 221 tilapia gut microbiota samples from 14 bioprojects were evaluated. Alpha and beta diversity metrics showed no differentiation patterns in relation to the control group, either comparing additives as a group or individually. Results also revealed a control group with a wide dispersion pattern even when these fish did not receive additives. After concatenating the information, the tilapia gut core microbiota was represented by four enriched phyla including Proteobacteria (31%), Fusobacteria (23%), Actinobacteria (19%), and Firmicutes (16%), and seven minor phyla Planctomycetes (1%), Chlamydiae (1%), Chloroflexi (1%), Cyanobacteria (1%), Spirochaetes (1%), Deinococcus Thermus (1%), and Verrucomicrobia (1%). Finally, results suggest that the tilapia gut microbiota is a dynamic microbial community that can plastically respond to feed additives exposure with the potential to influence its taxonomic profile allowing a considerable optimal range of variation, probably guaranteeing its physiological function under different circumstances.
Subject(s)
Microbiota , Probiotics , Tilapia , Animals , Tilapia/microbiology , Prebiotics , Probiotics/pharmacology , Bacteria , AquacultureABSTRACT
The aim of this study was to evaluate the body yield and quality of fresh and post-freezing filet of male and female fish of inbred and non-inbred AquaAmérica genetic group and the hybrid between the AquaAmérica and Tilamax varieties. Forty fish (20 males and 20 females) of each genetic group were housed in four 48-m3 hapa net cages, getting 120 fish per cage. The fish were housed at 51 days of age and farmed for 269 days. Pre-slaughter weight was higher (P<0.05) in the AquaAmérica × Tilamax males (0.805±0.204 kg) than in the inbred AquaAmérica male (0.643±0.115 kg). Filet yield percentage was higher (P<0.05) in the AquaAmérica × Tilamax males (32.14±4.72%) than in the inbred AquaAmérica (28.15±2.67%) and non-inbred AquaAmérica (29.06±2.80%) males. Head and viscera yield percentages, pH, color values (L*, a* and b*), shear force, drip loss and cooking loss did not differ significantly between the genetic groups and sexes. Alterations in meat quality were observed after freezing. In conclusion, inbreeding in the AquaAmérica variety resulted in reduced slaughter weight for males; AquaAmérica × Tilamax males have a higher filet yield; and filet quality is not influenced by crossing, inbreeding, or sex, but is changed after freezing.
Subject(s)
Tilapia , Tilapia/genetics , Gene Expression Regulation , Freezing , Male , Female , Animals , SeafoodABSTRACT
The effect of daily ingestion of polypropylene microplastic on the health of tilapia, Oreochromis niloticus, was evaluated. 60 fish (± 200 g) were placed in 6 aquariums (n = 10, 100 L each), constituting the following treatments: Control (without the addition of polymer), fed with 100 and 500 µg of polypropylene/kg of body weight (b.w.), respectively. After 30 days of feeding, the animals were submitted to blood collection for hemogram and biochemical study and later euthanized for gut microbiological analysis, somatic index of liver, spleen, heart, kidney, stomach, and intestine. In the serum biochemical study, an increase in cholesterol and serum Aspartate Aminotransferase (AST) activity levels was observed in animals treated with 500 µg of polypropylene. Tilapia-fed polypropylene in the diet showed an increase in thrombocyte and total leukocyte counts, marked by a significant increase in the number of circulating lymphocytes. The results of the somatic study revealed a significant increase in the stomach, liver, and heart of tilapia fed with the polymer. Increase in the number of Gram-negative microorganisms and decrease in mesophilic aerobic microorganisms were observed in the gut of fish exposed to the polymer, including a dose-response effect was observed for these analyses. Therefore, tilapias fed daily with diets containing polypropylene for 30 consecutive days showed deleterious effects, resulting in systemic inflammatory disturbs by altering liver functions, leukocyte profile, and organ morphometry, as well as changes in the intestinal microbiota. Such results demonstrate the impairment of fish health, highlighting the need for further studies that evaluate the impact of microplastics on aquatic organisms.
Subject(s)
Cichlids , Tilapia , Animals , Cichlids/physiology , Microplastics , Plastics , Polypropylenes/toxicity , Diet , Eating , Animal Feed/analysis , Dietary Supplements/analysisABSTRACT
We studied the effects of Yarrowia lipolytica biomass on digestive enzymes, blood biochemical profile, energy metabolism enzymes, and proximate meat composition of Nile tilapias. The experiment was entirely randomized with four replications. The animals (n = 20 per repetition) were fed with 0%, 3%, 5%, and 7% of biomass for 40 days and then blood and liver were analyzed. There was an increase in the activities of chymotrypsin (5, 7% groups), trypsin (3, 5% groups), and sucrase (7% group) compared to the respective control groups. On the other hand, maltase activity was significantly reduced for all yeast biomass treatments, while the supplementation did not influence lipase and amylase activities. Moreover, the blood triacylglycerol concentrations were increased in the 7% group, while any treatment modified blood total cholesterol, glycemia, and hepatic glycogen content. Y. lipolytica biomass promoted significant increases in meat protein and lipid contents without changes in moisture and ash parameters. Furthermore, Y. lipolytica biomass promoted increases in hexokinase (3% group), phosphofructokinase (5, 7% groups), glucose-6-phosphate dehydrogenase (5% group), citrate synthase (3% group), aspartate aminotransferase and alanine aminotransferase (3% group), and glutamate dehydrogenase (3, 5% groups) compared to the respective control groups. At the same time, no changes were observed in the activity of glucose-6-phosphatase. Y. lipolytica biomass supplementation in tilapias' diet can modulate the digestive system and improve nutrient disponibility to the cells. Moreover, the changes in the metabolic profile and in energy metabolism can be correlated with the improvement of meat composition. Therefore, the Y. lipolytica biomass has a great potential to be used as a feed ingredient for Nile tilapias.
Subject(s)
Cichlids , Tilapia , Yarrowia , Animals , Yarrowia/metabolism , Biomass , Lipid MetabolismABSTRACT
The probiotic potential of a designed bacterial consortia isolated from a competitive exclusion culture originally obtained from the intestinal contents of tilapia juveniles were evaluated on Nile tilapia alevins. The growth performance, intestinal histology, microbiota effects, resistance to Streptococcus agalactiae challenge, and immune response were assessed. In addition, the following treatments were included in a commercial feed: A12+M4+M10 (Lactococcus lactis A12, Priestia megaterium M4, and Priestia sp. M10), M4+M10 (P. megaterium M4, and Priestia sp. M10) and the single bacteria as controls; A12 (L. lactis A12), M4 (P. megaterium M4), M10 (Priestia sp. M10), also a commercial feed without any probiotic addition was included as a control. The results showed that all probiotic treatments improved the growth performance, intestinal histology, and resistance during experimental infection with S. agalactiae in comparison to the control fish. Also, the administration of probiotics resulted in the modulation of genes associated with the innate and adaptive immune systems that were non-dependent on microbial colonization. Surprisingly, L. lactis A12 alone induced benefits in fish compared to the microbial consortia, showing the highest increase in growth rate, survival during experimental infection with S. agalactiae, increased intestinal fold length, and the number of differentially expressed genes. Lastly, we conclude that a competitive exclusion culture is a reliable source of probiotics, and monostrain L. lactis A12 has comparable or even greater probiotic potential than the bacterial consortia.
Subject(s)
Cichlids , Fish Diseases , Gastrointestinal Microbiome , Probiotics , Tilapia , Animals , Probiotics/pharmacology , Diet/veterinary , Animal Feed/analysis , Dietary SupplementsABSTRACT
Mining areas may suffer long-term metal contamination and represent harmful remnants of former mining activities. In the northern Amazon of Ecuador, former mining waste pits are used in Oreochromis niloticus (Nile tilapia) fish farming. Given the high consumption of this species by the local population, we aimed to estimate human consumption risks by determining Cd, Cu, Cr, Pb, and Zn tissue bioaccumulation (liver, gills, and muscle) and genotoxicity (micronucleus essay) in tilapia cultivated in one former mining waste pit (S3) and compare the findings to tilapias reared in two non-mining areas (S1 and S2); 15 fish total. Tissue metal content was not significantly higher in S3 than in non-mining areas. Cu and Cd were higher in the gills of tilapias from S1 compared to the other study sites. Higher Cd and Zn were detected in the liver of tilapias from S1 compared to the other sampling sites. Cu was higher in the liver of fish from S1 and S2, and Cr, in the gills of fish from S1. The highest frequency of nuclear abnormalities was observed in fish from S3, indicating chronic exposure to metals at this sampling site. The consumption of fish reared at the three sampling sites results in a 200-fold higher Pb and Cd ingestion than their maximum tolerable intake thresholds. Calculated estimated weekly intakes (EWI), hazard quotients (THQ), and Carcinogenic Slope Factors (CSFing) denote potential human health risks, indicating the need for continuous monitoring in this area to ensure food safety not only in areas affected by mining, but in general farms in the region.
Subject(s)
Cichlids , Metals, Heavy , Tilapia , Water Pollutants, Chemical , Animals , Humans , Metals, Heavy/toxicity , Metals, Heavy/analysis , Cadmium/toxicity , Ecuador , Bioaccumulation , Lead , Agriculture , Environmental Monitoring , Risk Assessment , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysisABSTRACT
BACKGROUND: Tilapia (Oreochromis spp.) in the form of frozen fillets is one of the fishes with the highest commercial production levels worldwide. However, protein denaturation, membrane rupture, and lipid oxidation are commonly observed in fillets when stored at standard commercial freezing temperatures for long periods. This study proposes, for the first time, the use of maltodextrin and state diagrams to define processing strategies and suitable storage temperatures for fresh and dehydrated tilapia fillets. Differential scanning calorimetry (DSC) was used to study the effect of maltodextrin weight fractions ( W MD ) of 0, 0.4, and 0.8 on the thermal transitions of tilapia fillets as a function of solid mass fractions ( W s ). RESULTS: The glass transition temperature curve ( T g vs . W s ) and characteristic parameters of maximal freeze concentration ( T g ' , T m ' , W s ' ) of tilapia increased significantly with the addition of maltodextrin. Using developed state diagrams, freezing and storage temperatures of -22 °C, -15 °C, and -10 °C (P < 0.05) for long-term preservation were defined for tilapia fillets produced with W MD of 0, 0.4, and 0.8. CONCLUSION: Maltodextrin is an excellent alternative as a cryoprotectant and drying aid to increase the thermal parameters of tilapia fillets by achieving frozen storage temperatures above the standard commercial freezing temperature of -18 °C. © 2023 Society of Chemical Industry.