Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.004
Filter
1.
J Mater Sci Mater Med ; 35(1): 54, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39251504

ABSTRACT

Both silicon (Si) and zinc (Zn) ions are essential elements to bone health and their mechanisms for promoting osteogenesis have aroused the extensive attention of researchers. Thereinto, the mechanism by which dual ions promote osteogenic differentiation remains to be elucidated. Herein, the effects of Si and Zn ions on the cytological behaviors of mBMSCs were firstly studied. Then, the molecular mechanism of Si-Zn dual ions regulating the osteogenic differentiation of mBMSCs was investigated via transcriptome sequencing technology. In the single-ion system, Si ion at the concentration of 1.5 mM (Si-1.5) had better comprehensive effects of cell proliferation, ALP activity and osteogenesis-related gene expression levels (ALP, Runx2, OCN, Col-I and BSP); Zn ion at the concentration of 50 µM (Zn-50) demonstrated better combining effects of cell proliferation, ALP activity and same osteogenic genes expression levels. In the dual-ion system, the Si (1.5 mM)-Zn (50 µM) group (Si1.5-Zn50) synthetically enhanced ALP activity and osteogenesis genes compared with single-ion groups. Analysis of the transcriptome sequencing results showed that Si ion had a certain effect on promoting the osteogenic differentiation of mBMSCs; Zn ion had a stronger effect of contributing to a better osteogenic differentiation of mBMSCs than that of Si ion; the Si-Zn dual ions had a synergistic enhancement on conducting to the osteogenic differentiation of mBMSCs compared to single ion (Si or Zn). This study offers a blueprint for exploring the regulation mechanism of osteogenic differentiation by dual ions.


Subject(s)
Cell Differentiation , Cell Proliferation , Ions , Mesenchymal Stem Cells , Osteogenesis , RNA, Messenger , Silicon , Zinc , Osteogenesis/drug effects , Osteogenesis/genetics , Silicon/chemistry , Silicon/pharmacology , Cell Differentiation/drug effects , Zinc/chemistry , Zinc/pharmacology , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/drug effects , Cells, Cultured , Gene Expression Profiling/methods , Sequence Analysis, RNA
2.
Article in English | MEDLINE | ID: mdl-39233286

ABSTRACT

17α-Ethinylestradiol (EE2) is known for its endocrine-disrupting effects on embryonic and adult fish. However, its impact on juvenile zebrafish has not been well established. In this study, juvenile zebrafish were exposed to EE2 at concentrations of 5 ng/L (low dose, L), 10 ng/L (medium dose, M), and 50 ng/L (high dose, H) from 21 days post-fertilization (dpf) to 49 dpf. We assessed their growth, development, behavior, transcriptome, and metabolome. The findings showed that the survival rate in the EE2-H group was 66.8 %, with all surviving fish displaying stunted growth and swollen, transparent abdomens by 49 dpf. Moreover, severe organ deformities were observed in the gills, kidneys, intestines, and heart of fish in both the EE2-H and EE2-M groups. Co-expression analysis of mRNA and lncRNA revealed that EE2 downregulated the transcription of key genes involved in the cell cycle, DNA replication, and Fanconi anemia signaling pathways. Additionally, metabolomic analysis indicated that EE2 influenced metabolism and development-related signaling pathways. These pathways were also significantly identified based on the genes regulated by lncRNA. Consequently, EE2 induced organ deformities and mortality in juvenile zebrafish by disrupting signaling pathways associated with development and metabolism. The results of this study offer new mechanistic insights into the adverse effects of EE2 on juvenile zebrafish based on multiomics analysis. The juvenile zebrafish are highly sensitive to EE2 exposure, which is not limited to adult and embryonic stages. It is a potential model for studying developmental toxicity.


Subject(s)
Ethinyl Estradiol , Water Pollutants, Chemical , Zebrafish , Animals , Ethinyl Estradiol/toxicity , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity , Transcriptome/drug effects , Multiomics
3.
Plant Cell Rep ; 43(9): 226, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227493

ABSTRACT

KEY MESSAGE: Cd induces photosynthetic inhibition and oxidative stress damage in H. citrina, which mobilizes the antioxidant system and regulates the expression of corresponding genes to adapt to Cd and Pb stress. Cd and Pb are heavy metals that cause severe pollution and are highly hazardous to organisms. Physiological measurements and transcriptomic analysis were combined to investigate the effect of 5 mM Cd or Pb on Hemerocallis citrina Baroni. Cd significantly inhibited H. citrina growth, while Pb had a minimal impact. Both Cd and Pb suppressed the expression levels of key chlorophyll synthesis genes, resulting in decreased chlorophyll content. At the same time, Cd accelerated chlorophyll degradation. It reduced the maximum photochemical efficiency of photosystem (PS) II, damaging the oxygen-evolving complex and leading to thylakoid dissociation. In contrast, no such phenomena were observed under Pb stress. Cd also inhibited the Calvin cycle by down-regulating the expression of Rubisco and SBPase genes, ultimately disrupting the photosynthetic process. Cd impacted the light reaction processes by damaging the antenna proteins, PS II and PS I activities, and electron transfer rate, while the impact of Pb was weaker. Cd significantly increased reactive oxygen species and malondialdehyde accumulation, and inhibited the activities of antioxidant enzymes and the expression levels of the corresponding genes. However, H. citrina adapted to Pb stress by the recruitment of antioxidant enzymes and the up-regulation of their corresponding genes. In summary, Cd and Pb inhibited chlorophyll synthesis and hindered the light capture and electron transfer processes, with Cd exerting great toxicity than Pb. These results elucidate the physiological and molecular mechanisms by which H. citrina responds to Cd and Pb stress and provide a solid basis for the potential utilization of H. citrina in the greening of heavy metal-polluted lands.


Subject(s)
Antioxidants , Cadmium , Chlorophyll , Gene Expression Regulation, Plant , Lead , Photosynthesis , Photosynthesis/drug effects , Cadmium/toxicity , Lead/toxicity , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Chlorophyll/metabolism , Gene Expression Profiling , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Photosystem II Protein Complex/metabolism , Transcriptome/drug effects , Amaranthaceae/drug effects , Amaranthaceae/genetics , Amaranthaceae/physiology , Photosystem I Protein Complex/metabolism , Malondialdehyde/metabolism
4.
Physiol Plant ; 176(5): e14488, 2024.
Article in English | MEDLINE | ID: mdl-39228009

ABSTRACT

As a commonly used medicinal plant, the flavonoid metabolites of Blumea balsamifera and their association with genes are still elusive. In this study, the total flavonoid content (TFC), flavonoid metabolites and biosynthetic gene expression patterns of B. balsamifera after application of exogenous methyl jasmonate (MeJA) were scrutinized. The different concentrations of exogenous MeJA increased the TFC of B. balsamifera leaves after 48 h of exposure, and there was a positive correlation between TFC and the elicitor concentration. A total of 48 flavonoid metabolites, falling into 10 structural classes, were identified, among which flavones and flavanones were predominant. After screening candidate genes by transcriptome mining, the comprehensive analysis of gene expression level and TFC suggested that FLS and MYB may be key genes that regulate the TFC in B. balsamifera leaves under exogenous MeJA treatment. This study lays a foundation for elucidating flavonoids of B. balsamifera, and navigates the breeding of flavonoid-rich B. balsamifera varieties.


Subject(s)
Acetates , Cyclopentanes , Flavonoids , Gene Expression Profiling , Gene Expression Regulation, Plant , Metabolome , Oxylipins , Plant Leaves , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Acetates/pharmacology , Flavonoids/metabolism , Metabolome/drug effects , Metabolome/genetics , Gene Expression Regulation, Plant/drug effects , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Asparagaceae/genetics , Asparagaceae/metabolism , Asparagaceae/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism
5.
Drug Des Devel Ther ; 18: 3791-3809, 2024.
Article in English | MEDLINE | ID: mdl-39219695

ABSTRACT

Background: Yujiang Paidu Decoction (YJPD) has demonstrated clinical efficacy in the treatment of chronic rhinosinusitis. However, the effects and mechanisms of the YJPD on chronic rhinosinusitis with nasal polyps (CRSwNP) remain unclear. Purpose: This study aimed to elucidate the potential mechanism of action of YJPD in the treatment of CRSwNP based on network pharmacology, transcriptomics and experiments. Methods: A CRSwNP mouse model was established using ovalbumin (OVA) and staphylococcus aureus enterotoxin B (SEB) for 12 weeks and the human nasal epithelial cell (HNEpC) model was induced with IL-13 in vitro. Behavioral tests, scanning electron microscopy (SEM), micro-CT and pathological change of nasal tissues were observed to investigate the therapeutic effects of YJPD. Network pharmacology and transcriptomics were launched to explore the pharmacological mechanisms of YJPD in CRSwNP treatment. Finally, an ELISA, immunofluorescence, RT-qPCR, Western blotting and Tunel were performed for validation. Results: Different doses of YJPD intervention effectively alleviated rubbing and sneezing symptoms in CRSwNP mice. Additionally, YJPD significantly reduced abnormal serological markers, structural damage of the nasal mucosa, inflammatory cell infiltration, goblet cell increases, and inhibited OVA-specific IgE levels and the secretion of Th2 cytokines such as IL-4, IL-5, and IL-13. Moreover, transcriptomics and network pharmacology analyses indicated that YJPD may exert anti-inflammatory and anti-apoptotic effects by inhibiting the MAPK/AP-1 signaling pathway. The experimental findings supported this conclusion, which was further corroborated by similar results observed in IL13-induced HNEpCs in vitro. Conclusion: YJPD could alleviate inflammatory status and epithelial apoptosis by inhibiting aberrant activation of MAPK/AP-1 signaling pathway. This finding provides a strong basis for using YJPD as a potential treatment in CRSwNP.


Subject(s)
Drugs, Chinese Herbal , Nasal Polyps , Network Pharmacology , Rhinitis , Sinusitis , Animals , Sinusitis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Nasal Polyps/drug therapy , Nasal Polyps/pathology , Chronic Disease , Humans , Rhinitis/drug therapy , Rhinitis/metabolism , Rhinitis/pathology , Transcriptome/drug effects , Disease Models, Animal , Mice, Inbred BALB C , Male , Dose-Response Relationship, Drug , Cells, Cultured , Rhinosinusitis
6.
Food Chem Toxicol ; 192: 114934, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151877

ABSTRACT

Quercetin has been shown to mitigate the cytotoxic effects of heavy metals. While copper is an essential trace element for bodily functions, excessive intake has been linked to impaired female reproductive function. Transcriptome analysis was employed to identify genes that are differentially expressed in response to high copper and were validated through qRT-PCR and western blotting. ATP content and Tunel were used to identify the damage of mitochondrial and cell apoptosis. PPI analysis revealed that MKI67, TOPII, ASPM, CASP3, PLK1, and TTK are central proteins within the network. Additionally, exposure to elevated levels of copper resulted in the dysregulation of 86 genes associated with mitochondria. Conversely, treatment with quercetin (QUE) in combination with high copper led to the normalization of 42 mitochondria-related genes previously affected by high copper levels. Furthermore, CuSO4 decreases ATP content and induces cell apoptosis, which can be reversed by QUE. Results suggest that elevated copper levels could lead to oxidative stress and apoptosis by inducing mitochondrial damage, while QUE has the potential to mitigate these effects, ultimately safeguarding granulosa cells and halting the progression of cell death. This study provides novel insights into the molecular pathways involved in female reproductive toxicity caused by excessive copper exposure.


Subject(s)
Apoptosis , Copper , Gene Expression Profiling , Quercetin , Female , Quercetin/pharmacology , Copper/toxicity , Animals , Apoptosis/drug effects , Reproduction/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Transcriptome/drug effects , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Oxidative Stress/drug effects
7.
Toxicol Appl Pharmacol ; 491: 117073, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39159848

ABSTRACT

New approach methodologies (NAMs) aim to accelerate the pace of chemical risk assessment while simultaneously reducing cost and dependency on animal studies. High Throughput Transcriptomics (HTTr) is an emerging NAM in the field of chemical hazard evaluation for establishing in vitro points-of-departure and providing mechanistic insight. In the current study, 1201 test chemicals were screened for bioactivity at eight concentrations using a 24-h exposure duration in the human- derived U-2 OS osteosarcoma cell line with HTTr. Assay reproducibility was assessed using three reference chemicals that were screened on every assay plate. The resulting transcriptomics data were analyzed by aggregating signal from genes into signature scores using gene set enrichment analysis, followed by concentration-response modeling of signatures scores. Signature scores were used to predict putative mechanisms of action, and to identify biological pathway altering concentrations (BPACs). BPACs were consistent across replicates for each reference chemical, with replicate BPAC standard deviations as low as 5.6 × 10-3 µM, demonstrating the internal reproducibility of HTTr-derived potency estimates. BPACs of test chemicals showed modest agreement (R2 = 0.55) with existing phenotype altering concentrations from high throughput phenotypic profiling using Cell Painting of the same chemicals in the same cell line. Altogether, this HTTr based chemical screen contributes to an accumulating pool of publicly available transcriptomic data relevant for chemical hazard evaluation and reinforces the utility of cell based molecular profiling methods in estimating chemical potency and predicting mechanism of action across a diverse set of chemicals.


Subject(s)
Gene Expression Profiling , High-Throughput Screening Assays , Transcriptome , Humans , High-Throughput Screening Assays/methods , Cell Line, Tumor , Transcriptome/drug effects , Gene Expression Profiling/methods , Reproducibility of Results , Dose-Response Relationship, Drug , Risk Assessment , Osteosarcoma/genetics , Osteosarcoma/pathology
8.
Ecotoxicol Environ Saf ; 283: 116851, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39128452

ABSTRACT

This study aimed to assess the ecological risks posed by sulfamethoxazole (SMX) at environmentally relevant concentrations. Specifically, its effects on the growth and biochemical components (total protein, total lipid, and total carbohydrate) of two marine microalgae species, namely Skeletonema costatum (S. costatum) and Phaeodactylum tricornutum (P. tricornutum), were investigated. Our findings revealed that concentrations of SMX below 150 ng/L stimulated the growth of both microalgae. Conversely, at higher concentrations, SMX inhibited their growth while promoting the synthesis of photosynthetic pigments, total protein, total lipid, and total carbohydrate (P < 0.05). Transmission electron microscope (TEM) observations demonstrated significant alterations in the ultrastructure of algal cells exposed to SMX, including nuclear marginalization, increased chloroplast volume, and heightened vacuolation. In addition, when SMX was lower than 250 ng/L, there was no oxidative damage in two microalgae cells. However, when SMX was higher than 250 ng/L, the antioxidant defense system of algal cells was activated to varying degrees, and the level of malondialdehyde (MDA) increased, indicating that algae cells were damaged by oxidation. From the molecular level, environmental concentration of SMX can induce microalgae cells to produce more energy substances, but there are almost no other adverse effects, indicating that the low level of SMX at the actual exposure level was unlikely to threaten P. tricornutum, but a higher concentration can significantly reduce its genetic products, which can affect the changes of its cell structure and damage P. tricornutum to some extent. Therefore, environmental concentration of SMX still has certain potential risks to microalgae. These outcomes improved current understanding of the potential ecological risks associated with SMX in marine environments.


Subject(s)
Diatoms , Microalgae , Oxidative Stress , Sulfamethoxazole , Water Pollutants, Chemical , Sulfamethoxazole/toxicity , Diatoms/drug effects , Diatoms/ultrastructure , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Microalgae/ultrastructure , Transcriptome/drug effects , Photosynthesis/drug effects , Malondialdehyde/metabolism , Microscopy, Electron, Transmission
9.
Toxicology ; 508: 153905, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39134236

ABSTRACT

Gestating mice were exposed to three chemicals, tetrabromo-bisphenol A (TBBPA; 2 mg/kg/day), amitrole (25 and 50 mg/kg/day) and pyraclostrobin (0.4 and 2 mg/kg/day) to assess their capacity to act as thyroid hormone disruptors and compromise neurodevelopment. Propyl-thio-uracyl, a known pharmacological inhibitor of thyroid gland secretion, was used at both high and low dose as a reference thyroid hormone system disruptor (1 ppm, 1500 ppm). A combination of plasma metabolomics and striatum transcriptomics revealed the induced change in pups at the postnatal stages. Although the underlying mechanism is unlikely to involve thyroid hormone disruption, these chemicals had a detectable effect on pups' neurodevelopment.


Subject(s)
Endocrine Disruptors , Metabolomics , Prenatal Exposure Delayed Effects , Thyroid Hormones , Transcriptome , Animals , Female , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Thyroid Hormones/blood , Thyroid Hormones/metabolism , Mice , Endocrine Disruptors/toxicity , Transcriptome/drug effects , Male , Phenols/toxicity , Polybrominated Biphenyls
10.
Anim Biotechnol ; 35(1): 2381080, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39087503

ABSTRACT

Mastitis, a serious threat to the health and milk production function of dairy cows decreases milk quality. Blood from three healthy cows and three mastitis cows were collected in this study and their transcriptome was sequenced using the Illumina HiSeq platform. Differentially expressed genes (DEGs) were screened according to the |log2FoldChange| > 1 and P-value < 0.05 criteria. Pathway enrichment and functional annotation were performed through KEGG and GO analyses. Finally, the mechanism of the AMP-activated protein kinase (AMPK) mediation of (-)-epigallocatechin-3-gallate (EGCG) to promote lipid metabolism in mastitis cows was analyzed in bovine mammary epithelial cells (BMECs). Transcriptome analysis revealed a total of 825 DEGs, with 474 genes showing increased expression and 351 genes showing decreased expression. The KEGG analysis of DEGs revealed that they were mainly linked to tumour necrosis factor, nuclear factor-κB signalling pathway, and lipid metabolism-related signalling pathway, whereas GO functional annotation found that DEGs were enriched in threonine and methionine kinase activity, cellular metabolic processes, and cytoplasm. AMPK expression, which is involved in several lipid metabolism pathways, was downregulated in mastitis cows. The results of in vitro experiments showed that the inhibition of AMPK promoted the expression of lipid synthesis genes in lipopolysaccharide-induced BMECs and that EGCG could promote lipid synthesis by decreasing the expression of AMPK and downregulating the expression of inflammatory factors in inflammatory BMECs. In conclusion, our study demonstrated that AMPK mediated EGCG to inhabit of inflammatory responses and promote of lipid synthesis in inflammatory BMECs.


Subject(s)
AMP-Activated Protein Kinases , Catechin , Lipid Metabolism , Mammary Glands, Animal , Mastitis, Bovine , Animals , Cattle , Catechin/analogs & derivatives , Catechin/pharmacology , Female , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Mastitis, Bovine/genetics , Lipid Metabolism/drug effects , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Profiling/veterinary , Transcriptome/drug effects
11.
BMC Genomics ; 25(1): 765, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107708

ABSTRACT

Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.


Subject(s)
Alkalies , Gills , Palaemonidae , Animals , Gills/metabolism , Gills/drug effects , Palaemonidae/genetics , Palaemonidae/drug effects , Palaemonidae/metabolism , Gene Expression Profiling , Transcriptome/drug effects , Metabolic Networks and Pathways/drug effects
12.
Epigenetics Chromatin ; 17(1): 24, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103936

ABSTRACT

BACKGROUND: Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant. RESULTS: DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites. CONCLUSIONS: To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.


Subject(s)
DNA Methylation , Transcriptome , Vehicle Emissions , Humans , DNA Methylation/drug effects , Vehicle Emissions/toxicity , A549 Cells , Transcriptome/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , CpG Islands , Particulate Matter/toxicity , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism
13.
PLoS One ; 19(8): e0306597, 2024.
Article in English | MEDLINE | ID: mdl-39106246

ABSTRACT

Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.


Subject(s)
Enterobacter , Gossypol , Metabolomics , Gossypol/pharmacology , Gossypol/metabolism , Enterobacter/metabolism , Enterobacter/genetics , Enterobacter/drug effects , Animals , Transcriptome/drug effects , Gene Expression Regulation, Bacterial/drug effects , Metabolome/drug effects , Gene Expression Profiling , Rumen/microbiology , Rumen/metabolism , Rumen/drug effects
14.
J Environ Manage ; 367: 121979, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088904

ABSTRACT

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.


Subject(s)
Cadmium , Plant Growth Regulators , Transcription Factors , Transcriptome , Cadmium/toxicity , Cadmium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome/drug effects , Plant Growth Regulators/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Stress, Physiological , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Regulation, Plant/drug effects
15.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125720

ABSTRACT

Freesia refracta (FR), a perennial flower of the Iris family (Iridaceae), is widely used in cosmetics despite limited scientific evidence of its skin benefits and chemical composition, particularly of FR callus extract (FCE). This study identified biologically active compounds in FCE and assessed their skin benefits, focusing on anti-aging. FR calli were cultured, extracted with water at 40 °C, and analyzed using Centrifugal Partition Chromatography (CPC), Nuclear Magnetic Resonance (NMR), and HCA, revealing key compounds, namely nicotinamide and pyroglutamic acid. FCE significantly increased collagen I production by 52% in normal and aged fibroblasts and enhanced fibroblast-collagen interaction by 37%. An in vivo study of 43 female volunteers demonstrated an 11.1% reduction in skin roughness and a 2.3-fold increase in collagen density after 28 days of cream application containing 3% FCE. Additionally, the preservation tests of cosmetics containing FCE confirmed their stability over 12 weeks. These results suggest that FCE offers substantial anti-aging benefits by enhancing collagen production and fibroblast-collagen interactions. These findings highlighted the potential of FCE in cosmetic applications, providing significant improvements in skin smoothness and overall appearance. This study fills a gap in the scientific literature regarding the skin benefits and chemical composition of FR callus extract, supporting its use in the development of effective cosmeceuticals.


Subject(s)
Fibroblasts , Oxidative Stress , Plant Extracts , Skin Aging , Skin , Skin Aging/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Oxidative Stress/drug effects , Skin/metabolism , Skin/drug effects , Transcriptome/drug effects , Adult , Collagen/metabolism , Cosmetics/pharmacology , Middle Aged , Niacinamide/pharmacology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/pharmacology , Pyrrolidonecarboxylic Acid/metabolism
16.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125723

ABSTRACT

Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex differences in their hormonal regulation is limited. Here, we carried out a comprehensive investigation on sexual dimorphic responses to MF in the hepatopancreas of the most dominant aquacultural crustacean-the white-leg shrimp (Litopenaeus vannamei). Through comparative transcriptomic analysis of the main MF target tissue (hepatopancreas) from both female and male L. vannamei, two sets of sex-specific and four sets of sex-dose-specific differentially expressed transcripts (DETs) were identified after different doses of MF injection. Functional analysis of DETs showed that the male-specific DETs were mainly related to sugar and lipid metabolism, of which multiple chitinases were significantly up-regulated. In contrast, the female-specific DETs were mainly related to miRNA processing and immune responses. Further co-expression network analysis revealed 8 sex-specific response modules and 55 key regulatory transcripts, of which several key transcripts of genes related to energy metabolism and immune responses were identified, such as arginine kinase, tropomyosin, elongation of very long chain fatty acids protein 6, thioredoxin reductase, cysteine dioxygenase, lysosomal acid lipase, estradiol 17-beta-dehydrogenase 8, and sodium/potassium-transporting ATPase subunit alpha. Altogether, our study demonstrates the sex differences in the hormonal regulatory networks of L. vannamei, providing new insights into the molecular basis of MF regulatory mechanisms and sex dimorphism in prawn aquaculture.


Subject(s)
Gene Expression Profiling , Hepatopancreas , Penaeidae , Sex Characteristics , Transcriptome , Animals , Hepatopancreas/metabolism , Hepatopancreas/drug effects , Female , Male , Penaeidae/genetics , Penaeidae/metabolism , Penaeidae/drug effects , Transcriptome/drug effects , Gene Expression Profiling/methods , Fatty Acids, Unsaturated/pharmacology , Fatty Acids, Unsaturated/metabolism
17.
Mar Drugs ; 22(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39195487

ABSTRACT

Aurantiochytrium is a well-known long-chain polyunsaturated fatty acids (PUFAs) producer, especially docosahexaenoic acid (DHA). In order to reduce the cost or improve the productivity of DHA, many researchers are focusing on exploring the high-yield strain, reducing production costs, changing culture conditions, and other measures. In this study, DHA production was improved by a two-stage fermentation. In the first stage, efficient and cheap soybean powder was used instead of conventional peptone, and the optimization of fermentation conditions (optimal fermentation conditions: temperature 28.7 °C, salinity 10.7‱, nitrogen source concentration 1.01 g/L, and two-nitrogen ratio of yeast extract to soybean powder 2:1) based on response surface methodology resulted in a 1.68-fold increase in biomass concentration. In the second stage, the addition of 2.5 mM sesamol increased the production of fatty acid and DHA by 93.49% and 98.22%, respectively, as compared to the optimal culture condition with unadded sesamol. Transcriptome analyses revealed that the addition of sesamol resulted in the upregulation of some genes related to fatty acid synthesis and antioxidant enzymes in Aurantiochytrium. This research provides a low-cost and effective culture method for the commercial production of DHA by Aurantiochytrium sp.


Subject(s)
Benzodioxoles , Docosahexaenoic Acids , Fermentation , Phenols , Stramenopiles , Docosahexaenoic Acids/pharmacology , Stramenopiles/genetics , Stramenopiles/drug effects , Stramenopiles/metabolism , Benzodioxoles/pharmacology , Gene Expression Profiling , Transcriptome/drug effects , Biomass
18.
Gene ; 930: 148814, 2024 Dec 20.
Article in English | MEDLINE | ID: mdl-39116958

ABSTRACT

Epoxyazadiradione is an important limonoid with immense pharmacological potential. We have reported previously that epoxyazadiradione (EAD) induces apoptosis in triple negative breast cancer cells (MDA-MB 231) by modulating diverse cellular targets. Here, we identify the key genes/pathways responsible for this effect through next-generation sequencing of the transcriptome from EAD treated cells and integrated molecular data analysis using bioinformatics. In silico analysis indicated that EAD displayed favourable drug-like properties and could target multiple macromolecules relevant to TNBC. RNA sequencing revealed that EAD treatment results in the differential expression of 1838 genes in MDA-MB 231 cells, with 752 downregulated and 1086 upregulated. Gene set enrichment analysis of these genes suggested that EAD disrupts protein folding in the endoplasmic reticulum, triggering the unfolded protein response (UPR) and potentially leading to cell death. EAD also induced oxidative stress and DNA damage, downregulated pathways linked to metabolism, cell cycle progression, pro-survival signalling, cell adhesion, motility and inflammatory response. The identification of protein cluster and hub genes were also done. The validation of the identified hub genes gave an inverse correlation between their expression in EAD treated cells and TNBC patient samples. Thus, the identified hub genes could be explored as therapeutic or diagnostic markers for TNBC. Hence, EAD appears to be a promising therapeutic candidate for TNBC by targeting various hallmarks of cancer, including cell death resistance, uncontrolled proliferation and metastasis. To conclude, the identified pathways and validated targets for EAD will provide a roadmap for further in vivo studies and preclinical/clinical validation required for potential drug development.


Subject(s)
Gene Expression Regulation, Neoplastic , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Limonins/pharmacology , Unfolded Protein Response/drug effects , Transcriptome/drug effects , Oxidative Stress/drug effects , DNA Damage/drug effects , Computational Biology/methods
19.
Gene ; 930: 148826, 2024 Dec 20.
Article in English | MEDLINE | ID: mdl-39154970

ABSTRACT

Dictamnine(DIC), as the key pharmacological component of the classical Chinese herbal medicine cortex dictamni, possesses multiple pharmacological activities such as anti-microbial, anti-allergic, anti-cancer, and anti-inflammatory activities, however it is also the main toxicant of cortex dictamni induced hepatic damage, yet the underlying molecular mechanisms causing hepatic damage are still largely unknown. With the purpose of explore possibilities hepatotoxicity of dictamnine in zebrafish and to identify the key regulators and metabolites involved in the biological process, we administered zebrafish to dictamnine at a sub-lethal dose (

Subject(s)
Chemical and Drug Induced Liver Injury , Liver , Metabolomics , Transcriptome , Zebrafish , Animals , Zebrafish/genetics , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Metabolomics/methods , Liver/drug effects , Liver/metabolism , Liver/pathology , Transcriptome/drug effects , Gene Expression Profiling/methods , Drugs, Chinese Herbal/toxicity , Apoptosis/drug effects
20.
BMC Genomics ; 25(1): 793, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164623

ABSTRACT

BACKGROUND: Alcohol consumption is widely known to have detrimental effects on various organs and tissues. The effects of ethanol on male reproduction have been studied at the physiological and cellular levels, but no systematic study has examined the effects of ethanol on male reproduction-related gene expression. RESULTS: We employed a model of chronic ethanol administration using the Lieber-DeCarli diet. Ethanol-fed mice showed normal testicular and epididymal integrity, and sperm morphology, but decreased sperm count. Total RNA sequencing analysis of testes from ethanol-fed mice showed that a small fraction (∼ 2%) of testicular genes were differentially expressed in ethanol-fed mice and that, of these genes, 28% were cell-type specific in the testis. Various in silico analyses were performed, and gene set enrichment analysis revealed that sperm tail structure-related genes, including forkhead box J1 (Foxj1), were down-regulated in testes of ethanol-fed mice. Consistent with this result, ethanol-fed mice exhibited decreased sperm motility. CONCLUSION: This study provides the first comprehensive transcriptomic profiling of ethanol-induced changes in the mouse testis, and suggests gene expression profile changes as a potential mechanism underlying ethanol-mediated reproductive dysfunction, such as impaired sperm motility.


Subject(s)
Ethanol , Gene Expression Profiling , Testis , Transcriptome , Animals , Male , Testis/metabolism , Testis/drug effects , Ethanol/pharmacology , Mice , Transcriptome/drug effects , Sperm Motility/drug effects , Spermatozoa/metabolism , Spermatozoa/drug effects , Sperm Count
SELECTION OF CITATIONS
SEARCH DETAIL