Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.748
Filter
1.
Front Cell Infect Microbiol ; 14: 1410015, 2024.
Article in English | MEDLINE | ID: mdl-38957797

ABSTRACT

Background: Tuberculosis (TB) persists as a global health challenge, with its treatment hampered by the side effects of long-term combination drug therapies and the growing issue of drug resistance. Therefore, the development of novel therapeutic strategies is critical. This study focuses on the role of immune checkpoint molecules (ICs) and functions of CD8+ T cells in the search for new potential targets against TB. Methods: We conducted differential expression genes analysis and CD8+ T cell functional gene analysis on 92 TB samples and 61 healthy individual (HI) samples from TB database GSE83456, which contains data on 34,603 genes. The GSE54992 dataset was used to validated the findings. Additionally, a cluster analysis on single-cell data from primates infected with mycobacterium tuberculosis and those vaccinated with BCG was performed. Results: The overexpression of LAG-3 gene was found as a potentially important characteristic of both pulmonary TB (PTB) and extrapulmonary TB (EPTB). Further correlation analysis showed that LAG-3 gene was correlated with GZMB, perforin, IL-2 and IL-12. A significant temporal and spatial variation in LAG-3 expression was observed in T cells and macrophages during TB infection and after BCG vaccination. Conclusion: LAG-3 was overexpressed in TB samples. Targeting LAG-3 may represent a potential therapeutic target for tuberculosis.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Lymphocyte Activation Gene 3 Protein , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , CD8-Positive T-Lymphocytes/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Animals , Antigens, CD/genetics , BCG Vaccine/immunology , Macrophages/immunology , Macrophages/microbiology , Interleukin-2/metabolism , Interleukin-2/genetics , Gene Expression Profiling , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Interleukin-12/genetics , Interleukin-12/metabolism , Perforin/genetics , Perforin/metabolism , Male
2.
Front Immunol ; 15: 1422836, 2024.
Article in English | MEDLINE | ID: mdl-38947330

ABSTRACT

Introduction: Neutrophils play a complex and important role in the immunopathology of TB. Data suggest they are protective during early infection but become a main driver of immunopathology if infection progresses to active disease. Neutrophils are now recognized to exist in functionally diverse states, but little work has been done on how neutrophil states or subsets are skewed in TB disease. Methods: To address this, we carried out comprehensive phenotyping by flow cytometry of neutrophils in the blood and airways of individuals with active pulmonary TB with and without HIV co-infection recruited in Durban, South Africa. Results: Active TB was associated with a profound skewing of neutrophils in the blood toward phenotypes associated with activation and apoptosis, reduced phagocytosis, reverse transmigration, and immune regulation. This skewing was also apparently in airway neutrophils, particularly the regulatory subsets expressing PDL-1 and LOX-1. HIV co-infection did not impact neutrophil subsets in the blood but was associated with a phenotypic change in the airways and a reduction in key neutrophil functional proteins cathelicidin and arginase 1. Discussion: Active TB is associated with profound skewing of blood and airway neutrophils and suggests multiple mechanisms by which neutrophils may exacerbate the immunopathology of TB. These data indicate potential avenues for reducing neutrophil-mediated lung pathology at the point of diagnosis.


Subject(s)
HIV Infections , Immunophenotyping , Neutrophils , Tuberculosis, Pulmonary , Humans , Neutrophils/immunology , Male , Adult , Female , HIV Infections/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , South Africa , Coinfection/immunology , Middle Aged , Phenotype , Flow Cytometry , Young Adult , Mycobacterium tuberculosis/immunology
3.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 310-313, 2024 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-38952319

ABSTRACT

OBJECTIVE: To evaluate the auxiliary diagnostic value of T cells spot test of Mycobacterium tuberculosis infection (T-SPOT.TB) for pulmonary and extra-pulmonary tuberculosis among the elderly. METHODS: A total of 173 elderly patients at ages of 60 years and older and with suspected tuberculosis that were admitted to People's Hospital of Xinjiang Uygur Autonomous Region during the period from October 2022 through February 2024 were enrolled, and all patients underwent T-SPOT.TB, acid fast staining and GeneXpert MTB/RIF tests. The etiological tests of MTB served as a gold standard, and the diagnostic values of T-SPOT.TB, acid fast staining and GeneXpert MTB/RIF tests for pulmonary and extra-pulmonary tuberculosis were compared among the elderly patients. RESULTS: Of the 173 elderly patients suspected of tuberculosis, there were 44 patients definitely diagnosed with pulmonary tuberculosis, 30 cases with extra-pulmonary tuberculosis, and 99 cases without tuberculosis. The sensitivities of T-SPOT.TB, acid fast staining and GeneXpert MTB/RIF tests were 86.5%, 27.0% and 54.1% for diagnosis of tuberculosis. The sensitivities of T-SPOT.TB were 86.4% and 86.7% for diagnosis of pulmonary tuberculosis and extra-pulmonary tuberculosis, with an 80.8% specificity for diagnosis of tuberculosis. The sensitivities of GeneXpert MTB/RIF were 56.8% and 50.0% for diagnosis of pulmonary tuberculosis and extra-pulmonary tuberculosis, with a 100.0% specificity each, and the sensitivities of acid fast staining were 31.8% and 20.0% for diagnosis of pulmonary tuberculosis and extra-pulmonary tuberculosis, with a 100.0% specificity each. In addition, the areas under the receiver operating characteristic curve were 0.836, 0.635 and 0.770 for diagnosis of tuberculosis with T-SPOT.TB, acid fast staining and GeneXpert MTB/RIF tests among the elderly patients, respectively. CONCLUSIONS: T-SPOT.TB has a high auxiliary diagnostic value for both pulmonary and extra-pulmonary tuberculosis among elderly patients.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Aged , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Male , Female , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/immunology , Middle Aged , Tuberculosis/diagnosis , Tuberculosis/microbiology , Tuberculosis/immunology , Aged, 80 and over , T-Lymphocytes/immunology , Sensitivity and Specificity , Tuberculosis, Extrapulmonary
4.
Front Immunol ; 15: 1392256, 2024.
Article in English | MEDLINE | ID: mdl-38887283

ABSTRACT

Introduction: The assessment of tuberculosis (TB) treatment outcomes predominantly relies on sputum culture conversion status. To enhance treatment management, it is crucial to identify non-sputum-based biomarkers that can predict unfavorable outcomes. Cytokines are widely studied as diagnostic biomarkers for active TB. However, their potential as indicators for unfavorable treatment outcomes remains uncertain. Methodology: This study was conducted within a well-characterized cohort comprising newly diagnosed patients with drug-sensitive pulmonary TB, confirmed through sputum smear and culture positivity. Our objective was to elucidate the TB antigen-stimulated cytokine profile at pre-treatment and at 2 months into anti-TB treatment (ATT) in patients with unfavorable treatment outcomes (cases, n = 27) in comparison to recurrence-free, microbiologically cured controls (n = 31). Whole blood was stimulated with TB antigens using the QuantiFERON In-tube gold method, and plasma supernatants were subjected to a panel of 14 cytokine measurements. Results: In our study, pre-treatment analysis revealed that eight cytokines (IL-2, IFN-γ, TNF-α, IL-6, IL-10, IL-17A, IL-18, and GM-CSF) were significantly elevated at baseline in cases compared to cured controls, both in unstimulated conditions and following TB antigen (CFP10, ESAT6, and TB7.7) stimulation. A similar pattern was observed at the 2-month mark of ATT, with eight cytokines (IL-2, IL-10, IL-13, IFN-γ, IL-6, IL-12p70, IL-17A, and TNF-α) showing significant differences between the groups. Importantly, no variations were detected following mitogen stimulation, underscoring that these distinctive immune responses are primarily driven by TB-specific antigens. Conclusion: Our findings indicate that individuals with unfavorable TB treatment outcomes display a characteristic cytokine profile distinct from TB-cured patients, even before commencing ATT. Therefore, the levels of specific cytokine pre-treatment and at the 2-month point in the course of treatment may serve as predictive immune markers for identifying individuals at risk of unfavorable TB treatment outcomes, with these responses being predominantly influenced by TB-specific antigens.


Subject(s)
Antigens, Bacterial , Antitubercular Agents , Biomarkers , Cytokines , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/drug therapy , Cytokines/blood , Male , Female , Adult , Middle Aged , Biomarkers/blood , Antigens, Bacterial/immunology , Treatment Outcome , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/immunology , Aged
5.
Emerg Microbes Infect ; 13(1): 2366359, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38855910

ABSTRACT

Tuberculosis (TB) remains a leading cause of mortality among individuals coinfected with HIV, characterized by progressive pulmonary inflammation. Despite TB's hallmark being focal granulomatous lung lesions, our understanding of the histopathological features and regulation of inflammation in HIV & TB coinfection remains incomplete. In this study, we aimed to elucidate these histopathological features through an immunohistochemistry analysis of HIV & TB co-infected and TB patients, revealing marked differences. Notably, HIV & TB granulomas exhibited aggregation of CD68 + macrophage (Mφ), while TB lesions predominantly featured aggregation of CD20+ B cells, highlighting distinct immune responses in coinfection. Spatial transcriptome profiling further elucidated CD68+ Mφ aggregation in HIV & TB, accompanied by activation of IL6 pathway, potentially exacerbating inflammation. Through multiplex immunostaining, we validated two granuloma types in HIV & TB versus three in TB, distinguished by cell architecture. Remarkably, in the two types of HIV & TB granulomas, CD68 + Mφ highly co-expressed IL6R/pSTAT3, contrasting TB granulomas' high IFNGRA/SOCS3 expression, indicating different signaling pathways at play. Thus, activation of IL6 pathway may intensify inflammation in HIV & TB-lungs, while SOCS3-enriched immune microenvironment suppresses IL6-induced over-inflammation in TB. These findings provide crucial insights into HIV & TB granuloma formation, shedding light on potential therapeutic targets, particularly for granulomatous pulmonary under HIV & TB co-infection. Our study emphasizes the importance of a comprehensive understanding of the immunopathogenesis of HIV & TB coinfection and suggests potential avenues for targeting IL6 signaling with SOCS3 activators or anti-IL6R agents to mitigate lung inflammation in HIV & TB coinfected individuals.


Subject(s)
Coinfection , Granuloma , HIV Infections , Lung , Macrophages , Receptors, Interleukin-6 , STAT3 Transcription Factor , Humans , Coinfection/virology , Coinfection/immunology , Coinfection/microbiology , HIV Infections/complications , HIV Infections/immunology , Macrophages/immunology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Granuloma/immunology , Lung/pathology , Lung/immunology , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Signal Transduction , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/complications , Male , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/complications , Female , Adult , Interleukin-6/metabolism , Interleukin-6/genetics , CD68 Molecule
6.
Emerg Microbes Infect ; 13(1): 2370399, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38888093

ABSTRACT

Tuberculosis (TB) remains one of the deadliest chronic infectious diseases globally. Early diagnosis not only prevents the spread of TB but also ensures effective treatment. However, the absence of non-sputum-based diagnostic tests often leads to delayed TB diagnoses. Inflammation is a hallmark of TB, we aimed to identify biomarkers associated with TB based on immune profiling. We collected 222 plasma samples from healthy controls (HCs), disease controls (non-TB pneumonia; PN), patients with TB (TB), and cured TB cases (RxTB). A high-throughput protein detection technology, multiplex proximity extension assays (PEA), was applied to measure the levels of 92 immune proteins. Based on differential analysis and the correlation with TB severity, we selected 9 biomarkers (CXCL9, PDL1, CDCP1, CCL28, CCL23, CCL19, MMP1, IFNγ and TRANCE) and explored their diagnostic capabilities through 7 machine learning methods. We identified combination of these 9 biomarkers that distinguish TB cases from controls with an area under the receiver operating characteristic curve (AUROC) of 0.89-0.99, with a sensitivity of 82-93% at a specificity of 88-92%. Moreover, the model excels in distinguishing severe TB cases, achieving AUROC exceeding 0.95, sensitivities and specificities exceeding 93.3%. In summary, utilizing targeted proteomics and machine learning, we identified a 9 plasma proteins signature that demonstrates significant potential for accurate TB diagnosis and clinical outcome prediction.


Subject(s)
Biomarkers , Machine Learning , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/immunology , Biomarkers/blood , Male , Female , Adult , Middle Aged , Prognosis , ROC Curve , Aged , Case-Control Studies , Sensitivity and Specificity
7.
Sci Rep ; 14(1): 13345, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858405

ABSTRACT

Tuberculosis (TB) remains a significant global health threat, necessitating effective strategies for diagnosis, prognosis, and treatment. This study employs a multi-cohort analysis approach to unravel the immune microenvironment of TB and delineate distinct subtypes within pulmonary TB (PTB) patients. Leveraging functional gene expression signatures (Fges), we identified three PTB subtypes (C1, C2, and C3) characterized by differential immune-inflammatory activity. These subtypes exhibited unique molecular features, functional disparities, and cell infiltration patterns, suggesting varying disease trajectories and treatment responses. A neural network model was developed to predict PTB progression based on a set of biomarker genes, achieving promising accuracy. Notably, despite both genders being affected by PTB, females exhibited a relatively higher risk of deterioration. Additionally, single-cell analysis provided insights into enhanced major histocompatibility complex (MHC) signaling in the rapid clearance of early pathogens in the C3 subgroup. This comprehensive approach offers valuable insights into PTB pathogenesis, facilitating personalized treatment strategies and precision medicine interventions.


Subject(s)
Biomarkers , Humans , Female , Male , Cohort Studies , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Transcriptome , Adult , Prognosis , Middle Aged , Gene Expression Profiling
8.
Front Immunol ; 15: 1398403, 2024.
Article in English | MEDLINE | ID: mdl-38835752

ABSTRACT

Objective: Despite extensive research on the relationship between pulmonary tuberculosis (PTB) and inflammatory factors, more robust causal evidence has yet to emerge. Therefore, this study aims to screen for inflammatory proteins that may contribute to the susceptibility to PTB in different populations and to explain the diversity of inflammatory and immune mechanisms of PTB in different ethnicity. Methods: The inverse variance weighted (IVW) model of a two-sample Mendelian Randomization (MR) study was employed to conduct causal analysis on data from a genome-wide association study (GWAS). This cohort consisting PTB GWAS datasets from two European and two East Asian populations, as well as 91 human inflammatory proteins collected from 14,824 participants. Colocalization analysis aimed to determine whether the input inflammatory protein and PTB shared the same causal single nucleotide polymorphisms (SNPs) variation within the fixed region, thereby enhancing the robustness of the MR Analysis. Meta-analyses were utilized to evaluate the combined causal effects among different datasets. Results: In this study, we observed a significant negative correlation between tumor necrosis factor-beta levels (The alternative we employ is Lymphotoxin-alpha, commonly referred to as LT) (P < 0.05) and tumor necrosis factor receptor superfamily member 9 levels (TNFRSF9) (P < 0.05). These two inflammatory proteins were crucial protective factors against PTB. Additionally, there was a significant positive correlation found between interleukin-20 receptor subunit alpha levels (IL20Ra) (P < 0.05), which may elevate the risk of PTB. Colocalization analysis revealed that there was no overlap in the causal variation between LT and PTB SNPs. A meta-analysis further confirmed the significant combined effect of LT, TNFRSF9, and IL20Ra in East Asian populations (P < 0.05). Conclusions: Levels of specific inflammatory proteins may play a crucial role in triggering an immune response to PTB. Altered levels of LT and TNFRSF9 have the potential to serve as predictive markers for PTB development, necessitating further clinical validation in real-world settings to ascertain the impact of these inflammatory proteins on PTB.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Mendelian Randomization Analysis , Tumor Necrosis Factors/genetics , Asian People/genetics , Male
9.
PLoS One ; 19(5): e0303050, 2024.
Article in English | MEDLINE | ID: mdl-38722990

ABSTRACT

BACKGROUND: Neonates are at risk of nosocomial tuberculosis (TB) infection from health care workers (HCWs) in neonatal care facilities, which can progress to severe TB diseases. Tuberculin skin test (TST) is commonly used for TB diagnosis, but its accuracy in neonates is influenced by various factors, including bacilli Calmette-Guérin (BCG) vaccination. This study aimed to identify predictors of positive TSTs in neonates exposed to HCWs with pulmonary TB. METHODS: A retrospective observational study was conducted to compare the frequency of predictors between TST-positive and TST-negative neonates. Demographic, epidemiological, and clinical data of neonates exposed to TB, along with that of HCW and household contacts, were collected retrospectively through contact investigations with the Korean National TB Surveillance System (KNTSS) database. TSTs using 2 tuberculin units of purified protein derivative RT23 were performed on exposed neonates at the end of preventive TB treatment. Firth logistic regression was performed to identify predictors of TST positivity. RESULTS: Contact investigations revealed that 152 neonates and 54 HCWs were exposed to infectious TB index cases in 3 neonatal care facilities. Of 152 exposed neonates, 8 (5.3%) had positive TST results. Age of 6 days or more at the initial exposure is a statistically significant predictor of positive TST (Firth coefficient 2.1, 95% confidence interval 0.3-3.9, P = 0.024); BCG vaccination showed no statistical significance in both univariable and multivariable analysis. Sex, prematurity, exposure duration, duration from initial exposure to contact investigation, and isoniazid preventive treatment duration were not significant predictors. CONCLUSION: Age at the initial exposure is a significant predictor of positive TST in neonates exposed to active pulmonary TB. Given the complexities of TST interpretation, including false positives due to BCG vaccination, careful risk assessment is necessary for appropriate decision-making and resource allocation in the management of neonatal TB exposure.


Subject(s)
Tuberculin Test , Tuberculosis, Pulmonary , Humans , Infant, Newborn , Female , Male , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/immunology , Retrospective Studies , BCG Vaccine/immunology , Cross Infection/diagnosis , Health Personnel
10.
PLoS Pathog ; 20(5): e1012205, 2024 May.
Article in English | MEDLINE | ID: mdl-38701094

ABSTRACT

Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.


Subject(s)
Lysosomes , Macrophages, Alveolar , Monocytes , Mycobacterium tuberculosis , Lysosomes/metabolism , Lysosomes/microbiology , Animals , Monocytes/metabolism , Monocytes/microbiology , Mice , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/metabolism , Lung/microbiology , Lung/metabolism , Mice, Inbred C57BL , Chronic Disease , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Humans , Tuberculosis/microbiology , Tuberculosis/immunology , Tuberculosis/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
11.
Tuberculosis (Edinb) ; 147: 102518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38739968

ABSTRACT

Authors present a pilot study of the development of innovative flow cytometry-based assay with a potential for use in tuberculosis diagnostics. Currently available tests do not provide robust discrimination between latent tuberculosis infection (TBI) and tuberculosis disease (TB). The desired application is to distinguish between the two conditions by evaluating the production of a combination of three cytokines: IL-2 (interleukin-2), IFNɣ (interferon gamma) and TNFɑ (tumor necrosis factor alpha) in CD4+ and CD8+ T cells. The study was conducted on 68 participants, divided into two arms according to age (paediatric and adults). Each arm was further split into three categories (non-infection (NI), TBI, TB) based on the immune reaction to Mycobacterium tuberculosis (M.tb) after a close contact with pulmonary TB. Each blood sample was stimulated with specific M.tb antigens present in QuantiFERON tubes (TB1 and TB2). We inferred TBI or TB based on the predominant cytokine response of the CD4+ and/or CD8+ T cells. Significant differences were detected between the NI, TBI and the TB groups in TB1 in the CD4+TNFɑ+parameter in children. Along with IL-2, TNFɑ seems to be the most promising diagnostic marker in both CD4+and CD8+ T cells. However, more detailed analyses on larger cohorts are needed to confirm the observed tendencies.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Flow Cytometry , Interferon-gamma , Interleukin-2 , Latent Tuberculosis , Mycobacterium tuberculosis , Humans , Child , Latent Tuberculosis/diagnosis , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Flow Cytometry/methods , Adult , Mycobacterium tuberculosis/immunology , CD8-Positive T-Lymphocytes/immunology , Male , Female , CD4-Positive T-Lymphocytes/immunology , Interleukin-2/blood , Pilot Projects , Adolescent , Young Adult , Middle Aged , Interferon-gamma/blood , Interferon-gamma/immunology , Child, Preschool , Cytokines/blood , Cytokines/metabolism , Biomarkers/blood , Tumor Necrosis Factor-alpha/blood , Diagnosis, Differential , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/blood , Predictive Value of Tests , Antigens, Bacterial/immunology , Interferon-gamma Release Tests/methods , Aged
12.
Tuberculosis (Edinb) ; 147: 102514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723342

ABSTRACT

INTRODUCTION: Exposure to Non-tuberculous Mycobacteria (NTM) varies regionally and may partly explain the disparate outcomes of BCG vaccination and tuberculosis (TB) susceptibility. METHODS: We examined NTM sputum colonization, associations with clinical characteristics, and tuberculin skin test (TST) responses in an adolescent TB prevalence survey. RESULTS: Among 5004 adolescents screened, 2281 (45.5 %) were evaluated further. TB and NTM prevalence rates were 0.3 % and 8.0 %, respectively. Among 418 NTM isolates, 103 were unidentifiable, and 315 (75 %) comprised 15 species, the most frequent being M. intracellulare (MAC) (108, 26 %), M. scrofulaceum (96, 23 %) and M. fortuitum (51, 12 %). "NTM colonized" adolescents had less frequent chronic cough and night sweats (adjusted odds ratio [aOR] 0.62, 95 % confidence interval [CI] 0.44-0.87and aOR 0.61, CI 0.42-0.89 respectively), and lower TST induration (median 11 mm (interquartile range [IQR] 0-16) vs 13 mm (IQR 6-17; p = 0.006)) when compared to "NTM not colonized" participants. MAC, but not M. scrofulaceum or M. fortuitum, was associated with decreased TST induration (median 7.5 mm (IQR 0-15) vs 13 mm (IQR 6-17) among "MAC colonized" vs "not colonized", p = 0.001). CONCLUSION: We observed high NTM prevalence rates with species-specific associations with TST induration, consistent with a model of species-dependent heterologous immunity among mycobacteria.


Subject(s)
Mycobacterium avium Complex , Sputum , Tuberculin Test , Humans , Adolescent , Kenya/epidemiology , Male , Female , Prevalence , Sputum/microbiology , Mycobacterium avium Complex/immunology , Mycobacterium avium Complex/isolation & purification , Mycobacterium Infections, Nontuberculous/epidemiology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/immunology , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/immunology , Child , Mycobacterium avium-intracellulare Infection/epidemiology , Mycobacterium avium-intracellulare Infection/microbiology , Mycobacterium avium-intracellulare Infection/immunology , Mycobacterium avium-intracellulare Infection/diagnosis , Predictive Value of Tests , Cross-Sectional Studies
13.
Viruses ; 16(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38793546

ABSTRACT

Chronic immune activation in tuberculosis (TB) associated with human immunodeficiency virus (HIV) infection (HIV/TB) modifies their clinical course. We prospectively measured osteopontin (OPN), full-length galectin-9 (FL-Gal9), and total-Gal9 (T-Gal9) levels in 32 patients with HIV/TB coinfection treated with anti-tuberculosis and antiretroviral therapies over 6-18 months to determine the amelioration of inflammatory conditions in response to the therapies. We observed a significant time-dependent decrease in FL-Gal9 in both pulmonary TB (PTB, n = 20) and extrapulmonary TB (EPTB, n = 12) patients. The levels of T-Gal9, OPN, and CRP decreased significantly after treatment in only PTB patients. We calculated the inflammatory score (INS) indicating immunologic recovery based on the decline in OPN, FL-Gal9, T-Gal9, and CRP levels. Baseline levels of T-Gal9 and OPN positively correlated with INS in all TB and only PTB patients, respectively, indicating that their levels predict better recovery. In contrast, FL-Gal9 levels at the second visit negatively correlated with INS in EPTB patients. The decrease rate in OPN levels at the second visit also correlated positively with INS in PTB patients. Women showed a higher INS and lower levels of FL-Gal9 than men. The patients with moderate grade severity on chest X-ray had higher CD4 cell numbers than those with limited grade severity. Monitoring these markers will help to predict and assess the response to therapy as well as to devise strategies to reduce the complications caused by chronic immune activation in patients with HIV/TB coinfection.


Subject(s)
Coinfection , Galectins , HIV Infections , Osteopontin , Tuberculosis , Humans , HIV Infections/complications , HIV Infections/blood , Female , Male , Coinfection/blood , Adult , Osteopontin/blood , Galectins/blood , Tuberculosis/blood , Tuberculosis/complications , Middle Aged , Prospective Studies , Biomarkers/blood , Antitubercular Agents/therapeutic use , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/immunology , C-Reactive Protein/analysis
14.
Front Immunol ; 15: 1390327, 2024.
Article in English | MEDLINE | ID: mdl-38742106

ABSTRACT

Introduction: Tuberculous pleural effusion (TPE) stands as one of the primary forms of extrapulmonary tuberculosis (TB) and frequently manifests in regions with a high prevalence of TB, consequently being a notable cause of pleural effusion in such areas. However, the differentiation between TPE and parapneumonic pleural effusion (PPE) presents diagnostic complexities. This study aimed to evaluate the potential of myeloid-derived suppressor cells (MDSCs) in the pleural fluid as a potential diagnostic marker for distinguishing between TPE and PPE. Methods: Adult patients, aged 18 years or older, who presented to the emergency room of a tertiary referral hospital and received a first-time diagnosis of pleural effusion, were prospectively enrolled in the study. Various immune cell populations, including T cells, B cells, natural killer (NK) cells, and MDSCs, were analyzed in both pleural fluid and peripheral blood samples. Results: In pleural fluid, the frequency of lymphocytes, including T, B, and NK cells, was notably higher in TPE compared to PPE. Conversely, the frequency of polymorphonuclear (PMN)-MDSCs was significantly higher in PPE. Notably, compared to traditional markers such as the neutrophil-to-lymphocyte ratio and adenosine deaminase level, the frequency of PMN-MDSCs emerged as a more effective discriminator between PPE and TPE. PMN-MDSCs demonstrated superior positive and negative predictive values and exhibited a higher area under the curve in the receiver operating characteristic curve analysis. PMN-MDSCs in pleural effusion increased the levels of reactive oxygen species and suppressed the production of interferon-gamma from T cells following nonspecific stimulation. These findings suggest that MDSC-mediated immune suppression may contribute to the pathology of both TPE and PPE. Discussion: The frequency of PMN-MDSCs in pleural fluid is a clinically useful indicator for distinguishing between TPE and PPE.


Subject(s)
Biomarkers , Myeloid-Derived Suppressor Cells , Pleural Effusion , Tuberculosis, Pulmonary , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Male , Female , Pleural Effusion/immunology , Pleural Effusion/diagnosis , Middle Aged , Diagnosis, Differential , Adult , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/immunology , Aged , Pneumonia/diagnosis , Pneumonia/immunology , Prospective Studies , Tuberculosis, Pleural/diagnosis , Tuberculosis, Pleural/immunology
15.
Front Immunol ; 15: 1347045, 2024.
Article in English | MEDLINE | ID: mdl-38756781

ABSTRACT

It is essential to understand the interactions and relationships between Mycobacterium tuberculosis (Mtb) and macrophages during the infection in order to design host-directed, immunomodulation-dependent therapeutics to control Mtb. We had reported previously that ornithine acetyltransferase (MtArgJ), a crucial enzyme of the arginine biosynthesis pathway of Mtb, is allosterically inhibited by pranlukast (PRK), which significantly reduces bacterial growth. The present investigation is centered on the immunomodulation in the host by PRK particularly the activation of the host's immune response to counteract bacterial survival and pathogenicity. Here, we show that PRK decreased the bacterial burden in the lungs by upregulating the population of pro-inflammatory interstitial macrophages (IMs) and reducing the population of Mtb susceptible alveolar macrophages (AMs), dendritic cells (DCs), and monocytes (MO). Additionally, we deduce that PRK causes the host macrophages to change their metabolic pathway from fatty acid metabolism to glycolytic metabolism around the log phage of bacterial multiplication. Further, we report that PRK reduced tissue injury by downregulating the Ly6C-positive population of monocytes. Interestingly, PRK treatment improved tissue repair and inflammation resolution by increasing the populations of arginase 1 (Arg-1) and Ym1+Ym2 (chitinase 3-like 3) positive macrophages. In summary, our study found that PRK is useful not only for reducing the tubercular burden but also for promoting the healing of the diseased tissue.


Subject(s)
Chromones , Disease Models, Animal , Mycobacterium tuberculosis , Animals , Mycobacterium tuberculosis/immunology , Mice , Chromones/pharmacology , Chromones/therapeutic use , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/drug therapy , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Mice, Inbred C57BL , Female , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/drug therapy , Lung/microbiology , Lung/immunology , Lung/pathology
16.
Mycoses ; 67(5): e13746, 2024 May.
Article in English | MEDLINE | ID: mdl-38767275

ABSTRACT

BACKGROUND: Post-tuberculosis lung abnormality (PTLA) is the most common risk factor for chronic pulmonary aspergillosis (CPA), and 14%-25% of the subjects with PTLA develop CPA. The pathogenesis and the host immune response in subjects with PTLA who develop CPA need to be better understood. METHODS: We prospectively compared the innate and adaptive immune responses mounted by patients of PTLA with or without CPA (controls). We studied the neutrophil oxidative burst (by dihydrorhodamine 123 test), classic (serum C3 and C4 levels) and alternative (mannose-binding lectin [MBL] protein levels) complement pathway, serum immunoglobulins (IgG, IgM and IgA), B and T lymphocytes and their subsets in subjects with PTLA with or without CPA. RESULTS: We included 111 subjects (58 CPA and 53 controls) in the current study. The mean ± SD age of the study population was 42.6 ± 15.7 years. The cases and controls were matched for age, gender distribution and body weight. Subjects with CPA had impaired neutrophil oxidative burst, lower memory T lymphocytes and impaired Th-1 immune response (lower Th-1 lymphocytes) than controls. We found no significant difference between the two groups in the serum complement levels, MBL levels, B-cell subsets and other T lymphocyte subsets. CONCLUSION: Subjects with CPA secondary to PTLA have impaired neutrophil oxidative burst and a lower Th-1 response than controls.


Subject(s)
Adaptive Immunity , Immunity, Innate , Pulmonary Aspergillosis , Tuberculosis, Pulmonary , Humans , Female , Male , Adult , Middle Aged , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/complications , Prospective Studies , Pulmonary Aspergillosis/immunology , Pulmonary Aspergillosis/complications , Neutrophils/immunology , Lung/immunology , Respiratory Burst , Young Adult
17.
Commun Biol ; 7(1): 584, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755239

ABSTRACT

B cells are important in tuberculosis (TB) immunity, but their role in the human lung is understudied. Here, we characterize B cells from lung tissue and matched blood of patients with TB and found they are decreased in the blood and increased in the lungs, consistent with recruitment to infected tissue, where they are located in granuloma associated lymphoid tissue. Flow cytometry and transcriptomics identify multiple B cell populations in the lung, including those associated with tissue resident memory, germinal centers, antibody secretion, proinflammatory atypical B cells, and regulatory B cells, some of which are expanded in TB disease. Additionally, TB lungs contain high levels of Mtb-reactive antibodies, specifically IgM, which promotes Mtb phagocytosis. Overall, these data reveal the presence of functionally diverse B cell subsets in the lungs of patients with TB and suggest several potential localized roles that may represent a target for interventions to promote immunity or mitigate immunopathology.


Subject(s)
B-Lymphocytes , Humans , B-Lymphocytes/immunology , Lung/immunology , Lung/microbiology , Lung/pathology , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/physiology , Phenotype , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/genetics , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Male , Female , Adult
18.
Front Immunol ; 15: 1360412, 2024.
Article in English | MEDLINE | ID: mdl-38745652

ABSTRACT

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Subject(s)
Mycobacterium tuberculosis , Myeloid Cells , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Orexin Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Adult , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Biomimetics , Monocytes/immunology , Monocytes/metabolism
19.
Front Immunol ; 15: 1330796, 2024.
Article in English | MEDLINE | ID: mdl-38665909

ABSTRACT

Introduction: There is no useful method to discriminate between latent tuberculosis infection (LTBI) and active pulmonary tuberculosis (PTB). This study aimed to investigate the potential of cytokine profiles to discriminate between LTBI and active PTB using whole-blood stimulation with Mycobacterium tuberculosis (MTB) antigens, including latency-associated antigens. Materials and methods: Patients with active PTB, household contacts of active PTB patients and community exposure subjects were recruited in Manila, the Philippines. Peripheral blood was collected from the participants and used for whole-blood stimulation (WBS) with either the early secretory antigenic target and the 10-kDa culture filtrate protein (ESAT-6/CFP-10), Rv3879c or latency-associated MTB antigens, including mycobacterial DNA-binding protein 1 (MDP-1), α-crystallin (Acr) and heparin-binding hemagglutinin (HBHA). Multiple cytokine concentrations were analyzed using the Bio-Plex™ multiplex cytokine assay. Results: A total of 78 participants consisting of 15 active PTB patients, 48 household contacts and 15 community exposure subjects were eligible. The MDP-1-specific IFN-γ level in the active PTB group was significantly lower than that in the household contact group (p < 0.001) and the community exposure group (p < 0.001). The Acr-specific TNF-α and IL-10 levels in the active PTB group were significantly higher than those in the household contact (TNF-α; p = 0.001, IL-10; p = 0.001) and community exposure (TNF-α; p < 0.001, IL-10; p = 0.01) groups. However, there was no significant difference in the ESAT-6/CFP-10-specific IFN-γ levels among the groups. Conclusion: The patterns of cytokine profiles induced by latency-associated MTB antigens using WBS have the potential to discriminate between LTBI and active PTB. In particular, combinations of IFN-γ and MDP-1, TNF-α and Acr, and IL-10 and Acr are promising. This study provides the first demonstration of the utility of MDP-1-specific cytokine responses in WBS.


Subject(s)
Antigens, Bacterial , Cytokines , Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Antigens, Bacterial/immunology , Antigens, Bacterial/blood , Male , Latent Tuberculosis/diagnosis , Latent Tuberculosis/immunology , Latent Tuberculosis/blood , Latent Tuberculosis/microbiology , Female , Mycobacterium tuberculosis/immunology , Philippines , Adult , Cytokines/blood , Middle Aged , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Young Adult , Bacterial Proteins/immunology
20.
J Infect ; 88(6): 106158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642678

ABSTRACT

Tuberculosis-affected lungs with chronic inflammation harbor abundant immunosuppressive immune cells but the nature of such inflammation is unclear. Dysfunction in T cell exhaustion, while implicated in chronic inflammatory diseases, remains unexplored in tuberculosis. Given that immunotherapy targeting exhaustion checkpoints exacerbates tuberculosis, we speculate that T cell exhaustion is dysfunctional in tuberculosis. Using integrated single-cell RNA sequencing and T cell receptor profiling we reported defects in exhaustion responses within inflamed tuberculosis-affected lungs. Tuberculosis lungs demonstrated significantly reduced levels of exhausted CD8+ T cells and exhibited diminished expression of exhaustion-related transcripts among clonally expanded CD4+ and CD8+ T cells. Additionally, clonal expansion of CD4+ and CD8+ T cells bearing T cell receptors specific for CMV was observed. Expanded CD8+ T cells expressed the cytolytic marker GZMK. Hence, inflamed tuberculosis-affected lungs displayed dysfunction in T cell exhaustion. Our findings likely hold implications for understanding the reactivation of tuberculosis observed in patients undergoing immunotherapy targeting the exhaustion checkpoint.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Single-Cell Analysis , Transcriptome , Tuberculosis, Pulmonary , Tuberculosis, Pulmonary/immunology , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Lung/immunology , Lung/pathology , Male , Female , Mycobacterium tuberculosis/immunology , Adult , Middle Aged , Gene Expression Profiling , T-Cell Exhaustion
SELECTION OF CITATIONS
SEARCH DETAIL
...