Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Methods Mol Biol ; 2138: 391-406, 2020.
Article in English | MEDLINE | ID: mdl-32219766

ABSTRACT

Aging of the brain can result in excessive glucocorticoid secretion, potentially due to chronic stress and related situations. This can lead to dysfunction of brain areas involved in control of the hypothalamic-pituitary adrenal axis, growth, and metabolism, as well as areas associated with cognition and mood regulation. This chapter presents a protocol for two-dimensional differential in-gel electrophoresis (2D-DIGE) analysis of hypothalamus and hippocampus tissue obtained from mice following exposure to high levels of corticosterone for 14 days. The chapter also presents a method for identification of the affected proteins in these brain regions using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.


Subject(s)
Brain/metabolism , Proteome/metabolism , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Stress, Physiological/physiology , Two-Dimensional Difference Gel Electrophoresis/methods , Animals , Male , Mice , Proteins/metabolism
2.
Methods Mol Biol ; 2138: 419-430, 2020.
Article in English | MEDLINE | ID: mdl-32219768

ABSTRACT

Psychiatric disorders such as major depression are linked to early mortality, and patients affected by these conditions are at an increased risk of developing other diseases that are characteristic of the old and very old. Antidepressants are prescribed in the treatment of depression, although the mechanism of how they exert their therapeutic effects is only partly understood. To shed further light on their mode of action, this chapter presents a protocol using two-dimensional differential in-gel electrophoresis (2D-DIGE) combined with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for identifying a proteomic signature in guinea pig brains after treatment with the antidepressant, fluoxetine. As this signature pointed toward changes in synaptic structure, we also present a protocol for Western blot analysis targeting selected proteins identified by the combined 2D-DIGE-MALDI-TOF mass spectrometry procedure. Such validation experiments are critical for the translation of putative biomarkers into preclinical and clinical studies.


Subject(s)
Antidepressive Agents/pharmacology , Brain/drug effects , Brain/metabolism , Fluoxetine/pharmacology , Proteomics/methods , Animals , Biomarkers/metabolism , Guinea Pigs , Proteome/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Two-Dimensional Difference Gel Electrophoresis/methods
3.
Sci Rep ; 7: 46536, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28425473

ABSTRACT

Obesity and type 2 diabetes(T2D) are the most prevalent and serious metabolic diseases affecting people worldwide. However racial and ethnic disparities seems to be a risk factor for their development. Mexico has been named as one of the largest populations with the highest prevalence of diabetes and obesity. The aim of this study was to identify novel T2D-associated proteins in Mexican patients. Blood samples were collected from 62 Mexican patients with T2D and they were grouped according to their body mass index(BMI). A panel of 10 diabetes and obesity serum markers was determined using MAGPIX. A comparative proteomics study was performed using two-dimensional difference in-gel electrophoresis(2D-DIGE) followed by mass spectrometry(LC-MS/MS). We detected 113 spots differentially accumulated, in which 64 unique proteins were identified, proteins that were involved in metabolism pathways, molecular transport, and cellular signalling. Four proteins(14-3-3, ApoH, ZAG, and OTO3) showing diabetes-related variation and also changes in relation to obesity were selected for further validation by western blotting. Our results reveal new diabetes related proteins present in the Mexican population. These could provide additional insight into the understanding of diabetes development in Mexican population and may also be useful candidate biomarkers.


Subject(s)
Biomarkers/blood , Body Mass Index , Diabetes Mellitus, Type 2/blood , Two-Dimensional Difference Gel Electrophoresis/methods , Aged , Chromatography, Liquid , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Mexico , Middle Aged , Obesity/blood , Obesity/diagnosis , Obesity/metabolism , Proteome/metabolism , Proteomics/methods , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry
4.
Adv Exp Med Biol ; 974: 183-191, 2017.
Article in English | MEDLINE | ID: mdl-28353235

ABSTRACT

This chapter describes the basics of two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of up to distinct proteomes. The example given describes the analysis of undifferentiated and differentiated neural precursor cells labelled with fluorescent Cy3 and Cy5 dyes in comparison to a pooled standard labelled with Cy2. After labelling, the proteomes are mixed together and electrophoresed on the same 2D gels. Scanning the gels at wavelengths specific for each dye allows direct overlay of the two different proteomes and the differences in abundance of specific protein spots can be determined through comparison to the pooled standard.


Subject(s)
Nerve Tissue Proteins/analysis , Neural Stem Cells/chemistry , Two-Dimensional Difference Gel Electrophoresis/methods , Animals , Cell Fractionation , Cells, Cultured , Indicators and Reagents , Lateral Ventricles/cytology , Mice , Nerve Tissue Proteins/isolation & purification , Spheroids, Cellular , Two-Dimensional Difference Gel Electrophoresis/instrumentation
5.
Methods Mol Biol ; 1546: 205-212, 2017.
Article in English | MEDLINE | ID: mdl-27896770

ABSTRACT

This chapter describes the basics, applications, and limitations of two-dimensional gel electrophoresis (2DE) and two-dimensional difference gel electrophoresis (2D-DIGE) for multiplex analysis of distinct proteomes. We also propose a basic protocol for 2D-DIGE, technique that allows the analysis of paired protein extracts, which are labeled with fluorescent Cy3 and Cy5 dyes and electrophoresed with a Cy2-labeled standard extract on the same 2DE gels. Scanning the gels at wavelengths specific for each dye allows direct overlay the two different proteomes and the differences in abundance of specific protein spots can be determined.


Subject(s)
Proteome , Proteomics/methods , Two-Dimensional Difference Gel Electrophoresis/methods , Fluorescent Dyes , Software , Statistics as Topic
6.
Proteomics ; 15(17): 2999-3019, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25959087

ABSTRACT

Protein phosphorylation is one of the most studied post-translational modifications that is involved in different cellular events in Leishmania. In this study, we performed a comparative phosphoproteomics analysis of potassium antimonyl tartrate (SbIII)-resistant and -susceptible lines of Leishmania braziliensis using a 2D-DIGE approach followed by MS. In order to investigate the differential phosphoprotein abundance associated with the drug-induced stress response and SbIII-resistance mechanisms, we compared nontreated and SbIII-treated samples of each line. Pair wise comparisons revealed a total of 116 spots that showed a statistically significant difference in phosphoprotein abundance, including 11 and 34 spots specifically correlated with drug treatment and resistance, respectively. We identified 48 different proteins distributed into seven biological process categories. The category "protein folding/chaperones and stress response" is mainly implicated in response to SbIII treatment, while the categories "antioxidant/detoxification," "metabolic process," "RNA/DNA processing," and "protein biosynthesis" are modulated in the case of antimony resistance. Multiple sequence alignments were performed to validate the conservation of phosphorylated residues in nine proteins identified here. Western blot assays were carried out to validate the quantitative phosphoproteome analysis. The results revealed differential expression level of three phosphoproteins in the lines analyzed. This novel study allowed us to profile the L. braziliensis phosphoproteome, identifying several potential candidates for biochemical or signaling networks associated with antimony resistance phenotype in this parasite.


Subject(s)
Antimony/pharmacology , Leishmania braziliensis/drug effects , Leishmania braziliensis/metabolism , Phosphoproteins/analysis , Two-Dimensional Difference Gel Electrophoresis/methods , Amino Acid Sequence , Computer Simulation , Drug Resistance/drug effects , Molecular Sequence Data , Phosphoproteins/metabolism , Phosphorylation , Protein Processing, Post-Translational/drug effects , Protozoan Proteins/analysis , Protozoan Proteins/metabolism , Reproducibility of Results
8.
São Paulo; s.n; s.n; 2013. 198 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-846927

ABSTRACT

Algumas das estratégias utilizadas para entender a biologia de células tronco embrionária (CTE) são baseadas na identificação de cascatas de sinalização que induzem a diferenciação e auto-renovação das CTE através da interferência seletiva de processos específicos. A família das proteínas quinase C (PKC) é conhecida por participar dos processos de auto-renovação e diferenciação celular em CTE, entretanto, o papel específico das diferentes isoenzimas das PKCs ainda precisa ser elucidado. Desta forma investigamos. o papel das PKCs atípicas (aPKCs) em CTE indiferenciadas utilizando um inibidor específico para estas serina/ treonina quinases, o peptídeo pseudossubstrato das aPKCs, e fosfoproteômica. A maioria das proteinas identificadas cuja fosforilação reduziu após o tratamento com o inibidor das aPKC, são proteínas envolvidas com o metabolismo principalmente com a via glicolítica. Além disso, a inibição das aPKCs levou a redução do consumo de glicose, secreção de lactato, acompanhada da redução da atividade da lactato desidrogenase, e aumento da fosforilação oxidativa, sendo analisada através do consumo de oxigênio após o tratamento com oligomicina e FCCP. Verificamos também que as aPKCs são capazes de fosforilar diretamente a piruvato quinase. A glicólise aeróbica parece ser fundamental para a manutenção da indiferenciação das CTE, e demonstramos que as aPKCs participam deste processo auxiliando na auto-renovação das CTE indiferenciadas. Também observamos que as aPKCs assim como a PKCßI modulam a fosforilação da α-tubulina, porém ao passo que as aPKCs interagem com a α-tubulina durante a interfase, a PKCßI interage com a mesma apenas durate a mitose. Estes resultados motivaram a segunda parte da tese, na qual o papel da fosforilação da α-tubulina pela PKCßI foi investigado. O resíduo de treonina 253, conservado em diversas espécies de vertebrados e localizado na interface de polimerização entre a α- e a ß-tubulina foi identificado, como um novo sítio de fosforilação da α-tubulina pela PKCßI. Este sítio não está em um consenso linear para a PKC, entretanto é um consenso formado estruturalmente, onde aminoácidos básicos distantes na sequência linear se tornam justapostos na estrutura terciária da proteína. Estudos de simulação por dinâmica molecular demonstraram que a interação entre a α e ß-tubulina aumenta após esta fosforilação, uma vez que T253 fosforilada passa a interagir com K105, um residuo conservado na ß-tubulina. A fosforilação in vitro de α-tubulina aumenta a taxa de polimerização da tubulina e a inibição da PKCßI em células reduziu a taxa de repolimerização do microtubulo após o tratamento com nocodazol. Além disso, a importância da fosforilação deste sítio foi demonstrada pelo fato de que um mutante fosfomimético GFP-α-tubulina, T253E ser mais incorporado no fuso mitótico ao passo que T253A foi menos incorporado do que a proteína selvagem. Nossos dados suportam a hipótese que os consensos estruturais formados podem ser importantes sítios de reconhecimento pelas quinases e que a fosforilação de T253 da α-tubulina afeta a estabilidade do polímero. Em conclusão, utilizando métodos de fosfoproteômica e interferência seletiva de vias de sinalização, combinados a validações experimentais dos alvos identificados podemos propor a importância funcional das aPKCs e PKCßI em CTE indiferenciadas


Some of the strategies used to understand stem cell biology are based on the identification of signalling cascades that lead to differentiation and self-renewal of embryonic stem cells (ESC) by selective interference of specific signalling processes. The protein kinase C (PKC) family is known to participate in ESC self-renewal and differentiation, however, the specific role of the different PKC isoenzymes in these cells remains to be determined. Therefore, we investigated the role of atypical PKCs (aPKC) in undifferntiated ESC using a specific inhibitor for these serine/ threonine kinases, pseudo-substrate peptide of aPKCs, and phosphoproteomics. The majority of proteins whose phosphorylation decreased upon aPKC inhibition, are proteins involved in metabolism in particular with the glycolytic pathway. Besides that, inhibiton of aPKCs led to a decrease in glucose uptake and lactate secretion, followed by a decrease in lactate dehydrogenase activity, and an increase in mitochondrial activity as measured by oxygen consumption after treatment with olygomycin and a chemical uncoupler. We also verified that aPKCs are able to directly phosphorylated pyruvate kinase. Aerobic glicolysis seems to be fundamental for the maintainance of undifferentiated ESC, and we demonstrated that aPKCs participte in these processes helping to maintain self-renewal of undifferentiated ESC. We also observed that aPKCs as PKCßI modulate the phosphorylation of α-tubulin, however, while aPKCs interact with α-tubulin during interfase PKCßI interacts with α-tubulin only during mitosis. These results lead to the second part of this thesis. We investigated the role of α-tubulina phosphorylation by PKCßI. Indentifying threonine 253, a conserved residue in several vertebrate species, of localized at the polymerization interface between α- and ß-tubulin, as a phosphorylation site of α-tubulin by PKCßI. This site is not in a linear consensus for PKC, however, it is in a structuraly formed consensus, where basic aminoacids distant in the linear sequence are juxtaposed in the three dimentional protein structure. Simulation studies by molecular dynamics show that the interaction between α and ß-tubulin increases upon this phosphorylation, once, phosphorylated T253 interacts with com K105, a conserved residue in ß-tubulin. The in vitro phosphorylation of α-tubulin increased tubulin polymerization rate and inhibiton of PKCßI in cells reduced repolimeration rate of microtubles upon treatment with nocodazole. Besides that, the importance of this phosphorylation site were demonstrated by the fact that a phosphomimetic mutant GFP-α-tubulina, T253E is more incorporated in mitotic fuses while T253A is less than wild type. Our data support the hypothesis that structural consensus may be important sites recognized and that T253 phosphorylation of α-tubulin afects the polymer stability. In conclusion, using phosphoproteomics methods and selective interference of signal transduction pathways combined with experimental validation studies of the identified targets we can propose roles for aPKCs and PKCßI in undifferentiated ESC


Subject(s)
Embryonic Stem Cells/classification , Protein Kinase C beta/analysis , Validation Study , Cell Fractionation/methods , Metabolism/genetics , Nocodazole/analysis , Phosphorylation/genetics , Protein Kinase C/analysis , Usage Remodeling , Tubulina/growth & development , Two-Dimensional Difference Gel Electrophoresis/methods
9.
Plant Physiol Biochem ; 60: 207-13, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22995218

ABSTRACT

The rubber particle is a specialized organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis (para rubber tree). It has been demonstrated that the small rubber particles (SRPs) has higher rubber biosynthesis ratio than the large rubber particles (LRPs), but the underlying molecular mechanism still remains unknown. In this study, LRPs and SRPs were firstly separated from the fresh latex using differential centrifugation, and two-dimensional difference in-gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF was then applied to investigate the proteomic alterations associated with the changed rubber biosynthesis capacity between LRPs and SRPs. A total of 53 spots corresponding to 22 gene products, were significantly altered with the |ratio|≥2.0 and T value ≤0.05, among which 15 proteins were up-regulated and 7 were down-regulated in the SRPs compared with the LRPs. The 15 up-regulated proteins in the SRPs included small rubber particle protein (SRPP), 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS), phospholipase D alpha (PLD α), ethylene response factor 2, eukaryotic translation initiation factor 5A isoform IV (eIF 5A-4), 70-kDa heat shock cognate protein (HSC 70), several unknown proteins, etc., whereas the 7 up-regulated proteins in the LRPs were rubber elongation factor (REF, 19.6kDa), ASR-like protein 1, REF-like stress-related protein 1, a putative phosphoglyceride transfer family protein, ß-1,3-glucanase, a putative retroelement, and a hypothetical protein. Since several proteins related to rubber biosynthesis were differentially expressed between LRPs and SRPs, the comparative proteome data may provide useful insights into understanding the mechanism involved in rubber biosynthesis and latex coagulation in H. brasiliensis.


Subject(s)
Hevea/chemistry , Latex/isolation & purification , Plant Proteins/isolation & purification , Rubber/isolation & purification , Two-Dimensional Difference Gel Electrophoresis/methods , Down-Regulation , Hevea/metabolism , Hevea/ultrastructure , Latex/metabolism , Microscopy, Electron, Scanning , Organelles/metabolism , Organelles/ultrastructure , Plant Proteins/metabolism , Proteome , Proteomics , Rubber/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Up-Regulation
10.
Rio de Janeiro; s.n; 2011. 137 p. ilus, graf.
Thesis in Portuguese | LILACS | ID: lil-668610

ABSTRACT

Aspergillus fumigatus é o principal agente etiológico da aspergilose invasiva, infecção fúngica oportunista com altas taxas de mortalidade afetando, principalmente, pacientes com neutropenia profunda e prolongada. Durante o processo de invasão e disseminação características desta infecção sistêmica, os conídios do fungo inalados e não eliminados pelas células do sistema imune inato diferenciam-se em hifas que, por sua vez, são angioinvasivas. Pouco se conhece sobre as moléculas da parede celular envolvidas na patogênese do A. fumigatus e/ou secretadas por este patógeno. Neste contexto, este trabalho procura ampliar o entendimento desta doença através do estudo de proteínas diferencialmente expressas na superfície de A. fumigatus durante a morfogênese. Foi utilizada uma abordagem proteômica e foram estudados extratos de superfície de células de A. fumigatus em diferentes estágios durante o processo de filamentação. Estas células foram denominadas, de acordo com o tempo de cultivo e a morfologia, como: TG6h (tubo germinativo), H12h ou H72h (hifas). As proteínas de superfície celular foram extraídas, a partir de células intactas, por tatamento brando com o agente redutor DTT (ditiotreitol). Observou-se que o perfil funcional das proteínas expressas por H12h e H72h foi similar, com exceç~çao de proteínas relacionadas à resposta ao estresse, enquanto o perfil para TG6h apresentou diferenças significativas para vários grupos funcionais de proteínas quando comparado às hifas. Desta forma, foram realizados experimentos de proteômica diferencial entre tubo germinativo (TG6h) e a hifa madura (H72h), pela técnica de DIGE (differential gel electrophoresis). Os resultados revelaram que entre as proteínas diferencialmente expressas, aquelas relacionadas às vias de biossíntese e outras denominadas multifuncionais encontram-se superexpressas em TG6h. Em relação às proteínas de resposta a estresse, observou-se que algumas HSPs eram mais expressas neste morfotipo...


Aspergillus fumigatus is the main etiologic agent of invasive aspergillosis (IA), a opportunistic a life-threatening disease for immunocompromised hosts, especially those with acute and prolonged neutropenia. During the invasion and dissemination, which occurs in this systemic infection, the A. fumigatus conidia, after its inhalation, germinates into angioinvasive hyphae in case the innate immune response fails in eliminate these cells. Little is known about the cell wall molecules and/or the secreted proteins involved on the A. fumigatus pathogenesis, at this context the present work aims to amplify the knowledge about the aspergillosis by studying the differentially surface proteins of A. fumigatus during the filamentation process. These cells were denominated according to their morphology and their growtn time as: TG6h (germ tubes), H12h and H72h (hyphae). The surface proteins were mildly extracted from intact cells using the reducing agent DTT (dithiothreitol). The functional profile of the H12h and H72h were similar except for the stress response proteins, while the TG6h presented significant differences for several functional groups. On this base, the DIGE (differential gel electrophoresis) was performed using the surface extracted proteins of the germ tubes (TG6h) and mature hyphae (H72h) cells. The results indicate that multiple functional proteins and proteins related to the biosynthesis pathways were overexpressed at TG6h. Some stress response proteins as the HSPs were overexpressed on this morphotype while the MnSOD, oxidative stress responsive protein, was most abundant at the hyphae. PhiA, an integrant protein of the cell wall, was the only protein with a secretion signal sequence. All other proteins identified on the cell surface lack an identifiable secretion sign, and are denominated atypical proteins. The plasma membrane integrity was verified after the mild extraction using DTT, and also the biotinylation of the cell extracted proteins...


Subject(s)
Aspergillus fumigatus/pathogenicity , Fungal Proteins/analysis , Dithiothreitol , Two-Dimensional Difference Gel Electrophoresis/methods , Hyphae/physiology , Membrane Proteins , Cell Wall , Proteome/analysis , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL