Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972873

ABSTRACT

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Subject(s)
Membrane Glycoproteins , Myeloid Cells , Neoplasms , Receptors, Immunologic , Single-Cell Analysis , Tumor Microenvironment , Humans , Single-Cell Analysis/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Prognosis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Female , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics
2.
Genes (Basel) ; 15(5)2024 04 24.
Article in English | MEDLINE | ID: mdl-38790160

ABSTRACT

Pituitary neuroendocrine tumors (PitNET) are known to be variably infiltrated by different immune cells. Nonetheless, their role in pituitary oncogenesis has only begun to be unveiled. The immune microenvironment could determine the biological and clinical behavior of a neoplasm and may have prognostic implications. To evaluate the expression of immune-related genes and to correlate such expression with the presence of infiltrating immune cells in forty-two PitNETs of different lineages, we performed whole transcriptome analysis and RT-qPCR. Deconvolution analysis was carried out to infer the immune cell types present in each tumor and the presence of immune cells was confirmed by immunofluorescence. We found characteristic expression profiles of immune-related genes including those encoding interleukins and chemokines for each tumor lineage. Genes such as IL4-I1, IL-36A, TIRAP, IL-17REL, and CCL5 were upregulated in all PitNETS, whereas IL34, IL20RA, and IL-2RB characterize the NR5A1-, TBX19-, and POU1F1-derived tumors, respectively. Transcriptome deconvolution analysis showed that M2 macrophages, CD4+ T cells, CD8+ T cells, NK cells, and neutrophils can potentially infiltrate PitNET. Furthermore, CD4+ and CD8+ T cells and NK cells infiltration was validated by immunofluorescence. Expression of CCL18, IL-5RA, and HLA-B as well as macrophage tumor infiltration could identify patients who can potentially benefit from treatment with immune checkpoint inhibitors.


Subject(s)
Neuroendocrine Tumors , Pituitary Neoplasms , Transcriptome , Tumor Microenvironment , Humans , Pituitary Neoplasms/genetics , Pituitary Neoplasms/immunology , Pituitary Neoplasms/pathology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/immunology , Neuroendocrine Tumors/pathology , Gene Expression Regulation, Neoplastic , Gene Expression Profiling/methods , Male , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged , Adult
3.
Neurogenetics ; 25(3): 249-262, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38775886

ABSTRACT

Glioblastomas (GBM) are aggressive tumors known for their heterogeneity, rapid proliferation, treatment resistance, and extensive vasculature. Angiogenesis, the formation of new vessels, involves endothelial cell (EC) migration and proliferation. Various extracellular matrix (ECM) molecules regulate EC survival, migration, and proliferation. Culturing human brain EC (HBMEC) on GBM-derived ECM revealed a decrease in EC numbers compared to controls. Through in silico analysis, we explored ECM gene expression differences between GBM and brain normal glia cells and the impact of GBM microenvironment on EC ECM transcripts. ECM molecules such as collagen alpha chains (COL4A1, COL4A2, p < 0.0001); laminin alpha (LAMA4), beta (LAMB2), and gamma (LAMC1) chains (p < 0.0005); neurocan (NCAN), brevican (BCAN) and versican (VCAN) (p < 0.0005); hyaluronan synthase (HAS) 2 and metalloprotease (MMP) 2 (p < 0.005); MMP inhibitors (TIMP1-4, p < 0.0005), transforming growth factor beta-1 (TGFB1) and integrin alpha (ITGA3/5) (p < 0.05) and beta (ITGB1, p < 0.0005) chains showed increased expression in GBM. Additionally, GBM-influenced EC exhibited elevated expression of COL5A3, COL6A1, COL22A1 and COL27A1 (p < 0.01); LAMA1, LAMB1 (p < 0.001); fibulins (FBLN1/2, p < 0.01); MMP9, HAS1, ITGA3, TGFB1, and wingless-related integration site 9B (WNT9B) (p < 0.01) compared to normal EC. Some of these molecules: COL5A1/3, COL6A1, COL22/27A1, FBLN1/2, ITGA3/5, ITGB1 and LAMA1/B1 (p < 0.01); NCAN, HAS1, MMP2/9, TIMP1/2 and TGFB1 (p < 0.05) correlated with GBM patient survival. In conclusion, this study identified both established and novel ECM molecules regulating GBM angiogenesis, suggesting NCAN and COL27A1 are new potential prognostic biomarkers for GBM.


Subject(s)
Brain Neoplasms , Extracellular Matrix , Glioblastoma , Neovascularization, Pathologic , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Extracellular Matrix/metabolism , Prognosis , Endothelial Cells/metabolism , Tumor Microenvironment/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation, Neoplastic , Laminin/metabolism , Laminin/genetics , Angiogenesis
4.
Braz J Med Biol Res ; 57: e13378, 2024.
Article in English | MEDLINE | ID: mdl-38716982

ABSTRACT

Forkhead Box O1 (FOXO1) has been reported to play important roles in many tumors. However, FOXO1 has not been studied in pan-cancer. The purpose of this study was to reveal the roles of FOXO1 in pan-cancer (33 cancers in this study). Through multiple public platforms, a pan-cancer analysis of FOXO1 was conducted to obtained FOXO1 expression profiles in various tumors to explore the relationship between FOXO1 expression and prognosis of these tumors and to disclose the potential mechanism of FOXO1 in these tumors. FOXO1 was associated with the prognosis of multiple tumors, especially LGG (low grade glioma), OV (ovarian carcinoma), and KIRC (kidney renal clear cell carcinoma). FOXO1 might play the role of an oncogenic gene in LGG and OV, while playing the role of a cancer suppressor gene in KIRC. FOXO1 expression had a significant correlation with the infiltration of some immune cells in LGG, OV, and KIRC. By combining FOXO1 expression and immune cell infiltration, we found that FOXO1 might influence the overall survival of LGG through the infiltration of myeloid dendritic cells or CD4+ T cells. Functional enrichment analysis and gene set enrichment analysis showed that FOXO1 might play roles in tumors through immunoregulatory interactions between a lymphoid and a non-lymphoid cell, TGF-beta signaling pathway, and transcriptional misregulation in cancer. FOXO1 was associated with the prognosis of multiple tumors, especially LGG, OV, and KIRC. In these tumors, FOXO1 might play its role via the regulation of the immune microenvironment.


Subject(s)
Forkhead Box Protein O1 , Neoplasms , Humans , Biomarkers, Tumor/genetics , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/immunology , Neoplasms/genetics , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
5.
Oncol Res ; 32(4): 597-605, 2024.
Article in English | MEDLINE | ID: mdl-38560564

ABSTRACT

Bladder cancer (BC) is the 10th most common cancer worldwide, with about 0.5 million reported new cases and about 0.2 million deaths per year. In this scoping review, we summarize the current evidence regarding the clinical implications of single-cell sequencing for bladder cancer based on PRISMA guidelines. We searched PubMed, CENTRAL, Embase, and supplemented with manual searches through the Scopus, and Web of Science for published studies until February 2023. We included original studies that used at least one single-cell technology to study bladder cancer. Forty-one publications were included in the review. Twenty-nine studies showed that this technology can identify cell subtypes in the tumor microenvironment that may predict prognosis or response to immune checkpoint inhibition therapy. Two studies were able to diagnose BC by identifying neoplastic cells through single-cell sequencing urine samples. The remaining studies were mainly a preclinical exploration of tumor microenvironment at single cell level. Single-cell sequencing technology can discriminate heterogeneity in bladder tumor cells and determine the key molecular properties that can lead to the discovery of novel perspectives on cancer management. This nascent tool can advance the early diagnosis, prognosis judgment, and targeted therapy of bladder cancer.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/pathology , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Prognosis , Tumor Microenvironment/genetics
6.
Clin Transl Oncol ; 26(8): 2025-2036, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38563846

ABSTRACT

BACKGROUND: Neoadjuvant immunotherapy has evolved as an effective option to treat non-small cell lung cancer (NSCLC). B cells play essential roles in the immune system as well as cancer progression. However, the repertoire of B cells and its association with clinical outcomes remains unclear in NSCLC patients receiving neoadjuvant immunotherapy. METHODS: Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data for LUAD samples were accessed from the TCGA and GEO databases. LUAD-related B cell marker genes were confirmed based on comprehensive analysis of scRNA-seq data. We then constructed the B cell marker gene signature (BCMGS) and validated it. In addition, we evaluated the association of BCGMS with tumor immune microenvironment (TIME) characteristics. Furthermore, we validated the efficacy of BCGMS in a cohort of NSCLC patients receiving neoadjuvant immunotherapy. RESULTS: A BCMGS was constructed based on the TCGA cohort and further validated in three independent GSE cohorts. In addition, the BCMGS was proven to be significantly associated with TIME characteristics. Moreover, a relatively higher risk score indicated poor clinical outcomes and a worse immune response among NSCLC patients receiving neoadjuvant immunotherapy. CONCLUSIONS: We constructed an 18-gene prognostic signature derived from B cell marker genes based on scRNA-seq data, which had the potential to predict the prognosis and immune response of NSCLC patients receiving neoadjuvant immunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Neoadjuvant Therapy , Sequence Analysis, RNA , Single-Cell Analysis , Tumor Microenvironment , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/pathology , Prognosis , Immunotherapy/methods , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Female , Male , Biomarkers, Tumor/genetics , B-Lymphocytes/immunology , Middle Aged , Aged
7.
Clin Transl Oncol ; 26(9): 2309-2322, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38587603

ABSTRACT

BACKGROUND: The pattern of cell death known as disulfidptosis was recently discovered. Disulfidptosis, which may affect the growth of tumor cells, represents a potential new approach to treating tumors. Glycolysis affects tumor proliferation, invasion, chemotherapy resistance, the tumor microenvironment (TME), and immune evasion. However, the efficacy and therapeutic significance of disulfidptosis-related glycolysis genes (DRGGs) in stomach adenocarcinoma (STAD) remain uncertain. METHODS: STAD clinical data and RNA sequencing data were downloaded from the TCGA database. DRGGs were screened using Cox regression and Lasso regression analysis to construct a prognostic risk model. The accuracy of the model was verified using survival studies, receiver operating characteristic (ROC) curves, column plots, and calibration curves. Additionally, our study investigated the relationships between the risk scores and immune cell infiltration, tumor mutational burden (TMB), and anticancer drug sensitivity. RESULTS: We have successfully developed a prognosis risk model with 4 DRGGs (NT5E, ALG1, ANKZF1, and VCAN). The model showed excellent performance in predicting the overall survival of STAD patients. The DRGGs prognostic model significantly correlated with the TME, immune infiltrating cells, and treatment sensitivity. CONCLUSIONS: The risk model developed in this work has significant clinical value in predicting the impact of immunotherapy in STAD patients and assisting in the choice of chemotherapeutic medicines. It can correctly estimate the prognosis of STAD patients.


Subject(s)
Adenocarcinoma , Glycolysis , Stomach Neoplasms , Tumor Microenvironment , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Humans , Glycolysis/genetics , Prognosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Female , Male , ROC Curve , Proportional Hazards Models , Biomarkers, Tumor/genetics , Middle Aged , Drug Resistance, Neoplasm/genetics , Lymphocytes, Tumor-Infiltrating/immunology
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612588

ABSTRACT

Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.


Subject(s)
Adenocarcinoma of Lung , Brain Neoplasms , Lung Neoplasms , Neurotoxicity Syndromes , Humans , Endothelial Cells , Adenocarcinoma of Lung/genetics , Brain Neoplasms/genetics , Lung Neoplasms/genetics , Gene Expression Profiling , Tumor Microenvironment/genetics
9.
Clin Transl Oncol ; 26(9): 2181-2197, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38472558

ABSTRACT

BACKGROUND: Deregulating cellular metabolism is one of the prominent hallmarks of malignancy, with a critical role in tumor survival and growth. However, the role of reprogramming aspartate metabolism in hepatocellular carcinoma (HCC) are largely unknown. METHODS: The multi-omics data of HCC patients were downloaded from public databases. Univariate and multivariate stepwise Cox regression were used to establish an aspartate metabolism-related gene signature (AMGS) in HCC. The Kaplan-Meier and receiver operating characteristic curve analyses were performed to evaluate the predictive ability for overall survival (OS) in HCC patients. Gene set enrichment analysis and immune infiltration analysis were operated to determine the potential mechanisms underlying the AMGS. Single-cell RNA sequencing (scRNA-seq) data of liver cancer stem cells were visualized by t-SNE algorithm. In vivo and in vitro experiments were implemented to investigate the biological function of CAD in HCC. In addition, a nomogram based on the AMGS and clinicopathologic characteristics was constructed by univariate and multivariate Cox regression analyses. RESULTS: Patients in the high-AMGS subgroup exerted advanced tumor status and poor prognosis. Mechanistically, the high-AMGS subgroup patients had significantly enhanced proliferation and stemness-related pathways, increased infiltration of regulatory T cells and upregulated expression levels of suppressive immune checkpoints in the tumor immune microenvironment. Notably, scRNA-seq data revealed CAD, one of the aspartate metabolism-related gene, is significantly upregulated in liver cancer stem cells. Silencing CAD inhibited proliferative capacity and stemness properties of HCC cells in vitro and in vivo. Finally, a novel nomogram based on the AMGS showed an accurate prediction in HCC patients. CONCLUSIONS: The AMGS represents a promising prognostic value for HCC patients, providing a perspective for finding novel biomarkers and therapeutic targets for HCC.


Subject(s)
Aspartic Acid , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Aspartic Acid/metabolism , Prognosis , Female , Nomograms , Male , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Kaplan-Meier Estimate , ROC Curve , Animals , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Middle Aged , Mice , Gene Expression Regulation, Neoplastic
10.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38069210

ABSTRACT

The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Cell Hypoxia/genetics , Tumor Microenvironment/genetics , Hypoxia/genetics , Hypoxia/metabolism , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
11.
Int J Mol Med ; 52(2)2023 Aug.
Article in English | MEDLINE | ID: mdl-37417334

ABSTRACT

Epstein­Barr virus (EBV) is an oncovirus associated with various neoplasms, including breast cancer (BC). EBV­associated oncogenesis requires the action of several viral molecules, such as EBV nuclear antigen 3C, latent membrane protein 1, microRNAs and long non­coding RNAs, which are able of manipulating the cellular machinery, inducing an evasion of the immune system, blocking apoptosis processes, promoting cell survival and metastasis. The risk of developing cancer is associated with epigenetic alterations and alterations in various signaling pathways. The activation of all these molecules can modify the expression of EBV proteins with oncogenic activity, influencing the oncogenic process. It is clear that BC, being multifactorial, presents a greater complexity; in numerous cases, the infection associated with EBV may be crucial for this neoplasia, if particular conditions for both the virus and host are present. In the present review, all these variables are analyzed in an aim to improve the understanding of the participation of EBV in BC.


Subject(s)
Breast Neoplasms , Epstein-Barr Virus Infections , Humans , Female , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Breast Neoplasms/genetics , Tumor Microenvironment/genetics , Cell Transformation, Neoplastic , Carcinogenesis/genetics
12.
Front Immunol ; 14: 1194300, 2023.
Article in English | MEDLINE | ID: mdl-37342324

ABSTRACT

Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancer-related death in women worldwide. Breast cancer development and progression are mainly associated with tumor-intrinsic alterations in diverse genes and signaling pathways and with tumor-extrinsic dysregulations linked to the tumor immune microenvironment. Significantly, abnormal expression of lncRNAs affects the tumor immune microenvironment characteristics and modulates the behavior of different cancer types, including breast cancer. In this review, we provide the current advances about the role of lncRNAs as tumor-intrinsic and tumor-extrinsic modulators of the antitumoral immune response and the immune microenvironment in breast cancer, as well as lncRNAs which are potential biomarkers of tumor immune microenvironment and clinicopathological characteristics in patients, suggesting that lncRNAs are potential targets for immunotherapy in breast cancer.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , RNA, Long Noncoding/genetics , Breast , Immunotherapy , Research , Tumor Microenvironment/genetics
13.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176055

ABSTRACT

The tumor microenvironment (TME) is constituted by a great diversity of highly dynamic cell populations, each of which contributes ligands, receptors, soluble proteins, mRNAs, and miRNAs, in order to regulate cellular activities within the TME and even promote processes such as angiogenesis or metastasis. Intravasated platelets (PLT) undergo changes in the TME that convert them into tumor-educated platelets (TEP), which supports the development of cancer, angiogenesis, and metastasis through the degranulation and release of biomolecules. Several authors have reported that the deregulation of PF4, VEGF, PDGF, ANG-1, WASF3, LAPTM4B, TPM3, and TAC1 genes participates in breast cancer progression, angiogenesis, and metastasis. The present work aimed to analyze the expression levels of this set of genes in tumor tissues and platelets derived from breast cancer patients by reverse transcription-quantitative polymerase chain reaction (RTqPCR) assays, in order to determine if there was an expression correlation between these sources and to take advantage of the new information to be used in possible diagnosis by liquid biopsy. Data from these assays showed that platelets and breast cancer tumors present similar expression levels of a subset of these genes' mRNAs, depending on the molecular subtype, comorbidities, and metastasis presence.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/metabolism , Blood Platelets/metabolism , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression , Tumor Microenvironment/genetics , Membrane Proteins/metabolism , Oncogene Proteins/genetics , Wiskott-Aldrich Syndrome Protein Family/metabolism
14.
Clin Transl Oncol ; 25(8): 2545-2558, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37016097

ABSTRACT

BACKGROUND: Colon cancer with high incidence and mortality is a severe public health problem. As an emerging therapy, immunotherapy has played an active clinical role in tumor treatment, but only a small number of patients respond. METHODS: By univariate Cox regression analysis of 165 novel cancer prediction genes (NCPGs), 29 NCPGs related to prognosis were screened. Based on these 29 NCPGs and 336 differentially expressed genes, we constructed two colon cancer subgroups and three gene clusters and analyzed prognosis, activation pathways, and immune infiltration characteristics under various modification patterns. Then each patient was scored and divided into high or low NCPG_score groups. A comprehensive evaluation between NCPG_score and clinical characteristics, tumor microenvironment (TME), tumor somatic mutations, and the potential for immunotherapy was conducted. RESULTS: Patients with high NCPG_score were characterized by high tumor mutation burden and high microsatellite instability and were more suitable for immunotherapy. CONCLUSIONS: This study screened 29 NCPGs as independent prognostic markers in colon cancer patients, demonstrating their TME, clinicopathological features, and potential roles in immunotherapy, helping to assess prognosis and guiding more personalized immunotherapy.


Subject(s)
Colonic Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Oncogenes , Colonic Neoplasms/genetics , Immunotherapy , Microsatellite Instability , Prognosis
15.
Clin Transl Oncol ; 25(10): 2991-3005, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37067728

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML), one of the common malignancies of the hematologic system, has progressively increased in incidence. Aging is present in both normal tissues and the tumor microenvironment. However, the relationship between senescence and AML prognosis is still not elucidated. METHODS: In this study, RNA sequencing data of AML were obtained from TCGA, and prognostic prediction models were established by LASSO-Cox analysis. Differences in immune infiltration between the different risk groups were calculated using the CIBERSORT and ESTIMATE scoring methods. The KEGG and GO gene enrichment and GSEA enrichment were also used to enrich for differential pathways between the two groups. Subsequently, this study collected bone marrow samples from patients and healthy individuals to verify the differential expression of uncoupling protein 2 (UCP2) in different populations. Genipin, a UCP2 protein inhibitor, was also used to examine its effects on proliferation, cell cycle, and apoptosis in AML cell lines in vitro. RESULTS: It showed that aging-related genes (ARGs) expression was correlated with prognosis. And there was a significant difference in the abundance of immune microenvironment cells between the two groups of patients at high risk and low risk. Subsequently, UCP2 expression was found to be elevated in AML patients. Genipin inhibits UCP2 protein and suppresses the proliferation of AML cell lines in vitro. CONCLUSION: ARGs can be used as a predictor of prognosis in AML patients. Moreover, suppressing UCP2 can reduce the proliferation of AML cell lines, alter their cell cycle, and promote apoptosis in vitro.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Uncoupling Protein 2 , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Prognosis , Aging , Tumor Microenvironment/genetics
16.
J Am Coll Surg ; 236(4): 913-922, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36728372

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer. Hypercapnic tumor microenvironments were previously shown to promote cancer chemoresistance. In this study, we aimed to investigate the impact of tissue hypercapnia on PDAC prognosis. STUDY DESIGN: PDAC cancer-cell lines were cultured in normocapnic (5% CO 2 ) and hypercapnic conditions (10% CO 2 ). RNA was extracted, and whole-exome transcriptome was sequenced. Differentially expressed genes were identified and used to construct a "hypercapnic gene set." PDAC transcriptomic patient data from the Tumor Cancer Genome Atlas was used to calculate single-sample gene set enrichment scores based on each patient's tissue expression of the hypercapnic gene set. Tissue hypercapnic scores (HSs) in PDAC patients (TMN stages Ia-IIb) were determined and correlated with clinicopathological parameters and overall survival. RESULTS: A cohort of 135 resected stage I-II PDAC patients were assessed in this study. The average age was 65 ± 11.0 years, and the male:female ratio was 74:61. Median overall survival was 19.5 ± 1.4 months. High HSs were associated with increased tumor stage (p < 0.05) and higher lymph-node ratio (p < 0.05). In active smokers, high HS also correlated with smoking pack-years (p < 0.05). Cox regression analysis revealed high HS to be an independent prognostic factor for overall survival (hazard ratio [HR] 2.66, p = 0.004), along with lymph-node ratio (HR 4.2, p = 0.002) and age at diagnosis (HR 2.63, p = 0.01). CONCLUSIONS: The pancreatic tumor microenvironment plays an integral role in tumor aggressiveness, and our previous in vitro data suggest that hypercapnia promotes an aggressive, more resistant phenotype. Herein, we show that in early-stage pancreatic cancer, hypercapnic tissue signatures corresponded with a worse overall survival.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Male , Female , Humans , Hypercapnia , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/surgery , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/surgery , Prognosis , Adenocarcinoma/pathology , Transcriptome , Biomarkers, Tumor/genetics , Tumor Microenvironment/genetics
17.
Clin Transl Oncol ; 25(7): 1940-1948, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36788184

ABSTRACT

The circadian rhythm disorder and abnormal expression of rhythm genes are related to many diseases, especially cancer. Rhythm gene NFIL3 is involved in energy metabolism and immune cell differentiation, and its aberrant expression is associated with metabolic diseases and inflammation. Previously, numerous studies have shown that aberrant NFIL3 expression is associated with tumorigenesis, progression, and chemotherapy resistance. For instance, NFIL3 performs as a nuclear transcription factor, impacts cell proliferation, represses apoptosis, and promotes cancer cell invasion and metastasis by regulating the transcription of target genes. In addition, NFIL3 expressed in cancer cells influences the type and proportion of infiltrated immune cells in the tumor microenvironment. Increased expression of NFIL3 induces the chemotherapy and immunotherapy resistance in cancer. In this review, we summarized the pathological functions of NFIL3 in tumorigenesis, cancer development, and treatment. The rhythm gene NFIL3 can be used as a promising target in cancer therapy in the future.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Neoplasms , Humans , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Circadian Rhythm/genetics , Neoplasms/genetics , Carcinogenesis/genetics , Tumor Microenvironment/genetics
18.
Clin Transl Oncol ; 25(1): 269-282, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36163443

ABSTRACT

BACKGROUND: Thyroid cancer (TC) is the most common endocrine malignancy worldwide, and immunotherapy is a new cancer treatment that stimulates and enhances the natural ability of the immune system to fight cancer cells. The role of RNA N6-methyladenosine (m6A) related genes in these challenges has recently become a research hotspot, but he potential role of m6A modifications in tumor microenvironment (TME) cell infiltration remains unknown. PURPOSE: There is growing evidence that m6A plays a critical role in the regulation of gene expression by participating in important biological processes. A comprehensive analysis of the m6A regulator-mediated infiltration characteristics of the TME will help advance the understanding of immune regulation in thyroid tumors. METHODS: This study assessed m6A modification modes in 510 thyroid cancer samples from the Cancer Genome Atlas (TCGA) databases according to a comprehensive set of 24 m6A regulators. In this study, we analyzed the biological characteristics and m6A methylation modification patterns. Based on this, we constructed m6A signatures and analyzed m6A modification features in tumor somatic mutations and TCGA molecular subtypes. RESULTS: These modification modes were systematically linked to TME cell infiltration signatures. m6A modification patterns were comprehensively assessed and correlated with immune cell infiltration features in the TME. An unsupervised clustering approach was applied and three distinct m6A modification subtypes and three m6A-associated gene subtypes were identified. Additionally, three distinct m6A methylation modification modes were identified in the thyroid cancer samples. The TME profiles of the identified genetic subtypes were strongly congruent with the immuno-heat and immuno-cold phenotypes. CONCLUSIONS: The results revealed that m6A modifications play an integral role in the diversity and complexity of thyroid carcinomas. Evaluating the m6A modification patterns of individual tumors will create more efficient immunotherapeutic strategies. A comprehensive analysis of the role of TME in thyroid cancer provides a research idea for studying the effect of m6A epigenetics on thyroid tumors and their immune microenvironment.


Subject(s)
Thyroid Neoplasms , Tumor Microenvironment , Humans , Methylation , Tumor Microenvironment/genetics , Thyroid Neoplasms/genetics , RNA , Adenosine
19.
Clin Transl Oncol ; 25(2): 491-502, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36273060

ABSTRACT

BACKGROUND: Most studies on subtype identification of colorectal cancer (CRC) were based on expressions of either genes or immune cells. However, few studies have hitherto used the combination of genes with immune and stroma cells for subtype identification. METHODS: Dataset GSE17536 was obtained from the Gene Expression Omnibus (GEO) database. The xCell algorithm was used to estimate the composition and density of 64 cell types, including immune and stroma cell types. Clustering analysis was then conducted on the top 3000 most variable genes from a total of 20,174 genes for CRC subtype identification. We employed the ensemble method of Similarity network fusion and 112 Consensus Clustering (SNF-CC) for cancer subtype identification. Reactome pathway analysis was conducted to identify the impact of the representative genes on prognosis. The results were validated in independent gene expression data from dataset GSE17537. RESULTS: In this study, we identified 3 clinically relevant subtypes and their representative genes, immune and stroma cells. Moreover, we confirmed the correlation of these subtypes with their clinical characteristics. The representative genes of the subtype with poor prognosis correlated with extracellular matrix structural constituent, while the subtype with good prognosis correlated with Toll-like receptor signaling pathway or chemokine signaling pathway. However, different subtypes were associated with distinct cell subtypes; the subtype with poor prognosis had a high abundance of fibroblasts and endothelial cells; the subtype with median prognosis had a higher abundance of immune cells, such as CD4 + T-cell, Th2 cells and aDC; the subtype with good prognosis had a higher abundance of NKT. CONCLUSION: This study highlights the utility of immune and innate cells, especially during gene analysis, to provide the theoretical basis for personalized treatment in colorectal cancer patients.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/metabolism , Endothelial Cells/metabolism , Prognosis , Signal Transduction , Cluster Analysis , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics
20.
Cells ; 11(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36359853

ABSTRACT

Organotypic three-dimensional (3D) cell cultures more accurately mimic the characteristics of solid tumors in vivo in comparison with traditional two-dimensional (2D) monolayer cell models. Currently, studies on the regulation of long non-coding RNAs (lncRNAs) have not been explored in breast cancer cells cultured in 3D microenvironments. In the present research, we studied the expression and potential roles of lncRNAs in estrogen receptor-positive luminal B subtype BT-474 breast cancer cells grown over extracellular matrix proteins-enriched 3D cultures. Global expression profiling using DNA microarrays identifies 290 upregulated and 183 downregulated lncRNAs in 3D cultures relative to 2D condition. Using a co-expression analysis approach of lncRNAs and mRNAs pairs expressed in the same experimental conditions, we identify hundreds of regulatory axes modulating genes involved in cancer hallmarks, such as responses to estrogens, cell proliferation, hypoxia, apical junctions, and resistance to endocrine therapy. In addition, we identified 102 lncRNAs/mRNA correlations in 3D cultures, which were similar to those reported in TCGA datasets obtained from luminal B breast cancer patients. Interestingly, we also found a set of mRNAs transcripts co-expressed with LINC00847 and CTD-2566J3.1 lncRNAs, which were predictors of pathologic complete response and overall survival. Finally, both LINC00847 and CTD -2566J3.1 were co-expressed with essential genes for cancer genetic dependencies, such as FOXA1 y GINS2. Our experimental and predictive findings show that co-expressed lncRNAs/mRNAs pairs exhibit a high degree of similarity with those found in luminal B breast cancer patients, suggesting that they could be adequate pre-clinical tools to identify not only biomarkers related to endocrine therapy response and PCR, but to understand the biological behavior of cancer cells in 3D microenvironments.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Oncogenes , Carcinogenesis/genetics , Tumor Microenvironment/genetics , Chromosomal Proteins, Non-Histone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL