Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.573
1.
Sci Robot ; 9(91): eadk3925, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38865475

Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.


Elastomers , Electric Conductivity , Psychophysics , Touch , Humans , Touch/physiology , Adult , Female , Male , Equipment Design , Electric Stimulation , Young Adult , Polymers , Electrodes , Calibration , Touch Perception/physiology
2.
Sci Rep ; 14(1): 13690, 2024 06 13.
Article En | MEDLINE | ID: mdl-38871744

Touch plays a crucial role for humans. Despite its centrality in sensory experiences, the field of haptic aesthetics is underexplored. So far, existing research has revealed that preferences in the haptic domain are related to stimulus properties and the Gestalt laws of grouping. Additionally, haptic aesthetics is influenced by top-down processes, e.g., stimulus familiarity, and is likely to be modulated by personality and expertise. To further our understanding of these influences on haptic aesthetic appraisal, the current study investigated the imagined haptic aesthetic appeal of visually presented material surfaces, considering the role of haptic expertise, Need for touch, personality traits. The results revealed a positive influence of familiarity, simplicity, smoothness, warmth, lightness, dryness, slipperiness and a negative influence of complexity on individuals' aesthetic responses. While the study failed to support the predicted influence of Need for touch and haptic expertise on aesthetic responses, results did reveal an influence of openness to experience, conscientiousness and neuroticism. Despite the limitations related to the indirect stimuli presentation (vision only), the findings contribute to the relatively unexplored role of bottom-up and top-down features in haptic aesthetics that might be incorporated into the design of consumers' products to better meet their preferences.


Esthetics , Humans , Female , Male , Adult , Esthetics/psychology , Young Adult , Individuality , Touch/physiology , Touch Perception/physiology , Visual Perception/physiology , Photic Stimulation , Personality , Adolescent
3.
J Neuroeng Rehabil ; 21(1): 99, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851741

PURPOSE: Accurate perception of tactile stimuli is essential for performing and learning activities of daily living. Through this scoping review, we sought to summarize existing examination approaches for identifying tactile deficits at the upper extremity in individuals with stroke. The goal was to identify current limitations and future research needs for designing more comprehensive examination tools. METHODS: A scoping review was conducted in accordance with the Joanna Briggs Institute methodological framework and the PRISMA for Scoping Reviews (PRISMA-ScR) guidelines. A database search for tactile examination approaches at the upper extremity of individuals with stroke was conducted using Medline (Ovid), The Cochrane Library (Wiley), CINAHL Plus with Full Text (Ebsco), Scopus (Elsevier), PsycInfo (Ebsco), and Proquest Dissertations and Theses Global. Original research and review articles that involved adults (18 years or older) with stroke, and performed tactile examinations at the upper extremity were eligible for inclusion. Data items extracted from the selected articles included: if the examination was behavioral in nature and involved neuroimaging, the extent to which the arm participated during the examination, the number of possible outcomes of the examination, the type(s) of tactile stimulation equipment used, the location(s) along the arm examined, the peripheral nerves targeted for examination, and if any comparison was made with the non-paretic arm or with the arms of individuals who are neurotypical. RESULTS: Twenty-two articles met the inclusion criteria and were accepted in this review. Most examination approaches were behavioral in nature and involved self-reporting of whether a tactile stimulus was felt while the arm remained passive (i.e., no volitional muscle activity). Typically, the number of possible outcomes with these behavioral approaches were limited (2-3), whereas the neuroimaging approaches had many more possible outcomes ( > 15 ). Tactile examinations were conducted mostly at the distal locations along the arm (finger or hand) without targeting any specific peripheral nerve. Although a majority of articles compared paretic and non-paretic arms, most did not compare outcomes to a control group of individuals who are neurotypical. DISCUSSION: Our findings noted that most upper extremity tactile examinations are behavioral approaches, which are subjective in nature, lack adequate resolution, and are insufficient to identify the underlying neural mechanisms of tactile deficits. Also, most examinations are administered at distal locations of the upper extremity when the examinee's arm is relaxed (passive). Further research is needed to develop better tactile examination tools that combine behavioral responses and neurophysiological outcomes, and allow volitional tactile exploration. Approaches that include testing of multiple body locations/nerves along the upper extremity, provide higher resolution of outcomes, and consider normative comparisons with individuals who are neurotypical may provide a more comprehensive understanding of the tactile deficits occurring following a stroke.


Stroke , Upper Extremity , Humans , Upper Extremity/physiopathology , Stroke/complications , Stroke/physiopathology , Stroke/diagnosis , Touch Perception/physiology , Touch/physiology
4.
Sci Rep ; 14(1): 13366, 2024 06 11.
Article En | MEDLINE | ID: mdl-38862559

Digital technologies, such as virtual or augmented reality, can potentially support neurocognitive functions of the aging populations worldwide and complement existing intervention methods. However, aging-related declines in the frontal-parietal network and dopaminergic modulation which progress gradually across the later periods of the adult lifespan may affect the processing of multisensory congruence and expectancy based contextual plausibility. We assessed hemodynamic brain responses while middle-aged and old adults experienced car-riding virtual-reality scenarios where the plausibility of vibrotactile stimulations was manipulated by delivering stimulus intensities that were either congruent or incongruent with the digitalized audio-visual contexts of the respective scenarios. Relative to previous findings observed in young adults, although highly plausible vibrotactile stimulations confirming with contextual expectations also elicited higher brain hemodynamic responses in middle-aged and old adults, this effect was limited to virtual scenarios with extreme expectancy violations. Moreover, individual differences in plausibility-related frontal activity did not correlate with plausibility violation costs in the sensorimotor cortex, indicating less systematic frontal context-based sensory filtering in older ages. These findings have practical implications for advancing digital technologies to support aging societies.


Touch Perception , Vibration , Virtual Reality , Humans , Male , Female , Middle Aged , Aged , Touch Perception/physiology , Aging/physiology , Adult , Magnetic Resonance Imaging/methods
5.
PLoS One ; 19(6): e0304417, 2024.
Article En | MEDLINE | ID: mdl-38865322

Touch offers important non-verbal possibilities for socioaffective communication. Yet most digital communications lack capabilities regarding exchanging affective tactile messages (tactile emoticons). Additionally, previous studies on tactile emoticons have not capitalised on knowledge about the affective effects of certain mechanoreceptors in the human skin, e.g., the C-Tactile (CT) system. Here, we examined whether gentle manual stroking delivered in velocities known to optimally activate the CT system (defined as 'tactile emoticons'), during lab-simulated social media communications could convey increased feelings of social support and other prosocial intentions compared to (1) either stroking touch at CT sub-optimal velocities, or (2) standard visual emoticons. Participants (N = 36) felt more social intent with CT-optimal compared to sub-optimal velocities, or visual emoticons. In a second, preregistered study (N = 52), we investigated whether combining visual emoticons with tactile emoticons, this time delivered at CT-optimal velocities by a soft robotic device, could enhance the perception of prosocial intentions and affect participants' physiological measures (e.g., skin conductance rate) in comparison to visual emoticons alone. Visuotactile emoticons conveyed more social intent overall and in anxious participants affected physiological measures more than visual emoticons. The results suggest that emotional social media communications can be meaningfully enhanced by tactile emoticons.


Emotions , Robotics , Social Media , Touch , Humans , Male , Female , Emotions/physiology , Adult , Touch/physiology , Young Adult , Intention , Touch Perception/physiology , Communication
6.
Acta Psychol (Amst) ; 247: 104330, 2024 Jul.
Article En | MEDLINE | ID: mdl-38852319

In the context of blindness, studies on the recognition of facial expressions of emotions by touch are essential to define the compensatory touch abilities and to create adapted tools on emotions. This study is the first to examine the effect of visual experience in the recognition of tactile drawings of facial expressions of emotions by children with different visual experiences. To this end, we compared the recognition rates of tactile drawings of emotions between blind children, children with low vision and sighted children aged 6-12 years. Results revealed no effect of visual experience on recognition rates. However, an effect of emotions and an interaction effect between emotions and visual experience were found. Indeed, while all children had a low average recognition rate, the drawings of fear, anger and disgust were particularly poorly recognized. Moreover, sighted children were significantly better at recognizing the drawings of surprise and sadness than the blind children who only showed high recognition rates for joy. The results of this study support the importance of developing emotion tools that can be understood by children with different visual experiences.


Blindness , Emotions , Facial Expression , Humans , Child , Male , Female , Blindness/physiopathology , Blindness/psychology , Emotions/physiology , Vision, Low/physiopathology , Recognition, Psychology/physiology , Touch Perception/physiology , Facial Recognition/physiology
7.
Cereb Cortex ; 34(6)2024 Jun 04.
Article En | MEDLINE | ID: mdl-38836408

Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.


Magnetoencephalography , Somatosensory Cortex , Humans , Male , Somatosensory Cortex/physiology , Somatosensory Cortex/growth & development , Female , Child , Evoked Potentials, Somatosensory/physiology , Brain Mapping , Touch Perception/physiology , Child Development/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Physical Stimulation , Motor Cortex/physiology , Motor Cortex/growth & development
8.
eNeuro ; 11(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38844346

In measurement, a reference frame is needed to compare the measured object to something already known. This raises the neuroscientific question of which reference frame is used by humans when exploring the environment. Previous studies suggested that, in touch, the body employed as measuring tool also serves as reference frame. Indeed, an artificial modification of the perceived dimensions of the body changes the tactile perception of external object dimensions. However, it is unknown if such a change in tactile perception would occur when the body schema is modified through the illusion of owning a limb altered in size. Therefore, employing a virtual hand illusion paradigm with an elongated forearm of different lengths, we systematically tested the subjective perception of distance between two points [tactile distance perception (TDP) task] on the corresponding real forearm following the illusion. Thus, the TDP task is used as a proxy to gauge changes in the body schema. Embodiment of the virtual arm was found significantly greater after the synchronous visuotactile stimulation condition compared with the asynchronous one, and the forearm elongation significantly increased the TDP. However, we did not find any link between the visuotactile-induced ownership over the elongated arm and TDP variation, suggesting that vision plays the main role in the modification of the body schema. Additionally, significant effect of elongation found on TDP but not on proprioception suggests that these are affected differently by body schema modifications. These findings confirm the body schema malleability and its role as a reference frame in touch.


Distance Perception , Illusions , Touch Perception , Virtual Reality , Humans , Female , Male , Touch Perception/physiology , Young Adult , Adult , Illusions/physiology , Distance Perception/physiology , Proprioception/physiology , Body Image , Forearm/physiology
9.
Sci Rep ; 14(1): 14267, 2024 06 20.
Article En | MEDLINE | ID: mdl-38902337

Conveying information effectively while minimizing user distraction is critical to human-computer interaction. As the proliferation of audio-visual communication pushes human information processing capabilities to the limit, researchers are turning their attention to haptic interfaces. Haptic feedback has the potential to create a desirable sense of urgency that allows users to selectively focus on events/tasks or process presented information with minimal distraction or annoyance. There is a growing interest in understanding the neural mechanisms associated with haptic stimulation. In this study, we aim to investigate the EEG correlates associated with the perceived urgency elicited by vibration stimuli on the upper body using a haptic vest. A total of 31 participants enrolled in this experiment and were exposed to three conditions: no vibration pattern (NVP), urgent vibration pattern (UVP), and very urgent vibration pattern (VUVP). Through self-reporting, participants confirmed that the vibration patterns elicited significantly different levels of perceived urgency (Friedman test, Holm-Bonferroni correction, p < 0.01). Furthermore, neural analysis revealed that the power spectral density of the delta, theta, and alpha frequency bands in the middle central area (C1, Cz, and C2) significantly increased for the UVP and VUVP conditions as compared to the NVP condition (One-way ANOVA test, Holm-Bonferroni correction, p < 0.01). While the perceptual experience of haptic-induced urgency is well studied with self-reporting and behavioral evidence, this is the first effort to evaluate the neural correlates to haptic-induced urgency using EEG. Further research is warranted to identify unique correlates to the cognitive processes associated with urgency from sensory feedback correlates.


Electroencephalography , Vibration , Humans , Male , Female , Adult , Young Adult , Touch Perception/physiology
10.
PLoS One ; 19(5): e0304008, 2024.
Article En | MEDLINE | ID: mdl-38814897

The current study investigated spatial scaling of tactile maps among blind adults and blindfolded sighted controls. We were specifically interested in identifying spatial scaling strategies as well as effects of different scaling directions (up versus down) on participants' performance. To this aim, we asked late blind participants (with visual memory, Experiment 1) and early blind participants (without visual memory, Experiment 2) as well as sighted blindfolded controls to encode a map including a target and to place a response disc at the same spot on an empty, constant-sized referent space. Maps had five different sizes resulting in five scaling factors (1:3, 1:2, 1:1, 2:1, 3:1), allowing to investigate different scaling directions (up and down) in a single, comprehensive design. Accuracy and speed of learning about the target location as well as responding served as dependent variables. We hypothesized that participants who can use visual mental representations (i.e., late blind and blindfolded sighted participants) may adopt mental transformation scaling strategies. However, our results did not support this hypothesis. At the same time, we predicted the usage of relative distance scaling strategies in early blind participants, which was supported by our findings. Moreover, our results suggested that tactile maps can be scaled as accurately and even faster by blind participants than by sighted participants. Furthermore, irrespective of the visual status, participants of each visual status group gravitated their responses towards the center of the space. Overall, it seems that a lack of visual imagery does not impair early blind adults' spatial scaling ability but causes them to use a different strategy than sighted and late blind individuals.


Blindness , Humans , Blindness/physiopathology , Male , Female , Adult , Middle Aged , Space Perception/physiology , Touch Perception/physiology , Young Adult , Touch/physiology
11.
Curr Biol ; 34(12): 2739-2747.e3, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38815578

Somatosensation is essential for animals to perceive the external world through touch, allowing them to detect physical contact, temperature, pain, and body position. Studies on rodent vibrissae have highlighted the organization and processing in mammalian somatosensory pathways.1,2 Comparative research across vertebrates is vital for understanding evolutionary influences and ecological specialization on somatosensory systems. Birds, with their diverse morphologies, sensory abilities, and behaviors, serve as ideal models for investigating the evolution of somatosensation. Prior studies have uncovered tactile-responsive areas within the avian telencephalon, particularly in pigeons,3,4,5,6 parrots,7 and finches,8 but variations in somatosensory maps and responses across avian species are not fully understood. This study aims to explore somatotopic organization and neural coding in the telencephalon of Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata) by using in vivo extracellular electrophysiology to record activity in response to controlled tactile stimuli on various body regions. These findings reveal unique representations of body regions across distinct forebrain somatosensory nuclei, indicating significant differences in the extent of areas dedicated to certain body surfaces, which may correlate with their behavioral importance.


Finches , Prosencephalon , Animals , Finches/physiology , Prosencephalon/physiology , Touch/physiology , Birds/physiology , Male , Touch Perception/physiology , Female
12.
J Acoust Soc Am ; 155(5): 3101-3117, 2024 May 01.
Article En | MEDLINE | ID: mdl-38722101

Cochlear implant (CI) users often report being unsatisfied by music listening through their hearing device. Vibrotactile stimulation could help alleviate those challenges. Previous research has shown that musical stimuli was given higher preference ratings by normal-hearing listeners when concurrent vibrotactile stimulation was congruent in intensity and timing with the corresponding auditory signal compared to incongruent. However, it is not known whether this is also the case for CI users. Therefore, in this experiment, we presented 18 CI users and 24 normal-hearing listeners with five melodies and five different audio-to-tactile maps. Each map varied the congruence between the audio and tactile signals related to intensity, fundamental frequency, and timing. Participants were asked to rate the maps from zero to 100, based on preference. It was shown that almost all normal-hearing listeners, as well as a subset of the CI users, preferred tactile stimulation, which was congruent with the audio in intensity and timing. However, many CI users had no difference in preference between timing aligned and timing unaligned stimuli. The results provide evidence that vibrotactile music enjoyment enhancement could be a solution for some CI users; however, more research is needed to understand which CI users can benefit from it most.


Acoustic Stimulation , Auditory Perception , Cochlear Implants , Music , Humans , Female , Male , Adult , Middle Aged , Aged , Auditory Perception/physiology , Young Adult , Patient Preference , Cochlear Implantation/instrumentation , Touch Perception/physiology , Vibration , Touch
13.
Sci Rep ; 14(1): 10164, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702338

Orientation processing is one of the most fundamental functions in both visual and somatosensory perception. Converging findings suggest that orientation processing in both modalities is closely linked: somatosensory neurons share a similar orientation organisation as visual neurons, and the visual cortex has been found to be heavily involved in tactile orientation perception. Hence, we hypothesized that somatosensation would exhibit a similar orientation adaptation effect, and this adaptation effect would be transferable between the two modalities, considering the above-mentioned connection. The tilt aftereffect (TAE) is a demonstration of orientation adaptation and is used widely in behavioural experiments to investigate orientation mechanisms in vision. By testing the classic TAE paradigm in both tactile and crossmodal orientation tasks between vision and touch, we were able to show that tactile perception of orientation shows a very robust TAE, similar to its visual counterpart. We further show that orientation adaptation in touch transfers to produce a TAE when tested in vision, but not vice versa. Additionally, when examining the test sequence following adaptation for serial effects, we observed another asymmetry between the two conditions where the visual test sequence displayed a repulsive intramodal serial dependence effect while the tactile test sequence exhibited an attractive serial dependence. These findings provide concrete evidence that vision and touch engage a similar orientation processing mechanism. However, the asymmetry in the crossmodal transfer of TAE and serial dependence points to a non-reciprocal connection between the two modalities, providing further insights into the underlying processing mechanism.


Adaptation, Physiological , Touch Perception , Visual Perception , Humans , Male , Female , Adult , Touch Perception/physiology , Visual Perception/physiology , Young Adult , Orientation/physiology , Touch/physiology , Orientation, Spatial/physiology , Vision, Ocular/physiology , Visual Cortex/physiology
14.
Sci Rep ; 14(1): 10011, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693174

Interacting with the environment often requires the integration of visual and haptic information. Notably, perceiving external objects depends on how our brain binds sensory inputs into a unitary experience. The feedback provided by objects when we interact (through our movements) with them might then influence our perception. In VR, the interaction with an object can be dissociated by the size of the object itself by means of 'colliders' (interactive spaces surrounding the objects). The present study investigates possible after-effects in size discrimination for virtual objects after exposure to a prolonged interaction characterized by visual and haptic incongruencies. A total of 96 participants participated in this virtual reality study. Participants were distributed into four groups, in which they were required to perform a size discrimination task between two cubes before and after 15 min of a visuomotor task involving the interaction with the same virtual cubes. Each group interacted with a different cube where the visual (normal vs. small collider) and the virtual cube's haptic (vibration vs. no vibration) features were manipulated. The quality of interaction (number of touches and trials performed) was used as a dependent variable to investigate the performance in the visuomotor task. To measure bias in size perception, we compared changes in point of subjective equality (PSE) before and after the task in the four groups. The results showed that a small visual collider decreased manipulation performance, regardless of the presence or not of the haptic signal. However, change in PSE was found only in the group exposed to the small visual collider with haptic feedback, leading to increased perception of the cube size. This after-effect was absent in the only visual incongruency condition, suggesting that haptic information and multisensory integration played a crucial role in inducing perceptual changes. The results are discussed considering the recent findings in visual-haptic integration during multisensory information processing in real and virtual environments.


Virtual Reality , Visual Perception , Humans , Male , Female , Adult , Visual Perception/physiology , Young Adult , Psychomotor Performance/physiology , Touch Perception/physiology , Size Perception/physiology
15.
Science ; 384(6696): 660-665, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723082

Rapid processing of tactile information is essential to human haptic exploration and dexterous object manipulation. Conventional electronic skins generate frames of tactile signals upon interaction with objects. Unfortunately, they are generally ill-suited for efficient coding of temporal information and rapid feature extraction. In this work, we report a neuromorphic tactile system that uses spike timing, especially the first-spike timing, to code dynamic tactile information about touch and grasp. This strategy enables the system to seamlessly code highly dynamic information with millisecond temporal resolution on par with the biological nervous system, yielding dynamic extraction of tactile features. Upon interaction with objects, the system rapidly classifies them in the initial phase of touch and grasp, thus paving the way to fast tactile feedback desired for neuro-robotics and neuro-prosthetics.


Artificial Limbs , Biomimetic Materials , Touch Perception , Touch , Humans , Action Potentials , Hand Strength , Touch/physiology , Wearable Electronic Devices
16.
Science ; 384(6696): 624-625, 2024 May 10.
Article En | MEDLINE | ID: mdl-38723096

An artificial tactile system mimicking human touch enables effective object recognition.


Biomimetic Materials , Touch Perception , Touch , Wearable Electronic Devices , Humans , Skin
17.
Sci Rep ; 14(1): 11766, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783038

Human tactile memory allows us to remember and retrieve the multitude of somatosensory experiences we undergo in everyday life. An unsolved question is how tactile memory mechanisms change with increasing age. We here use the ability to remember fine-grained tactile patterns passively presented to the fingertip to investigate age-related changes in tactile memory performance. In experiment 1, we varied the degree of similarity between one learned and several new tactile patterns to test on age-related changes in the "uniqueness" of a stored tactile memory trace. In experiment 2, we varied the degree of stimulus completeness of both known and new tactile patterns to test on age-related changes in the weighting between known and novel tactile information. Results reveal that older adults show only weak impairments in both precision and bias of tactile memories, however, they show specific deficits in reaching peak performance > 85% in both experiments. In addition, both younger and older adults show a pattern completion bias for touch, indicating a higher weighting of known compared to new information. These results allow us to develop new models on how younger and older adults store and recall tactile experiences of the past, and how this influences their everyday behavior.


Touch , Humans , Aged , Male , Female , Adult , Young Adult , Touch/physiology , Middle Aged , Touch Perception/physiology , Aging/physiology , Memory/physiology , Memory Disorders/physiopathology , Aged, 80 and over
18.
J Neuroeng Rehabil ; 21(1): 79, 2024 May 16.
Article En | MEDLINE | ID: mdl-38750521

A large proportion of stroke survivors suffer from sensory loss, negatively impacting their independence, quality of life, and neurorehabilitation prognosis. Despite the high prevalence of somatosensory impairments, our understanding of somatosensory interventions such as sensory electrical stimulation (SES) in neurorehabilitation is limited. We aimed to study the effectiveness of SES combined with a sensory discrimination task in a well-controlled virtual environment in healthy participants, setting a foundation for its potential application in stroke rehabilitation. We employed electroencephalography (EEG) to gain a better understanding of the underlying neural mechanisms and dynamics associated with sensory training and SES. We conducted a single-session experiment with 26 healthy participants who explored a set of three visually identical virtual textures-haptically rendered by a robotic device and that differed in their spatial period-while physically guided by the robot to identify the odd texture. The experiment consisted of three phases: pre-intervention, intervention, and post-intervention. Half the participants received subthreshold whole-hand SES during the intervention, while the other half received sham stimulation. We evaluated changes in task performance-assessed by the probability of correct responses-before and after intervention and between groups. We also evaluated differences in the exploration behavior, e.g., scanning speed. EEG was employed to examine the effects of the intervention on brain activity, particularly in the alpha frequency band (8-13 Hz) associated with sensory processing. We found that participants in the SES group improved their task performance after intervention and their scanning speed during and after intervention, while the sham group did not improve their task performance. However, the differences in task performance improvements between groups only approached significance. Furthermore, we found that alpha power was sensitive to the effects of SES; participants in the stimulation group exhibited enhanced brain signals associated with improved touch sensitivity likely due to the effects of SES on the central nervous system, while the increase in alpha power for the sham group was less pronounced. Our findings suggest that SES enhances texture discrimination after training and has a positive effect on sensory-related brain areas. Further research involving brain-injured patients is needed to confirm the potential benefit of our solution in neurorehabilitation.


Electroencephalography , Humans , Male , Female , Adult , Touch Perception/physiology , Neurological Rehabilitation/methods , Electric Stimulation/methods , Young Adult , Touch/physiology , Stroke Rehabilitation/methods
19.
PLoS One ; 19(5): e0300128, 2024.
Article En | MEDLINE | ID: mdl-38758733

Interpersonal touch plays a crucial role in human communication, development, and wellness. Mediated interpersonal touch (MIT), a technology to distance or virtually simulated interpersonal touch, has received significant attention to counteract the negative consequences of touch deprivation. Studies investigating the effectiveness of MIT have primarily focused on self-reporting or behavioral correlates. It is largely unknown how MIT affects neural processes such as interbrain functional connectivity during human interactions. Given how users exchange haptic information simultaneously during interpersonal touch, interbrain functional connectivity provides a more ecologically valid way of studying the neural correlates associated with MIT. In this study, a palm squeeze task is designed to examine interbrain synchrony associated with MIT using EEG-based hyperscanning methodology. The phase locking value (PLV) index is used to measure interbrain synchrony. Results demonstrate that MIT elicits a significant increase in alpha interbrain synchronization between participants' brains. Especially, there was a significant difference in the alpha PLV indices between no MIT and MIT conditions in the early stage (130-470 ms) of the interaction period (t-test, p < 0.05). Given the role that alpha interbrain synchrony plays during social interaction, a significant increase in PLV index during MIT interaction seems to indicate an effect of social coordination. The findings and limitations of this study are further discussed, and perspectives on future research are provided.


Brain , Electroencephalography , Interpersonal Relations , Touch , Humans , Brain/physiology , Male , Female , Young Adult , Touch/physiology , Adult , Alpha Rhythm/physiology , Touch Perception/physiology , Social Interaction
20.
Commun Biol ; 7(1): 522, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702520

An organism's ability to accurately anticipate the sensations caused by its own actions is crucial for a wide range of behavioral, perceptual, and cognitive functions. Notably, the sensorimotor expectations produced when touching one's own body attenuate such sensations, making them feel weaker and less ticklish and rendering them easily distinguishable from potentially harmful touches of external origin. How the brain learns and keeps these action-related sensory expectations updated is unclear. Here we employ psychophysics and functional magnetic resonance imaging to pinpoint the behavioral and neural substrates of dynamic recalibration of expected temporal delays in self-touch. Our psychophysical results reveal that self-touches are less attenuated after systematic exposure to delayed self-generated touches, while responses in the contralateral somatosensory cortex that normally distinguish between delayed and nondelayed self-generated touches become indistinguishable. During the exposure, the ipsilateral anterior cerebellum shows increased activity, supporting its proposed role in recalibrating sensorimotor predictions. Moreover, responses in the cingulate areas gradually increase, suggesting that as delay adaptation progresses, the nondelayed self-touches trigger activity related to cognitive conflict. Together, our results show that sensorimotor predictions in the simplest act of touching one's own body are upheld by a sophisticated and flexible neural mechanism that maintains them accurate in time.


Cerebellum , Magnetic Resonance Imaging , Somatosensory Cortex , Humans , Somatosensory Cortex/physiology , Male , Cerebellum/physiology , Cerebellum/diagnostic imaging , Female , Adult , Young Adult , Touch Perception/physiology , Touch/physiology
...