Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
J Dent ; 149: 105273, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084548

ABSTRACT

OBJECTIVES: The present study aimed to synthesize toothpastes containing Beta- TriCalcium Phosphate (ß-TCP) nanoparticles, functionalized with fluoride and tin, and test their ability to reduce erosive tooth wear (ETW). METHODS: Toothpastes were synthesized with the following active ingredients: 1100 ppm of fluoride (as sodium fluoride, F-), 3500 ppm of tin (as stannous chloride, Sn2+), and 800 ppm of ß-TCP (Sizes a - 20 nm; and b - 100 nm). Enamel specimens were randomly assigned into the following groups (n = 10): 1. Commercial toothpaste; 2. Placebo; 3 F-; 4. F- + ß-TCPa; 5. F- + ß-TCPb; 6. F- + Sn2+; 7. F- + Sn2+ + ß-TCPa and 8. F- + Sn2+ + ß-TCPb. Specimens were subjected to erosion-abrasion cycling. Surface loss (in µm) was measured by optical profilometry. Toothpastes pH and available F- were also assessed. RESULTS: Brushing with placebo toothpaste resulted in higher surface loss than brushing with F- (p = 0.005) and F- + ß-TCPb (p = 0.007); however, there was no difference between F- and F- + ß-TCPb (p = 1.00). Commercial toothpaste showed no difference from Placebo (p = 0.279). The groups F-, F- + ß-TCPa, F- + ß-TCPb, F- + Sn2+, F- + Sn2+ + ß-TCPa and F- + Sn2+ + ß-TCPb were not different from the commercial toothpaste (p > 0.05). Overall, the addition of ß-TCP reduced the amount of available fluoride in the experimental toothpastes. The pH of toothpastes ranged from 4.97 to 6.49. CONCLUSIONS: Although toothpaste containing ß-TCP nanoparticles protected enamel against dental erosion-abrasion, this effect was not superior to the standard fluoride toothpaste (commercial). In addition, the functionalization of ß-TCP nanoparticles with fluoride and tin did not enhance their protective effect. CLINICAL SIGNIFICANCE: Although ß-TCP nanoparticles have some potential to control Erosive Tooth Wear, their incorporation into an experimental toothpaste appears to have a protective effect that is similar to a commercial fluoride toothpaste.


Subject(s)
Calcium Phosphates , Dental Enamel , Nanoparticles , Tooth Erosion , Toothpastes , Calcium Phosphates/chemistry , Calcium Phosphates/therapeutic use , Toothpastes/chemistry , Toothpastes/therapeutic use , Tooth Erosion/prevention & control , Nanoparticles/chemistry , Dental Enamel/drug effects , Hydrogen-Ion Concentration , Tin Compounds/therapeutic use , Tin Compounds/chemistry , Sodium Fluoride/therapeutic use , Sodium Fluoride/chemistry , Animals , Fluorides/therapeutic use , Tin/chemistry , Tooth Abrasion/prevention & control , Cattle , Materials Testing , Surface Properties , Random Allocation , Toothbrushing , Humans
2.
Environ Res ; 258: 119371, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876420

ABSTRACT

Cu2ZnSnS4 (CZTS) was synthesized following hot injection method and the process was optimized by varying temperature conditions. Four samples at different temperatures viz., 200, 250, 300 and 350 °C were prepared and analyzed using different characterization techniques. Based on the correlation between XRD, Raman and XPS, we conclude that the formation of ZnS and SnS2 occurs at 350 °C but at 200 °C there is no breakdown of the complex as per XRD. According to Raman and XPS analysis, as the temperature rises, the bonds between the metals become weaker, which is visibly seen in Raman and XPS due to the minor peaks of copper sulfide. Scanning electron microscopic analysis confirmed nanometric particles which increase in size with temperature. The photocatalytic evaluation showed that CZTS synthesized at 200 °C performed efficiently in the removal of the two colorants, methylene blue and Rhodamine 6G, achieving 92.80% and 90.65%, respectively. The photocatalytic degradation efficiencies decreased at higher temperatures due to bigger sized CZTS particles as confirmed by SEM results. Computational simulations confirm that CZTS has a highly negative energy -25,764 Ry, confirming its structural stability and higher covalent than ionic character.


Subject(s)
Copper , Methylene Blue , Rhodamines , Sulfides , Rhodamines/chemistry , Methylene Blue/chemistry , Sulfides/chemistry , Copper/chemistry , Catalysis , Tin Compounds/chemistry , Hot Temperature , Water Pollutants, Chemical/chemistry
3.
J Mater Sci Mater Med ; 32(7): 83, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34212232

ABSTRACT

This study aimed to formulate a hybrid coating material (HC) and to modify this HC with fluoride (NaF) and stannous (SnCl2) ions, directly or encapsulated in nano containers, testing the effects of these materials against dental erosion and erosion-abrasion. Enamel and dentin specimens were treated with the HCs, and then tested in erosion or erosion-abrasion cycling models of 5 days (n = 10 for each substrate, for each model). Deionized water was the negative control, and a fluoride varnish, the positive control. Surface loss (SL, in µm) was evaluated with an optical profilometer, and data were statistically analyzed (α = 0.05). For enamel, in erosion, the positive control and HC without additives showed significantly lower SL than the negative control (p = 0.003 and p = 0.001). In erosion-abrasion, none of the groups differed from the negative control (p > 0.05). For dentin, in erosion, the positive control, HC without additives, HC with non-encapsulated F, and HC with encapsulated F + Sn showed lower SL than the negative control (p < 0.05). In erosion-abrasion, none of the groups differed significantly from the negative control (p < 0.05). HC without additives showed a promising potential for protecting the teeth against dental erosion (with upward trend for improved protection on dentin), but not against erosion-abrasion. The presence of additives did not improve the protective effect of the HC, on both substrates.


Subject(s)
Coated Materials, Biocompatible/chemistry , Fluorides/chemistry , Tin Compounds/chemistry , Tooth Erosion/prevention & control , Tooth Wear , Animals , Cattle , Clay , Dentin/chemistry , Fluorine , In Vitro Techniques , Incisor/physiology , Ions , Microscopy, Electron, Scanning , Sodium Fluoride , Water
4.
Nanotechnology ; 31(16): 165501, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-31770731

ABSTRACT

Cyclodextrin (CD) is a conical compound used in food and pharmaceutical industry to complexation of hydrophobic substances. It is a product of microbial enzymes which converts starch into CD during their activity. We aim to detect CD using active-electrode biosensor of SnO2. They were grown on active electrode by the VLS method. The CD consists of several glucose units which have hydroxyl groups which tend to bind to interface states present in nanowires changing their conductivity. Experimental results of electrical conductivity at different CD concentrations are presented. A model that describes the influence of adsorbed glucose on nanowires and its electrical properties is also presented. Some general observations are performed on the applicability of the CD adsorption method by the nanowire-based biosensor.


Subject(s)
Biosensing Techniques , Cyclodextrins/analysis , Glucosyltransferases/metabolism , Nanowires/chemistry , Tin Compounds/chemistry , Bacillus/enzymology , Electricity , Electrodes , Nanowires/ultrastructure , Time Factors
5.
Food Chem ; 294: 405-413, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31126481

ABSTRACT

In the present paper, a new analytical preconcentration/speciation method for antimony species determination in bottled mineral water samples using the SiO2/Al2O3/SnO2 adsorbent was developed. The method is based on selective adsorption of Sb(III) ions by SiO2/Al2O3/SnO2 under a wide pH range (2.5-7.5). Total antimony was determined with previous sample treatment using 0.1% (w/v) l-cysteine and the concentration of Sb(V) species was determined by the difference between total and Sb(III). The proposed method provided an analytical curve ranging from 0.50 to 5.00 µg L-1 (r = 0.999), limit of detection (LD) of 0.17 µg L-1 and preconcentration factor (PF) of 136-fold. The method exhibited tolerance to different metal ions and the accuracy was attested from addition and recovery tests (95.2-106.0%) in bottled mineral water samples using 2.0% (w/v) l-cysteine, as well as by analysis of certified material. Only Sb(III) species were determined in mineral water (0.54-1.04 µg L-1).


Subject(s)
Antimony/analysis , Drinking Water/analysis , Mineral Waters/analysis , Spectrophotometry, Atomic/methods , Aluminum Oxide/chemistry , Antimony/chemistry , Cysteine/chemistry , Flow Injection Analysis , Limit of Detection , Oxidation-Reduction , Silicon Dioxide/chemistry , Tin Compounds/chemistry
6.
Bioelectrochemistry ; 127: 145-153, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30825658

ABSTRACT

Geobacter sulfurreducens is a model organism for understanding the role of bacterial structures in extracellular electron transfer mechanism (EET). This kind of bacteria relies on different structures such as type IV pili and over 100 c-type cytochromes to perform EET towards soluble and insoluble electron acceptors, including electrodes. To our knowledge, this work is the first electrochemical study comparing a G. sulfurreducens PilR-deficient mutant and wild type biofilms developed on fluorine-doped tin oxide (FTO) electrodes. Open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), were used to evaluate the electroactive properties of biofilms grown without externally imposed potential. Parallel studies of Confocal Laser Scanning Microscopy (CLSM) correlated with the electrochemical results. PilR is a transcriptional regulator involved in the expression of a wide variety of genes, including pilA (pilus structural protein) relevant c-type cytochromes and some other genes involved in biofilm formation and EET processes. Our findings suggest that PilR-deficient mutant forms a thinner (CLSM analysis) and less conductive biofilm (EIS analysis) than wild type, exhibiting different and irreversible redox processes at the interface (CV analysis). Additionally, this work reinforces some of the remarkable features described in previous reports about this G. sulfurreducens mutant.


Subject(s)
Bacterial Proteins/genetics , Biofilms , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial , Geobacter/genetics , Transcription Factors/genetics , Bioelectric Energy Sources/microbiology , Biofilms/growth & development , Electric Conductivity , Electrodes , Electron Transport , Fluorine/chemistry , Gene Deletion , Geobacter/physiology , Oxidation-Reduction , Tin Compounds/chemistry
7.
Environ Sci Pollut Res Int ; 26(5): 4224-4233, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29464595

ABSTRACT

Etoposide is an antineoplastic agent used for treating lung cancer, testicular cancer, breast cancer, pediatric cancers, and lymphomas. It is a pollutant due to its mutagenic and carcinogenic potential. Disposal of waste from this drug is still insufficiently safe, and there is no appropriate waste treatment. Therefore, it is important to use advanced oxidative processes (AOPs) for the treatment and disposal of medicines like this. The use of strontium stannate (SrSnO3) as a catalyst in heterogeneous photocatalysis reactions has emerged as an alternative for the removal of organic pollutants. In our study, SrSnO3 was synthesized by the combustion method and characterized by X-ray diffraction (XRD), Raman, UV-Vis, and scanning electron microscopy (SEM) techniques, obtaining a surface area of 3.28 m2 g-1 with cubic and well-organized crystallinity and a band gap of 4.06 eV. The experimental conditions optimized for degradation of an etoposide solution (0.4 mg L-1) were pH 5 and catalyst concentration of 1 g L-1. The results showed that the degradation processes using SrSnO3 combined with H2O2 (0.338 mol L-1) obtained total organic carbon removal from the etoposide solution, 97.98% (± 4.03 × 10-3), compared with TiO2, which obtained a mineralization rate of 72.41% (± 6.95 × 10-3). After photodegradation, the degraded solution showed no toxicity to zebrafish embryos through embryotoxicity test (OECD, 236), and no genotoxicity using comet assay and micronucleus test.


Subject(s)
Etoposide/toxicity , Tin Compounds/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Water Purification/methods , Animals , Catalysis , Embryo, Nonmammalian/drug effects , Etoposide/analysis , Humans , Hydrogen Peroxide/chemistry , Male , Models, Theoretical , Oxidation-Reduction , Photolysis , Surface Properties , Water Pollutants, Chemical/analysis , Zebrafish/embryology
8.
Caries Res ; 53(3): 305-313, 2019.
Article in English | MEDLINE | ID: mdl-30359980

ABSTRACT

The aim of this study was to evaluate the anti-erosive effect of solutions containing sodium fluoride (F: 225 ppm F-), stannous chloride (Sn: 800 ppm Sn2+), and some film-forming polymers (Gantrez: Poly [methylvinylether-alt-maleic anhydride]; PGA: propylene glycol alginate; Plasdone: poly[vinylpyrrolidone]; and CMC: carboxymethylcellulose). Solutions were tested in an erosion-remineralization cycling model, using enamel and dentin specimens (n = 10, for each substrate). Distilled water was the negative control. Cycling consisted of 120 min immersion in human saliva, 5 min in 0.3% citric acid solution, and 120 min of exposure to human saliva, 4×/day, for 5 days. Treatment with solutions (pH = 4.5) was carried out 2×/day, for 2 min. Surface loss (SL) was evaluated with optical profilometry. Zeta potential of hydroxyapatite crystals was determined after treatment with the solutions. Data were statistically analyzed (α = 0.05). For enamel, all polymers showed significantly lower SL (in µm) than the control (11.09 ± 0.94), except PGA (10.15 ± 1.25). PGA significantly improved the protective effect of F (4.24 ± 0.97 vs. 5.64 ± 1.60, respectively). None of the polymers increased the protection of F+Sn (5.13 ± 0.78). For dentin, only Gantrez (11.40 ± 0.97) significantly reduced SL when compared with the negative control (12.76 ± 0.75). No polymer was able to enhance the effect of F (6.28 ± 1.90) or F+Sn (7.21 ± 1.13). All fluoridated solutions demonstrated significantly lower SL values than the control for both substrates. Treatment of hydroxyapatite nanoparticles with all solutions resulted in more negative zeta potentials than those of the control, except Plasdone, PGA, and F+Sn+PGA, the latter two presenting the opposite effect. In conclusion, Gantrez, Plasdone, and CMC exhibited an anti-erosive effect on enamel. PGA increased the protection of F. For dentin, only Gantrez reduced erosion.


Subject(s)
Sodium Fluoride/chemistry , Tin Compounds/chemistry , Tooth Erosion/prevention & control , Alginates , Carboxymethylcellulose Sodium , Humans , In Vitro Techniques , Maleates , Polymers , Polyvinyls , Povidone , Tin Fluorides
9.
Anal Chem ; 89(18): 10054-10062, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28849651

ABSTRACT

The formation of new types of sensitive conductive surfaces for the detection and transduction of cell-extracellular matrix recognition events in a real time, label-free manner is of great interest in the field of biomedical research. To study molecularly defined cell functions, biologically inspired materials that mimic the nanoscale order of extracellular matrix protein fibers and yield suitable electrical charge transfer characteristics are highly desired. Our strategy to achieve this goal is based on the spatial self-organization of patches of cell-adhesive molecules onto a gold-nanoparticle-patterned indium tin oxide electrode. Fibroblast adhesion response to selective ligands for integrins α5ß1 and αvß3, which are both relevant in cancer progression, is investigated by simultaneous electrochemical impedance spectroscopy and optical microscopy. Adhesive cells on α5ß1-selective nanopatterns showed enhanced membrane dynamics and tighter binding, compared with cells on αvß3-selective nanopatterns. The surface of the electrode exhibits high sensitivity to small changes in surface properties, because of the constitution of specific cell-surface interactions. Moreover, such sensitivity enables differentiation between cell types. This is exemplified by analyzing distinct features in the electrochemical readout of MCF-7 breast cancer cells versus MCF-10A mammary epithelial cells, when subjected to individual adhesive nanopatches.


Subject(s)
Electrochemical Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Optical Imaging , Tin Compounds/chemistry , Animals , Cell Adhesion , Cells, Cultured , Humans , Integrin alpha5beta1/antagonists & inhibitors , Integrin alpha5beta1/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Integrin alphaVbeta3/metabolism , Ligands , MCF-7 Cells , Microelectrodes , Particle Size , Rats , Surface Properties
10.
ACS Appl Mater Interfaces ; 7(8): 4784-90, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25644325

ABSTRACT

The use of nanomaterials as an electroactive medium has improved the performance of bio/chemical sensors, particularly when synergy is reached upon combining distinct materials. In this paper, we report on a novel architecture comprising electrospun polyamide 6/poly(allylamine hydrochloride) (PA6/PAH) nanofibers functionalized with multiwalled carbon nanotubes, used to detect the neurotransmitter dopamine (DA). Miscibility of PA6 and PAH was sufficient to form a single phase material, as indicated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), leading to nanofibers with no beads onto which the nanotubes could adsorb strongly. Differential pulse voltammetry was employed with indium tin oxide (ITO) electrodes coated with the functionalized nanofibers for the selective electrochemical detection of dopamine (DA), with no interference from uric acid (UA) and ascorbic acid (AA) that are normally present in biological fluids. The response was linear for a DA concentration range from 1 to 70 µmol L(-1), with detection limit of 0.15 µmol L(-1) (S/N = 3). The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and biosensors.


Subject(s)
Dopamine/analysis , Electrochemical Techniques , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Ascorbic Acid/chemistry , Biosensing Techniques , Calorimetry, Differential Scanning , Caprolactam/analogs & derivatives , Caprolactam/chemistry , Electrodes , Nanofibers/ultrastructure , Polyamines/chemistry , Polymers/chemistry , Thermogravimetry , Tin Compounds/chemistry , Uric Acid/chemistry
11.
J Phys Chem A ; 118(31): 5857-65, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24824227

ABSTRACT

Titanium dioxide (TiO2) thin films are grown by the sol-gel dip-coating technique, in conjunction with SnO2 in the form of a heterostructure. It was found that the crystalline structure of the most internal layer (TiO2) depends on the thermal annealing temperature and the substrate type. Films deposited on glass substrate submitted to thermal annealing until 550 °C present anatase structure, whereas films deposited on quartz substrate transform to rutile structure at much higher temperatures, close to 1000 °C, unlike powder samples where the phase transition takes place at about 780 °C. When structured as rutile, the oxide semiconductors TiO2/SnO2 have very close lattice parameters, making the heterostructure assembling easier. The SnO2 and TiO2 have their electronic properties evaluated by first-principles calculations by means of DFT/B3LYP. Taking into account the calculated band structure diagram of these materials, the TiO2/SnO2 heterostructure is qualitatively investigated and proposed to increase the detection efficiency as gas sensors. This efficiency can be further improved by doping the SnO2 layer with Sb atoms. This assembly may be also useful in photoelectrocatalysis processes.


Subject(s)
Tin Compounds/chemistry , Titanium/chemistry , Computer Simulation , Electrons , Glass/chemistry , Models, Chemical , Phase Transition , Spectrum Analysis , Temperature , X-Ray Diffraction
12.
Talanta ; 116: 133-40, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24148384

ABSTRACT

A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples.


Subject(s)
Fresh Water/chemistry , Methylmercury Compounds/isolation & purification , Phenylmercury Compounds/isolation & purification , Solid Phase Extraction/methods , Water Pollutants, Chemical/isolation & purification , Hydrogen-Ion Concentration , Ion Exchange Resins/chemistry , Limit of Detection , Organophosphorus Compounds/chemistry , Oxidation-Reduction , Reproducibility of Results , Spectrophotometry, Atomic , Tin Compounds/chemistry
13.
Mater Sci Eng C Mater Biol Appl ; 33(7): 3899-902, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23910293

ABSTRACT

This paper reports on the use of the crude extract of avocado (CEA) fruit (Persea americana) as a source of tyrosinase enzyme. CEA was immobilized via layer by layer (LbL) technique onto indium tin oxide (ITO) substrates and applied in the detection of monophenol using a potentiometric biosensor. Poly(propylene imine) dendrimer of generation 3 (PPI-G3) was used as a counter ion in the layer by layer process due to its highly porous structure and functional groups suitable for enzyme linkage. After the immobilization of the crude CEA as multilayered films, standard samples of monophenol were detected in the 0.25-4.00 mM linear range with approximately 28 mV mM(-1) of sensitivity. This sensitivity is 14 times higher than the values found in the literature for a similar system. The results show that it is possible to obtain efficient and low-cost biosensors for monophenol detection using potentiometric transducers and alternative sources of enzymes without purification.


Subject(s)
Biosensing Techniques/methods , Complex Mixtures/chemistry , Monophenol Monooxygenase/metabolism , Persea/enzymology , Phenol/analysis , Phenols/analysis , Catechols/analysis , Polypropylenes/chemistry , Potentiometry , Solutions , Spectrophotometry, Ultraviolet , Tin Compounds/chemistry
14.
J Phys Chem B ; 117(3): 733-40, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23286315

ABSTRACT

We report for the first time on the self-assembly of nanostructures composed exclusively of alternating positively charged and hydrophobic amino acids. A novel arginine/phenylalanine octapeptide, RF8, was synthesized. Because the low hydrophobicity of this sequence makes its spontaneous ordering through solution-based methods difficult, a recently proposed solid-vapor approach was used to obtain nanometric architectures on ITO/PET substrates. The formation of the nanostructures was investigated under different preparation conditions, specifically, under different gas-phase solvents (aniline, water, and dichloromethane), different peptide concentrations in the precursor solution, and different incubation times. The stability of the assemblies was experimentally studied by electron microscopy and thermogravimetric analysis coupled with mass spectrometry. The secondary structure was assessed by infrared and Raman spectroscopy, and the arrays were found to assume an antiparallel ß-sheet conformation. FEG-SEM images clearly reveal the appearance of fibrillar structures that form extensive homogeneously distributed networks. A close relationship between the morphology and preparation parameters was found, and a concentration-triggered mechanism was suggested. Molecular dynamics simulations were performed to address the thermal stability and nature of intermolecular interactions of the putative assembly structure. Results obtained when water is considered as solvent shows that a stable lamellar structure is formed containing a thin layer of water in between the RF8 peptides that is stabilized by H-bonding.


Subject(s)
Dipeptides/chemistry , Gases/chemistry , Nanostructures/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Protein Structure, Secondary , Solvents/chemistry , Temperature , Tin Compounds/chemistry
16.
Ultrason Sonochem ; 20(3): 826-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23219615

ABSTRACT

The solvent-free indium-promoted reaction of alkanoyl chlorides with sterically and electronically diverse arylstannanes is a simple and direct method for the regioselective synthesis of primary, secondary and tertiary alkyl aryl ketones in good to excellent isolated yields (42-84%) under mild and neutral conditions. The protocol is also adequate for the synthesis of aryl vinyl ketones. Reaction times are drastically reduced (from 3-32h to 10-70min) under ultrasonic irradiation. Evidences for the involvement of a homolytic aromatic ipso-substitution mechanism, in which indium metal acts as radical initiator, are presented. It is possible the transference of two aryl groups from tin, thus improving effective mass yield, working with diarylstannanes as starting substrates.


Subject(s)
Indium/chemistry , Ketones/chemical synthesis , Sonication , Tin Compounds/chemistry , Catalysis , Hydrocarbons, Chlorinated/chemistry , Ketones/chemistry , Ketones/radiation effects , Molecular Structure , Sound , Tin Compounds/radiation effects
17.
Ultrason Sonochem ; 19(3): 410-4, 2012 May.
Article in English | MEDLINE | ID: mdl-22019789

ABSTRACT

We describe herein an efficient method for the synthesis of unsymmetrically-substituted biphenyls using a sonochemical variation of the Stille coupling, whose results have also been compared with the conventional silent reaction. Ultrasound significantly enhances this useful organometallic transformation affording products in higher yields and in shorter reaction times than non-irradiated reactions. The scope has been explored with a selection of arylstannanes as precursors and, remarkably, no by-products resulting from homo-coupling could be detected.


Subject(s)
Sonication/methods , Tin Compounds/chemistry , Tin Compounds/radiation effects , High-Energy Shock Waves , Radiation Dosage
18.
J Nanosci Nanotechnol ; 11(3): 2433-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21449404

ABSTRACT

Luminescent Eu3+ and Er3+ doped SnO2 powders have been prepared by Sn4+ hydrolysis followed by a controlled growth reaction using a particle's surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu3+ ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta diketonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO2 single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 microm planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.


Subject(s)
Crystallization/methods , Luminescent Measurements/methods , Metals, Rare Earth/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Tin Compounds/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Powders , Refractometry , Surface Properties
19.
J Org Chem ; 76(6): 1707-14, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21338129

ABSTRACT

Bulky arylstannanes and bulky aroyl chlorides are good reaction partners for the synthesis of two-, three-, and even four-ortho-substituted benzophenones, in good to excellent isolated yields (47-91%). Three simple and direct routes, with differential advantages, are proposed: (i) a catalyst-free protocol, in o-dichlorobenzene (ODCB) at 180 °C; (ii) a room temperature protocol, using AlCl(3) (0.5 equiv), in dichloromethane (DCM); and (iii) a solvent-free, indium-promoted procedure. A radical mechanism is proposed for the indium-mediated reactions.


Subject(s)
Ketones/chemistry , Ketones/chemical synthesis , Tin Compounds/chemistry , Catalysis , Chlorobenzenes/chemistry , Indicators and Reagents/chemistry , Indium/chemistry , Substrate Specificity
20.
Molecules ; 15(8): 5445-59, 2010 Aug 09.
Article in English | MEDLINE | ID: mdl-20714307

ABSTRACT

In vitro antioxidant activity for 12 stannoxanes derived from Ph(3)SnCl (compounds 1-3), Ph(2)SnCl(2) (compounds 4-6), Bu(3)SnCl (compounds 7-9), and Bu(2)SnCl(2) (compounds 10-12), was assayed qualitatively by the chromatographic profile with 1,1-diphenyl-2-picrylhydrazil (DPPH) method and by two quantitative methods: the DPPH radical scavenging activity and Ferric-Reducing Antioxidant Power (FRAP) assays. The results were compared with those obtained with the starting materials 2-pyridine- carboxylic acid (I), 3-pyridinecarboxylic acid (II) and 4-pyridinecarboxylic acid (III), as well as with standard compounds, such as vitamin C and vitamin E, respectively. The in vitro antiradical activity with DPPH of diphenyltin derivative 5 showed a very similar behavior to vitamin C at a 20 microg/mL concentration, whereas according to the FRAP method, compound 8 was better. This difference is due to the mechanism of the antioxidant process. The Structure-Activity Relationships (SAR) for both methods is also reported.


Subject(s)
Antioxidants/pharmacology , Nicotinic Acids/chemistry , Tin Compounds/pharmacology , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Chromatography, Thin Layer , Fluorescence Recovery After Photobleaching , Free Radical Scavengers/chemistry , Iron/chemistry , Ligands , Oxidation-Reduction/drug effects , Picrates/chemistry , Tin Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL