Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.352
1.
Mol Biol Rep ; 51(1): 728, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38861185

INTRODUCTION: Colorectal cancer (CRC) is the second common cancer and the fourth major reason of cancer death worldwide. Dysregulation of intracellular pathways, such as TGF-ß/SMAD signaling, contributes to CRC development. MicroRNAs (miRNAs) are post-transcriptional regulators that are involved in CRC pathogenesis. Here, we aimed to investigate the effect of miR-3613-3p on the TGF-ß /SMAD signaling pathway in CRC. METHODS & RESULTS: Bioinformatics analysis suggested that miR-3613-3p is a regulator of TGF-Β signaling downstream genes. Then, miR-3613-3p overexpression was followed by downregulation of TGF-ßR1, TGF-ßR2, and SMAD2 expression levels, detected by RT-qPCR. Additionally, dual luciferase assay supported the direct interaction of miR-3613-3p with 3'UTR sequences of TGF-ßR1 and TGF-ßR2 genes. Furthermore, reduced SMAD3 protein level following the miR-3613-3p overexpression verified its suppressive effect against TGF-ß signaling in HCT-116 cells, detected by western blot analysis. Finally, miR-3613-3p overexpression induced sub-G1 arrest in HCT116 cells, detected by flow cytometry, and promoted downregulation of cyclin D1 protein expression, which was detected by western blotting analysis. CONCLUSION: Our findings indicated that miR-3613-3p plays an important role in CRC by targeting the TGF-ß/SMAD signaling pathway and could be considered as a new candidate for further therapy investigations.


Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , MicroRNAs , Signal Transduction , Transforming Growth Factor beta , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type II/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Smad2 Protein/metabolism , Smad2 Protein/genetics , Cell Proliferation/genetics , 3' Untranslated Regions/genetics , Cell Line, Tumor , Smad3 Protein/genetics , Smad3 Protein/metabolism
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 384-389, 2024 Jun 18.
Article Zh | MEDLINE | ID: mdl-38864121

OBJECTIVE: To explore the association between polymorphisms of transforming growth factor-ß (TGF-ß) signaling pathway and non-syndromic cleft lip with or without cleft palate (NSCL/P) among Asian populations, while considering gene-gene interaction and gene-environment interaction. METHODS: A total of 1 038 Asian NSCL/P case-parent trios were ascertained from an international consortium, which conducted a genome-wide association study using a case-parent trio design to investigate the genes affec-ting risk to NSCL/P. After stringent quality control measures, 343 single nucleotide polymorphism (SNP) spanning across 10 pivotal genes in the TGF-ß signaling pathway were selected from the original genome-wide association study(GWAS) dataset for further analysis. The transmission disequilibrium test (TDT) was used to test for SNP effects. The conditional Logistic regression models were used to test for gene-gene interaction and gene-environment interaction. Environmental factors collected for the study included smoking during pregnancy, passive smoking during pregnancy, alcohol intake during pregnancy, and vitamin use during pregnancy. Due to the low rates of exposure to smoking during pregnancy and alcohol consumption during pregnancy (<3%), only the interaction between maternal smoking during pregnancy and multivitamin supplementation during pregnancy was analyzed. The threshold for statistical significance was rigorously set at P =1.46×10-4, applying Bonferroni correction to account for multiple testing. RESULTS: A total of 23 SNPs in 4 genes yielded nominal association with NSCL/P (P<0.05), but none of these associations was statistically significant after Bonferroni' s multiple test correction. However, there were 6 pairs of SNPs rs4939874 (SMAD2) and rs1864615 (TGFBR2), rs2796813 (TGFB2) and rs2132298 (TGFBR2), rs4147358 (SMAD3) and rs1346907 (TGFBR2), rs4939874 (SMAD2) and rs1019855 (TGFBR2), rs4939874 (SMAD2) and rs12490466 (TGFBR2), rs2009112 (TGFB2) and rs4075748 (TGFBR2) showed statistically significant SNP-SNP interaction (P<1.46×10-4). In contrast, the analysis of gene-environment interactions did not yield any significant results after being corrected by multiple testing. CONCLUSION: The comprehensive evaluation of SNP associations and interactions within the TGF-ß signaling pathway did not yield any direct associations with NSCL/P risk in Asian populations. However, the significant gene-gene interactions identified suggest that the genetic architecture influencing NSCL/P risk may involve interactions between genes within the TGF-ß signaling pathway. These findings underscore the necessity for further investigations to unravel these results and further explore the underlying biological mechanisms.


Cleft Lip , Cleft Palate , Gene-Environment Interaction , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Signal Transduction , Transforming Growth Factor beta , Humans , Cleft Palate/genetics , Cleft Lip/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Female , Asian People/genetics , Pregnancy , Male , Genetic Predisposition to Disease , Smad3 Protein/genetics , Risk Factors , Smad2 Protein/genetics , Smad2 Protein/metabolism , Epistasis, Genetic , Tobacco Smoke Pollution/adverse effects , Alcohol Drinking/genetics
3.
J Clin Invest ; 134(10)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38747285

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Fibroblasts , Fibrosis , Transforming Growth Factor beta , Wnt-5a Protein , rho-Associated Kinases , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Mice, Knockout , Wnt Proteins/metabolism , Wnt Proteins/genetics , MAP Kinase Signaling System , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics
4.
Bull Exp Biol Med ; 176(5): 603-606, 2024 Mar.
Article En | MEDLINE | ID: mdl-38730107

Polymorphism of genes of transforming growth factor TGFB and its receptors (TGFBRI, TGFBRII, and TGFBRIIII) in patients with primary open-angle glaucoma was analyzed. The frequency of the TGFBRII CC genotype in patients is increased relative to the control group (OR=6.10, p=0.0028). Heterozygosity in this polymorphic position is reduced (OR=0.18, p=0.0052). As the effects of TGF-ß is mediated through its receptors, we analyzed complex of polymorphic variants of the studied loci in the genome of patients. Two protective complexes consisting only of receptor genes were identified: TGFBRI TT:TGFBRII CG (OR=0.10, p=0.02) and TGFBRII CG:TGFBRIII CG (OR=0.09, p=0.01). The study showed an association of TGFBRII polymorphism with primary open-angle glaucoma and the need to study functionally related genes in the development of the disease, which should contribute to its early diagnosis and prevention.


Glaucoma, Open-Angle , Humans , Glaucoma, Open-Angle/genetics , Female , Male , Middle Aged , Siberia , Aged , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease/genetics , Receptors, Transforming Growth Factor beta/genetics , Gene Frequency/genetics , Receptor, Transforming Growth Factor-beta Type II/genetics , Case-Control Studies , Genotype , Transforming Growth Factor beta/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Polymorphism, Genetic/genetics
5.
PLoS One ; 19(5): e0302786, 2024.
Article En | MEDLINE | ID: mdl-38722973

A role for exportin 4 (XPO4) in the pathogenesis of liver fibrosis was recently identified. We sought to determine changes in hepatic XPO4 promoter methylation levels during liver fibrosis. The quantitative real-time RT-PCR technique was used to quantify the mRNA level of XPO4. Additionally, pyrosequencing was utilized to assess the promoter methylation status of XPO4. The methylation rate of the XPO4 promoter was significantly increased with fibrosis in human and mouse models, while XPO4 mRNA expression negatively correlated with methylation of its promoter. DNA methyltransferases (DNMTs) levels (enzymes that drive DNA methylation) were upregulated in patients with liver fibrosis compared to healthy controls and in hepatic stellate cells upon transforming growth factor beta (TGFß) stimulation. The DNA methylation inhibitor 5-Aza or specific siRNAs for these DNMTs led to restoration of XPO4 expression. The process of DNA methylation plays a crucial role in the repression of XPO4 transcription in the context of liver fibrosis development.


DNA Methylation , Karyopherins , Liver Cirrhosis , Promoter Regions, Genetic , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , Animals , Mice , Male , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice, Inbred C57BL
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731846

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins B-raf , Stromal Cells , Transforming Growth Factor beta , Tumor Microenvironment , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Microenvironment/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Mutation , Transcriptome , Signal Transduction , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Single-Cell Analysis , Gene Expression Profiling , Adenoma/genetics , Adenoma/pathology , Adenoma/metabolism
7.
Environ Pollut ; 351: 124101, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38710361

Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-ß and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-ß/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.


Mice, Inbred ICR , Ovary , Polystyrenes , Uterus , Animals , Female , Mice , Uterus/drug effects , Uterus/metabolism , Ovary/drug effects , Ovary/metabolism , Polystyrenes/toxicity , Reproduction/drug effects , Microplastics/toxicity , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Environmental Pollutants/toxicity , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics
8.
Genomics ; 116(3): 110851, 2024 May.
Article En | MEDLINE | ID: mdl-38692440

Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-ß and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.


Cell Differentiation , Muscle Development , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Sheep/genetics , Muscle Development/genetics , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , RNA-Seq , Signal Transduction , Cells, Cultured , Chromatin Immunoprecipitation Sequencing , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cell Proliferation
9.
Elife ; 132024 May 28.
Article En | MEDLINE | ID: mdl-38805545

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Cartilage, Articular , Hippo Signaling Pathway , Homeostasis , Osteoarthritis , Transforming Growth Factor beta , YAP-Signaling Proteins , Animals , Cartilage, Articular/metabolism , Mice , Osteoarthritis/genetics , Osteoarthritis/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Wnt Signaling Pathway , beta Catenin/metabolism , beta Catenin/genetics , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
10.
Theriogenology ; 225: 119-129, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38805994

Endometrosis in mares is a disease resulting from chronic inflammation characterized by peri glandular fibrosis. There is no effective treatment so far, which opens the door for exploring the use of stem cells as a candidate. Transforming growth factor beta (TGFß) is crucial for the establishment and progression of fibrosis in mare's endometrosis. We aimed to develop regenerative approaches to treat endometrosis by using mesenchymal stem cells (MSC), for which understanding the effect of TGFß on exogenous MSC is crucial. We isolated and characterized equine adipose MSC from six donors. Cells were pooled and exposed to 10 ng/ml of TGFß for 0, 4, and 24 h, after which cells were analyzed for proliferation, migration, mesodermal differentiation, expression of fibrosis-related mRNAs, and prostaglandin E2 secretion. At 24 h of exposition to TGFß, there was a progressive increase in the contraction of the monolayer, leading to nodular structures, while cell viability did not change. Exposure to TGFß impaired adipogenic and osteogenic differentiation after 4 h of treatment, which was more marked at 24 h, represented by a decrease in Oil red and Alizarin red staining, as well as a significant drop (p < 0.05) in the expression of key gene regulators of differentiation processes (PPARG for adipose and RUNX2 for osteogenic differentiation). TGFß increased chondrogenic differentiation as shown by the upsurge in size of the resulting 3D cell pellet and intensity of Alcian Blue staining, as well as the significant up-regulation of SOX9 expression (p < 0.05) at 4 h, which reached a maximum peak at 24 h (p < 0.01), indicative of up-regulation of glycosaminoglycan synthesis. Preconditioning MSC with TGFß led to a significant increase (p < 0.05) in the expression of myofibroblast gene markers aSMA, COL1A1, and TGFß at 24 h exposition time. In contrast, the expression of COL3A1 did not change with respect to the control but registered a significant downregulation compared to 4 h (p < 0.05). TGFß also affected the expression of genes involved in PGE2 synthesis and function; COX2, PTGES, and the PGE2 receptor EP4 were all significantly upregulated early at 4 h (p < 0.05). Cells exposed to TGFß showed a significant upregulation of PGE2 secretion at 4 h compared to untreated cells (p < 0.05); conversely, at 24 h, the PGE2 values decreased significantly compared to control cells (p < 0.05). Preconditioning MSC for 4 h led to an anti-fibrotic secretory phenotype, while a longer period (24 h) led to a pro-fibrotic one. It is tempting to propose a 4-h preconditioning of exogenous MSC with TGFß to drive them towards an anti-fibrotic phenotype for cellular and cell-free therapies in fibrotic diseases such as endometrosis of mares.


Adipose Tissue , Horse Diseases , Mesenchymal Stem Cells , Transforming Growth Factor beta , Animals , Horses , Female , Adipose Tissue/cytology , Adipose Tissue/metabolism , Horse Diseases/therapy , Horse Diseases/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/pharmacology , Cell Differentiation/drug effects , Fibrosis , Cells, Cultured , Gene Expression Regulation/drug effects
11.
Int J Biol Macromol ; 270(Pt 1): 132239, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735606

Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-ß) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-ß pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.


Colorectal Neoplasms , Computational Biology , Gene Expression Regulation, Neoplastic , Inhibin-beta Subunits , Protein Interaction Maps , Signal Transduction , Transforming Growth Factor beta , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Computational Biology/methods , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Protein Interaction Maps/genetics , Inhibin-beta Subunits/genetics , Inhibin-beta Subunits/metabolism , RNA, Long Noncoding/genetics , Tumor Microenvironment/genetics , Mutation , Biomarkers, Tumor/genetics
12.
Folia Med (Plovdiv) ; 66(2): 243-249, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38690820

AIM: The aim of this study was to evaluate specific single nucleotide polymorphisms (SNP) of transforming growth factor-beta (TGF-ß) (rs1800469) and insulin-like growth factor-1 (IGF-1) (rs17032362) genes in Class II individuals with a normal maxilla and retrognathic (short) mandible.


Insulin-Like Growth Factor I , Malocclusion, Angle Class II , Mandible , Polymorphism, Single Nucleotide , Transforming Growth Factor beta , Humans , Insulin-Like Growth Factor I/genetics , Transforming Growth Factor beta/genetics , Male , Female , Malocclusion, Angle Class II/genetics , Retrognathia/genetics , Adolescent , Adult , Insulin-Like Peptides
13.
Cell Cycle ; 23(5): 555-572, 2024 Mar.
Article En | MEDLINE | ID: mdl-38695374

The study investigates molecular changes in the lumbosacral (L/S) spine's yellow ligamentum flavum during degenerative stenosis, focusing on the role of transforming growth factor beta 1-3 (TGF-ß-1-3). Sixty patients with degenerative stenosis and sixty control participants underwent molecular analysis using real-time quantitative reverse transcription reaction technique (RTqPCR), enzyme-linked immunosorbent assay (ELISA), Western blot, and immunohistochemical analysis (IHC). At the mRNA level, study samples showed reduced expression of TGF-ß-1 and TGF-ß-3, while TGF-ß-2 increased by only 4%. Conversely, at the protein level, the study group exhibited significantly higher concentrations of TGF-ß-1, TGF-ß-2, and TGF-ß-3 compared to controls. On the other hand, at the protein level, a statistically significant higher concentration of TGF-ß-1 was observed (2139.33 pg/mL ± 2593.72 pg/mL vs. 252.45 pg/mL ± 83.89 pg/mL; p < 0.0001), TGF-ß-2 (3104.34 pg/mL ± 1192.74 pg/mL vs. 258.86 pg/mL ± 82.98 pg/mL; p < 0.0001), TGF-ß-3 (512.75 pg/mL ± 107.36 pg/mL vs. 55.06 pg/mL ± 9.83 pg/mL, p < 0.0001) in yellow ligaments obtained from patients of the study group compared to control samples. The study did not establish a significant correlation between TGF-ß-1-3 concentrations and pain severity. The findings suggest that molecular therapy aimed at restoring the normal expression pattern of TGF-ß-1-3 could be a promising strategy for treating degenerative stenosis of the L/S spine. The study underscores the potential therapeutic significance of addressing molecular changes at the TGF-ß isoforms level for better understanding and managing degenerative spinal conditions.


Protein Isoforms , Spinal Stenosis , Humans , Female , Male , Middle Aged , Protein Isoforms/metabolism , Protein Isoforms/genetics , Spinal Stenosis/metabolism , Spinal Stenosis/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Aged , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/genetics , Ligamentum Flavum/metabolism , Ligamentum Flavum/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/genetics , Adult , Lumbar Vertebrae/metabolism , Lumbar Vertebrae/pathology , Lumbosacral Region/pathology , Case-Control Studies
14.
Nat Genet ; 56(5): 938-952, 2024 May.
Article En | MEDLINE | ID: mdl-38627596

Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFß in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.


Cholestasis , Hepatocytes , Animals , Mice , Cholestasis/genetics , Cholestasis/pathology , Cholestasis/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver/injuries , Liver/pathology , Cell Proliferation/genetics , Bile Ducts/metabolism , Liver Regeneration/genetics , Mice, Inbred C57BL , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Signal Transduction , Male , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Transcriptome , Disease Models, Animal , Spatio-Temporal Analysis
15.
Methods Mol Biol ; 2782: 159-166, 2024.
Article En | MEDLINE | ID: mdl-38622400

Regulatory B (Breg) cells have been demonstrated to play an important role in the inhibition of a wide range of immunological responses, and they are absent or malfunction in autoimmune diseases like lupus. Breg cells can control immunological responses and keep the immune system in a balanced state by releasing immunosuppressive cytokines such as transforming growth factor-beta (TGF-ß) and interleukin-10 (IL-10), which in turn promote regulatory T (Treg) cells and reduce effector T cell responses. Breg cells have also been linked to the modulation of cancer immunity. Due to their immunosuppressive role, in the context of cancer, Breg cells aid in tumor immune evasion and promote tumor progression. Nonetheless, it has been established that Breg cells are involved in both cancer immunity and autoimmunity, and their characterizations beyond surface markers, for example, on the transcriptomic level, are essential for our understanding of Breg biology in health and disease. In this chapter, using lupus-prone MRL/lpr mice, we describe a Breg cell isolation protocol for the purpose of single-cell RNA sequencing analysis.


Autoimmune Diseases , B-Lymphocytes, Regulatory , Neoplasms , Animals , Mice , Mice, Inbred MRL lpr , Cytokines/metabolism , Transforming Growth Factor beta/genetics , T-Lymphocytes, Regulatory , Autoimmune Diseases/pathology , Neoplasms/pathology
16.
Adv Sci (Weinh) ; 11(21): e2306486, 2024 Jun.
Article En | MEDLINE | ID: mdl-38588050

Nucleosome assembly proteins (NAPs) have been identified as histone chaperons. Testis-Specific Protein, Y-Encoded-Like (TSPYL) is a newly arisen NAP family in mammals. TSPYL2 can be transcriptionally induced by DNA damage and TGFß causing proliferation arrest. TSPYL1, another TSPYL family member, has been poorly characterized and is the only TSPYL family member known to be causal of a lethal recessive disease in humans. This study shows that TSPYL1 and TSPYL2 play an opposite role in TGFß signaling. TSPYL1 partners with the transcription factor FOXA1 and histone methyltransferase EZH2, and at the same time represses TGFBR1 and epithelial-mesenchymal transition (EMT). Depletion of TSPYL1 increases TGFBR1 expression, upregulates TGFß signaling, and elevates the protein stability of TSPYL2. Intriguingly, TSPYL2 forms part of the SMAD2/3/4 signal transduction complex upon stimulation by TGFß to execute the transcriptional responses. Depletion of TSPYL2 rescues the EMT phenotype of TSPYL1 knockdown in A549 lung carcinoma cells. The data demonstrates the prime role of TSPYL2 in causing the dramatic defects in TSPYL1 deficiency. An intricate counter-balancing role of TSPYL1 and TSPYL2 in regulating TGFß signaling is also unraveled.


Receptor, Transforming Growth Factor-beta Type I , Signal Transduction , Transforming Growth Factor beta , Humans , Signal Transduction/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor
17.
Mol Vis ; 30: 160-166, 2024.
Article En | MEDLINE | ID: mdl-38601020

Purpose: Uveal melanoma (UM) is a deadly cancer with limited therapeutic options. At advanced stages, UM cells metastasize almost exclusively into the liver, where targeting metastatic UM cells remain a clinical challenge. Transforming growth factor beta (TGF-ß) exhibits a functional duality in cancer, with one arm limiting tumor growth at an early stage and the second arm promoting metastasis at an advanced stage, notably by inducing an epithelial-to-mesenchymal transition. Thus, we hypothesized that targeting the TGF-ß pathway could be relevant in the treatment of metastatic UM. Methods: In this study, we first characterized the pseudoepithelial/mesenchymal phenotype of UM cell lines Mel270 and 92.1. We then treated the cell lines with TGF-ß to evaluate their responsiveness to the cytokine and to characterize the functional impact of TGF-ß on their cell viability. Results: The results demonstrated, first, that the UM cell lines exhibited a mesenchymal phenotype and responded to TGF-ß treatment in vitro and, second, that TGF-ß promoted a cytostatic effect on the UM cell lines. Conclusions: Our findings indicate that UM cells are sensitive to the two arms of TGF-ß signaling, which suggests that targeting the TGF-ß pathway could be challenging in UM and would require a precise selection of patients in which only the prometastatic arm of TGF-ß is activated.


Melanoma , Signal Transduction , Transforming Growth Factor beta , Uveal Neoplasms , Humans , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Phenotype , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta1 , Uveal Neoplasms/drug therapy , Uveal Neoplasms/genetics
18.
Mol Biol Rep ; 51(1): 500, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598005

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic gastrointestinal (GI) condition comprising Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis involves immune system dysregulation, with increased Th (T helper cell)17 cells and reduced regulatory T cell (Treg) differentiation. Transforming growth factor-ß (TGF-ß) secretion from Tregs helps control inflammation, and its production is regulated by glycoprotein-A repetition predominant (GARP) protein along with non-coding RNAs (ncRNAs) like microRNA(miR)-142-3p and metastasis associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNAs (LncRNAs). This study analyzed their expression in IBD. METHODS: Blood samples were collected from 44 IBD patients, and 22 healthy controls (HC). RNA extraction and circular DNA (cDNA) synthesis were performed. Real-time polymerase chain reaction (RT-PCR) measured gene expression of GARP, MALAT1, and miR-142-3p. Correlations and group differences were statistically analyzed. RESULTS: Compared to controls, GARP was downregulated while MALAT1 and miR-142-3p were upregulated significantly in IBD group. GARP and MALAT1 expressions positively correlated in controls. MALAT1 and miR-142-3p expressions positively correlated in IBD group. MALAT1 was downregulated in aged HC but upregulated with smoking history across groups. No correlations occurred between gene expression and gender, diet, infections, or disease activity scores. CONCLUSIONS: Dysregulation of GARP, MALAT1, and miR-142-3p likely contributes to inflammation in IBD by reducing TGF-ß. MALAT1 is linked to smoking and age-related changes. These genes have potential as diagnostic markers or therapeutic targets for personalized IBD treatment.


Inflammatory Bowel Diseases , MicroRNAs , RNA, Long Noncoding , Humans , Aged , RNA, Long Noncoding/genetics , Inflammatory Bowel Diseases/genetics , Inflammation/genetics , Glycoproteins , MicroRNAs/genetics , Biomarkers , Transforming Growth Factor beta/genetics
19.
APMIS ; 132(6): 452-464, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563150

Multiple sclerosis (MS) is a condition where the central nervous system loses its myelin coating due to autoimmune inflammation. The experimental autoimmune encephalomyelitis (EAE) simulates some aspects of human MS. Boswellic acids are natural compounds derived from frankincense extract, known for their anti-inflammatory properties. The purpose of this research was to investigate therapeutic potential of boswellic acids. Mice were divided into three groups: low-dose (LD), high-dose (HD), and control groups (CTRL). Following EAE induction, the mice received daily doses of boswellic acid for 25 days. Brain tissue damage, clinical symptoms, and levels of TGF-ß, IFN-γ, and IL-17 cytokines in cell cultured supernatant of lymphocytes were assessed. Gene expression of transcription factors in brain was measured using real-time PCR. The levels of brain demyelination were significantly lower in the treatment groups compared to the CTRL group. Boswellic acid reduced the severity and duration of EAE symptoms. Furthermore, boswellic acid decreased the amounts of IFN-γ and IL-17, also the expression of T-bet and ROR-γt in brain. On the contrary, it increased the levels of TGF-ß and the expression FoxP3 and GATA3. Our findings suggest that boswellic acids possess therapeutic potential for EAE by modulating the immune response and reducing inflammation.


Encephalomyelitis, Autoimmune, Experimental , Triterpenes , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Female , Mice, Inbred C57BL , Brain/drug effects , Brain/pathology , Brain/metabolism , Brain/immunology , Cytokines/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Interleukin-17/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
20.
Oncol Res ; 32(5): 999-1009, 2024.
Article En | MEDLINE | ID: mdl-38686046

Background: EBV-miR-BARTs exhibit significant relevance in epithelial tumors, particularly in EBV-associated gastric and nasopharyngeal cancers. However, their specific mechanisms in the initiation and progression of gastric cancer remain insufficiently explored. Material and Methods: Initially, EBV-miRNA-BART6-5p and its target gene SMAD4 expression were assessed in EBV-associated gastric cancer tissues and cell lines. Subsequent transfection induced overexpression of EBV-miRNA-BART6-5p in AGS and MKN-45, and downregulation in EBV-positive cells (SUN-719). The subsequent evaluation aimed to observe their impact on gastric cancer cell proliferation, migration, and glycolytic processes, with the TGF-ß/SMAD4 signaling pathway value clarified using a TGF-ß inhibitor. Results: EBV-miRNA-BART6-5p exhibits pronounced upregulation in EBV-associated gastric cancer tissues and EBV-positive cells, while its target gene SMAD4 demonstrates downregulated expression. Upregulation of it can promote the proliferation and migration of gastric cancer cells. Additionally, We found EBV-miRNA-BART6-5p promotes glycolysis of gastric cancer cells. Inhibition of the TGF-ß/SMAD4 signaling pathway resulted in suppressed proliferation and migration of gastric cancer cells, concomitant with a diminished glycolytic capacity. Conclusion: In this study, we found that EBV-miRNA-BART6-5p can target SMAD4, effectively increasing glycolysis in gastric cancer cells by regulating the TGF-ß/SMAD4 signaling pathway, thereby enhancing the proliferation and metastasis of gastric cancer cells. Our findings may offer new insights into the metabolic aspects of gastric cancer.


Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis , Herpesvirus 4, Human , MicroRNAs , Signal Transduction , Smad4 Protein , Stomach Neoplasms , Transforming Growth Factor beta , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/virology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , MicroRNAs/genetics , Glycolysis/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Herpesvirus 4, Human/genetics , Cell Line, Tumor , Cell Movement/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/pathology , Neoplasm Metastasis , RNA, Viral/genetics
...