Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.658
Filter
1.
Cell Death Dis ; 15(9): 646, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227586

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that commonly affects children and adolescents with a poor prognosis. The terminal unfolded protein response (UPR) is an emerging anti-cancer approach, although its role in pediatric T-ALL remains unclear. In our pediatric T-ALL cohort from different centers, a lower QRICH1 expression was found associated with a worse prognosis of pediatric T-ALL. Overexpression of QRICH1 significantly inhibited cell proliferation and stimulated apoptosis of T-ALL both in vitro and in vivo. Upregulation of QRICH1 significantly downregulated 78 KDa glucose-regulated protein (GRP78) and upregulated CHOP, thus activating the terminal UPR. Co-overexpression of GRP78 in T-ALL cells overexpressing QRICH1 partially reverted the inhibited proliferation and stimulated apoptosis. QRICH1 bound to the residues Asp212 and Glu155 of the nucleotide-binding domain (NBD) of GRP78, thereby inhibiting its ATP hydrolysis activity. In addition, QRICH1 was associated with endoplasmic reticulum (ER) stress in T-ALL, and overexpression of QRICH1 reversed drug resistance. Overall, low QRICH1 expression is an independent risk factor for a poor prognosis of pediatric T-ALL. By inhibiting GRP78, QRICH1 suppresses pediatric T-ALL.


Subject(s)
Apoptosis , Cell Proliferation , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Endoplasmic Reticulum Chaperone BiP/metabolism , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Child , Cell Proliferation/drug effects , Animals , Apoptosis/drug effects , Male , Cell Line, Tumor , Female , Mice , Endoplasmic Reticulum Stress/drug effects , Unfolded Protein Response/drug effects , Adolescent , Child, Preschool , Prognosis
2.
Front Immunol ; 15: 1393248, 2024.
Article in English | MEDLINE | ID: mdl-39114661

ABSTRACT

Objective: Beta cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In recent years, the role played by beta cells in the development of T1D has evolved from passive victims of the immune system to active contributors in their own destruction. We and others have demonstrated that perturbations in the islet microenvironment promote endoplasmic reticulum (ER) stress in beta cells, leading to enhanced immunogenicity. Among the underlying mechanisms, secretion of extracellular vesicles (EVs) by beta cells has been suggested to mediate the crosstalk with the immune cell compartment. Methods: To study the role of cellular stress in the early events of T1D development, we generated a novel cellular model for constitutive ER stress by modulating the expression of HSPA5, which encodes BiP/GRP78, in EndoC-ßH1 cells. To investigate the role of EVs in the interaction between beta cells and the immune system, we characterized the EV miRNA cargo and evaluated their effect on innate immune cells. Results: Analysis of the transcriptome showed that HSPA5 knockdown resulted in the upregulation of signaling pathways involved in the unfolded protein response (UPR) and changes the miRNA content of EVs, including reduced levels of miRNAs involved in IL-1ß signaling. Treatment of primary human monocytes with EVs from stressed beta cells resulted in increased surface expression of CD11b, HLA-DR, CD40 and CD86 and upregulation of IL-1ß and IL-6. Conclusion: These findings indicate that the content of EVs derived from stressed beta cells can be a mediator of islet inflammation.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Extracellular Vesicles , Insulin-Secreting Cells , MicroRNAs , Monocytes , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Monocytes/immunology , Monocytes/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/immunology , Humans , Endoplasmic Reticulum Stress/immunology , MicroRNAs/genetics , Inflammation/immunology , Inflammation/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Animals , Cell Line , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Signal Transduction , Unfolded Protein Response/immunology
3.
BMC Cancer ; 24(1): 978, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118103

ABSTRACT

BACKGROUND: The unfolded protein response (UPR) is associated with immune cells that regulate the biological behavior of tumors. This article aims to combine UPR-associated genes with immune cells to find a prognostic marker and to verify its connection to the UPR. METHODS: Univariate cox analysis was used to screen prognostically relevant UPRs and further screened for key UPRs among them by machine learning. ssGSEA was used to calculate immune cell abundance. Univariate cox analysis was used to screen for prognostically relevant immune cells. Multivariate cox analysis was used to calculate UPR_score and Tumor Immune Microenvironment score (TIME_score). WGCNA was used to screen UPR-Immune-related (UI-related) genes. Consensus clustering analysis was used to classify patients into molecular subtype. Based on the UI-related genes, we classified colon adenocarcinoma (COAD) samples by cluster analysis. Single-cell analysis was used to analyze the role of UI-related genes. We detected the function of TIMP1 by cell counting and transwell. Immunoblotting was used to detect whether TIMP1 was regulated by key UPR genes. RESULTS: Combined UPR-related genes and immune cells can determine the prognosis of COAD patients. Cluster analysis showed that UI-related genes were associated with clinical features of COAD. Single-cell analysis revealed that UI-related genes may act through stromal cells. We defined three key UI-related genes by machine learning algorithms. Finally, we found that TIMP1, regulated by key genes of UPR, promoted colon cancer proliferation and metastasis. CONCLUSIONS: We found that TIMP1 was a prognostic marker and experimentally confirmed that TIMP1 was regulated by key genes of UPR.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , Tissue Inhibitor of Metalloproteinase-1 , Tumor Microenvironment , Unfolded Protein Response , Humans , Unfolded Protein Response/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/mortality , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Gene Expression Regulation, Neoplastic , Cluster Analysis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Machine Learning , Single-Cell Analysis/methods , Female , Cell Line, Tumor , Male
4.
J Transl Med ; 22(1): 787, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180052

ABSTRACT

BACKGROUND: Marinesco-Sjögren syndrome (MSS) is an autosomal recessive neuromuscular disorder that arises in early childhood and is characterized by congenital cataracts, myopathy associated with muscle weakness, and degeneration of Purkinje neurons leading to ataxia. About 60% of MSS patients have loss-of-function mutations in the SIL1 gene. Sil1 is an endoplasmic reticulum (ER) protein required for the release of ADP from the master chaperone Bip, which in turn will release the folded proteins. The expression of non-functional Sil1 leads to the accumulation of unfolded proteins in the ER and this triggers the unfolded protein response (UPR). A dysfunctional UPR could be a key element in the pathogenesis of MSS, although our knowledge of the molecular pathology of MSS is still incomplete. METHODS: RNA-Seq transcriptomics was analysed using the String database and the Ingenuity Pathway Analysis platform. Fluorescence confocal microscopy was used to study the remodelling of the extracellular matrix (ECM). Transmission electron microscopy (TEM) was used to reveal the morphology of the ECM in vitro and in mouse tendon. RESULTS: Our transcriptomic analysis, performed on patient-derived fibroblasts, revealed 664 differentially expressed (DE) transcripts. Enrichment analysis of DE genes confirmed that the patient fibroblasts have a membrane trafficking issue. Furthermore, this analysis indicated that the extracellular space/ECM and the cell adhesion machinery, which together account for around 300 transcripts, could be affected in MSS. Functional assays showed that patient fibroblasts have a reduced capacity of ECM remodelling, reduced motility, and slower spreading during adhesion to Petri dishes. TEM micrographs of negative-stained ECM samples from these fibroblasts show differences of filaments in terms of morphology and size. Finally, structural analysis of the myotendinous junction of the soleus muscle and surrounding regions of the Achilles tendon revealed a disorganization of collagen fibres in the mouse model of MSS (woozy). CONCLUSIONS: ECM alterations can affect the proper functioning of several organs, including those damaged in MSS such as the central nervous system, skeletal muscle, bone and lens. On this basis, we propose that aberrant ECM is a key pathological feature of MSS and may help explain most of its clinical manifestations.


Subject(s)
Extracellular Matrix , Fibroblasts , Spinocerebellar Degenerations , Tendons , Fibroblasts/metabolism , Fibroblasts/pathology , Extracellular Matrix/metabolism , Humans , Animals , Tendons/pathology , Tendons/metabolism , Spinocerebellar Degenerations/pathology , Spinocerebellar Degenerations/genetics , Spinocerebellar Degenerations/metabolism , Unfolded Protein Response , Mice , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Gene Expression Profiling
5.
Funct Integr Genomics ; 24(4): 134, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107544

ABSTRACT

Distal hereditary motor neuropathy (dHMN) is a progressive neurological disease characterized by distal limb muscle weakness and amyotrophy. Sigma 1 receptor (σ1R), a gene product of SIGMAR1, mutations have been reported to induce dHMN, but its mechanism remains unknown. This study aims to explore the effect of C238T and 31_50del mutations in σ1R on neuronal SH-SY5Y cell functions. The SH-SY5Y cells that overexpressed σ1R, C238T mutant σ1R (σ1RC238T) or 31_50del mutant σ1R (σ1R31_50del) were constructed by pEGFPN1 vectors. We used Western blot (WB) and immunofluorescence (IF) staining to detect the expression of σ1R and green fluorescent proteins (GFP). Then, we evaluated the impact of σ1R mutation on apoptosis, autophagy, endoplasmic reticulum stress, and the involvement of the unfolded protein response (UPR) pathway in SH-SY5Y cells. We found that σ1RC238T and σ1R31_50del downregulated σ1R and promoted the apoptosis of SH-SY5Y cells. σ1RC238T and σ1R31_50del increased p-PERK, p-eIF2α, p-JNK, BIP, ATF4, CHOP, ATF6, XBP1, Caspase3, Caspase12 expressions and Ca2+ concentration, whereas decreased ATP content in SH-SY5Y cells. Besides, the expressions of LC3B, Lamp1, ATG7, Beclin-1 and phosphorylation of AMPK and ULK1 were increased, while the p62 level decreased after C238T or 31_50del mutation of σ1R. Additionally, AMPK knockdown abolished the apoptosis mediated by σ1RC238T or σ1R31_50del in SH-SY5Y cells. Our results indicated that C238T or 31_50del mutation in σ1R promoted motor neuron apoptosis through the AMPK/ULK1 pathway in dHMN. This study shed light on a better understanding of the neurons pathological mechanisms mediated by σ1R C238T and σ1R 31-50del in dHMN.


Subject(s)
Apoptosis , Autophagy-Related Protein-1 Homolog , Autophagy , Endoplasmic Reticulum Stress , Receptors, sigma , Sigma-1 Receptor , Humans , Receptors, sigma/metabolism , Receptors, sigma/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Cell Line, Tumor , Signal Transduction , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Unfolded Protein Response , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mutation
6.
Pharmacol Res ; 207: 107332, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089398

ABSTRACT

The endoplasmic reticulum (ER) plays a pivotal role in protein folding and secretion, Ca2+ storage, and lipid synthesis in eukaryotic cells. When the burden of protein synthesis and folding required to be handled exceeds the processing capacity of the ER, the accumulation of misfolded/unfolded proteins triggers ER stress. In response to short-term ER stress, the unfolded protein response (UPR) is activated to allow cells to survive. When ER stress is severe and sustained, it typically provokes cell death through multiple approaches. It is well documented that ER stress and metabolic deregulation are functionally intertwined, both are considered contributing factors to the pathogenesis of liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), ischemia/reperfusion (I/R) injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Hepatocytes are rich in smooth and rough ER, which harbor metabolic enzymes that are capable of sensing alterations in various nutritional status and external stimuli. Extensive research has focused on the molecular mechanism linking ER stress with metabolic enzymes. The purpose of this review is to summarize the current knowledge regarding the effects of ER stress on metabolic enzymes in various liver diseases and to provide potential therapeutic strategies for chronic liver diseases via targeting UPR.


Subject(s)
Endoplasmic Reticulum Stress , Liver Diseases , Unfolded Protein Response , Humans , Animals , Liver Diseases/metabolism , Liver Diseases/enzymology , Endoplasmic Reticulum/metabolism
7.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39103227

ABSTRACT

The complex multistep activation cascade of Ire1 involves changes in the Ire1 conformation and oligomeric state. Ire1 activation enhances ER folding capacity, in part by overexpressing the ER Hsp70 molecular chaperone BiP; in turn, BiP provides tight negative control of Ire1 activation. This study demonstrates that BiP regulates Ire1 activation through a direct interaction with Ire1 oligomers. Particularly, we demonstrated that the binding of Ire1 luminal domain (LD) to unfolded protein substrates not only trigger conformational changes in Ire1-LD that favour the formation of Ire1-LD oligomers but also exposes BiP binding motifs, enabling the molecular chaperone BiP to directly bind to Ire1-LD in an ATP-dependent manner. These transient interactions between BiP and two short motifs in the disordered region of Ire1-LD are reminiscent of interactions between clathrin and another Hsp70, cytoplasmic Hsc70. BiP binding to substrate-bound Ire1-LD oligomers enables unfolded protein substrates and BiP to synergistically and dynamically control Ire1-LD oligomerisation, helping to return Ire1 to its deactivated state when an ER stress response is no longer required.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Endoribonucleases , Heat-Shock Proteins , Protein Binding , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Endoribonucleases/metabolism , Endoribonucleases/chemistry , Humans , Endoplasmic Reticulum/metabolism , Unfolded Protein Response , Protein Multimerization , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , Protein Folding , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Protein Domains
8.
Cell Death Dis ; 15(8): 587, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138189

ABSTRACT

The unfolded protein response (UPR) is a conserved and adaptive intracellular pathway that relieves the endoplasmic reticulum (ER) stress by activating ER transmembrane stress sensors. As a consequence of ER stress, the inhibition of nonsense-mediated mRNA decay (NMD) is due to an increase in the phosphorylation of eIF2α, which has the effect of inhibiting translation. However, the role of NMD in maintaining ER homeostasis remains unclear. In this study, we found that the three NMD factors, up-frameshift (UPF)1, UPF2, or UPF3B, were required to negate the UPR. Among these three NMD factors, only UPF3B interacted with inositol-requiring enzyme-1α (IRE1α). This interaction inhibited the kinase activity of IRE1α, abolished autophosphorylation, and reduced IRE1α clustering for ER stress. BiP and UPF3B jointly control the activation of IRE1α on both sides of the ER membrane. Under stress conditions, the phosphorylation of UPF3B was increased and the phosphorylated sites were identified. Both the UPF3BY160D genetic mutation and phosphorylation at Thr169 of UPF3B abolished its interaction with IRE1α and UPF2, respectively, leading to activation of ER stress and NMD dysfunction. Our study reveals a key physiological role for UPF3B in the reciprocal regulatory relationship between NMD and ER stress.


Subject(s)
Endoplasmic Reticulum Stress , Endoribonucleases , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Endoribonucleases/metabolism , Phosphorylation , HeLa Cells , Nonsense Mediated mRNA Decay , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Unfolded Protein Response , HEK293 Cells , Protein Binding , Endoplasmic Reticulum/metabolism
9.
Gut Microbes ; 16(1): 2392877, 2024.
Article in English | MEDLINE | ID: mdl-39189642

ABSTRACT

Salmonella enterica serovar Typhimurium (STm) causes gastroenteritis and can progress to reactive arthritis (ReA). STm forms biofilms in the gut that secrete the amyloid curli, which we previously demonstrated can trigger autoimmunity in mice. HLA-B27 is a genetic risk factor for ReA; activation of the unfolded protein response (UPR) due to HLA-B27 misfolding is thought to play a critical role in ReA pathogenesis. To determine whether curli exacerbates HLA-B27-induced UPR, bone marrow-derived macrophages (BMDMs) isolated from HLA-B27 transgenic (tg) mice were used. BMDMs treated with purified curli exhibited elevated UPR compared to C57BL/6, and curli-induced IL-6 was reduced by pre-treating macrophages with inhibitors of the IRE1α branch of the UPR. In BMDMs, intracellular curli colocalized with GRP78, a regulator of the UPR. In vivo, acute infection with wild-type STm increased UPR markers in the ceca of HLA-B27tg mice compared to C57BL/6. STm biofilms that contain curli were visible in the lumen of cecal tissue sections. Furthermore, curli was associated with macrophages in the lamina propria, colocalizing with GRP78. Together, these results suggest that UPR plays a role in the curli-induced inflammatory response, especially in the presence of HLA-B27, a possible mechanistic link between STm infection and genetic susceptibility to ReA.


Subject(s)
Bacterial Proteins , Endoplasmic Reticulum Chaperone BiP , Endoribonucleases , HLA-B27 Antigen , Macrophages , Protein Serine-Threonine Kinases , Salmonella typhimurium , Unfolded Protein Response , Animals , Humans , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Endoribonucleases/metabolism , Endoribonucleases/genetics , HLA-B27 Antigen/genetics , HLA-B27 Antigen/metabolism , HLA-B27 Antigen/immunology , Interleukin-6/metabolism , Interleukin-6/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Transgenic , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Salmonella Infections/immunology , Salmonella Infections/microbiology , Salmonella typhimurium/immunology
10.
Gene ; 930: 148814, 2024 Dec 20.
Article in English | MEDLINE | ID: mdl-39116958

ABSTRACT

Epoxyazadiradione is an important limonoid with immense pharmacological potential. We have reported previously that epoxyazadiradione (EAD) induces apoptosis in triple negative breast cancer cells (MDA-MB 231) by modulating diverse cellular targets. Here, we identify the key genes/pathways responsible for this effect through next-generation sequencing of the transcriptome from EAD treated cells and integrated molecular data analysis using bioinformatics. In silico analysis indicated that EAD displayed favourable drug-like properties and could target multiple macromolecules relevant to TNBC. RNA sequencing revealed that EAD treatment results in the differential expression of 1838 genes in MDA-MB 231 cells, with 752 downregulated and 1086 upregulated. Gene set enrichment analysis of these genes suggested that EAD disrupts protein folding in the endoplasmic reticulum, triggering the unfolded protein response (UPR) and potentially leading to cell death. EAD also induced oxidative stress and DNA damage, downregulated pathways linked to metabolism, cell cycle progression, pro-survival signalling, cell adhesion, motility and inflammatory response. The identification of protein cluster and hub genes were also done. The validation of the identified hub genes gave an inverse correlation between their expression in EAD treated cells and TNBC patient samples. Thus, the identified hub genes could be explored as therapeutic or diagnostic markers for TNBC. Hence, EAD appears to be a promising therapeutic candidate for TNBC by targeting various hallmarks of cancer, including cell death resistance, uncontrolled proliferation and metastasis. To conclude, the identified pathways and validated targets for EAD will provide a roadmap for further in vivo studies and preclinical/clinical validation required for potential drug development.


Subject(s)
Gene Expression Regulation, Neoplastic , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Limonins/pharmacology , Unfolded Protein Response/drug effects , Transcriptome/drug effects , Oxidative Stress/drug effects , DNA Damage/drug effects , Computational Biology/methods
11.
Nat Commun ; 15(1): 6594, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097618

ABSTRACT

Neurons coordinate inter-tissue protein homeostasis to systemically manage cytotoxic stress. In response to neuronal mitochondrial stress, specific neuronal signals coordinate the systemic mitochondrial unfolded protein response (UPRmt) to promote organismal survival. Yet, whether chemical neurotransmitters are sufficient to control the UPRmt in physiological conditions is not well understood. Here, we show that gamma-aminobutyric acid (GABA) inhibits, and acetylcholine (ACh) promotes the UPRmt in the Caenorhabditis elegans intestine. GABA controls the UPRmt by regulating extra-synaptic ACh release through metabotropic GABAB receptors GBB-1/2. We find that elevated ACh levels in animals that are GABA-deficient or lack ACh-degradative enzymes induce the UPRmt through ACR-11, an intestinal nicotinic α7 receptor. This neuro-intestinal circuit is critical for non-autonomously regulating organismal survival of oxidative stress. These findings establish chemical neurotransmission as a crucial regulatory layer for nervous system control of systemic protein homeostasis and stress responses.


Subject(s)
Acetylcholine , Caenorhabditis elegans , Mitochondria , Signal Transduction , Animals , Acetylcholine/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , gamma-Aminobutyric Acid/metabolism , Intestines/physiology , Mitochondria/metabolism , Neurons/metabolism , Oxidative Stress , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Stress, Physiological , Synaptic Transmission/physiology , Unfolded Protein Response
12.
Front Immunol ; 15: 1358462, 2024.
Article in English | MEDLINE | ID: mdl-39100663

ABSTRACT

The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-ß expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-ß induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-ß, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-ß mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-ß via mitochondrial dsDNA release.


Subject(s)
Cytosol , Endoplasmic Reticulum Stress , Interferon-beta , Membrane Proteins , Nucleotidyltransferases , Unfolded Protein Response , Humans , Animals , Mice , Nucleotidyltransferases/metabolism , Cytosol/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Interferon-beta/metabolism , DNA/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , eIF-2 Kinase/metabolism , Endoribonucleases/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Thapsigargin/pharmacology , Reactive Oxygen Species/metabolism , Transcriptional Activation , DNA, Mitochondrial/metabolism
13.
Environ Sci Pollut Res Int ; 31(40): 53206-53218, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39180659

ABSTRACT

Unfolded protein accumulation in the endoplasmic reticulum (ER) triggers ER stress, leading to a unique transcriptomic response called unfolded protein response (UPR). While ER stress is linked to various environmental stresses, its role in plant responses to heavy metal toxicity remains unclear. This study aimed to elucidate if heavy metals Fe, Zn, Cu, and As induce ER stress in plants. For this purpose, Arabidopsis thaliana seedlings were treated with Fe (200, 400 µM), Zn (500, 700 µM), Cu (25, 50 µM), and As (250, 500 µM) for 7 days, which resulted in 50-70% decrease in plant growth. All treatments increased insoluble protein levels, indicating unfolded protein accumulation, with the highest induction observed for 50 µM Cu treatment (fivefold). Expressions of genes involved in the perception and signaling of ER stress (IRE1, bZIP28, bZIP60, bZIP17) indicate that Zn toxicity specifically induces bZIP28 but not the IRE1 branch of UPR. All metals except Fe also induced genes associated with protein folding in the ER (BIP1, BIP3, and CNX) and ER-associated protein degradation (ERAD) (HRD1). This finding indicates Zn, Cu, and As but not Fe cause ER stress in plants. Furthermore, increased expression of ER oxidoreductase 1 (ERO1) suggests that metal toxicity also disrupts oxidative protein folding in the ER lumen. This study enhances our understanding of the intricate interplay between essential nutrients, metal toxicity, protein folding machinery, and ER stress, demonstrating that heavy metal toxicity has an ER stress component in plants alongside its established effects on energy metabolism, membrane integrity, and oxidative stress.


Subject(s)
Arabidopsis , Endoplasmic Reticulum Stress , Metals, Heavy , Unfolded Protein Response , Arabidopsis/drug effects , Unfolded Protein Response/drug effects , Endoplasmic Reticulum Stress/drug effects , Metals, Heavy/toxicity , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects
14.
Biomolecules ; 14(8)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39199307

ABSTRACT

The endoplasmic reticulum (ER) is indispensable for maintaining normal life activities. Dysregulation of the ER function results in the accumulation of harmful proteins and lipids and the disruption of intracellular signaling pathways, leading to cellular dysfunction and eventual death. Protein misfolding within the ER disrupts its delicate balance, resulting in the accumulation of misfolded or unfolded proteins, a condition known as endoplasmic reticulum stress (ERS). Renal fibrosis, characterized by the aberrant proliferation of fibrotic tissue in the renal interstitium, stands as a grave consequence of numerous kidney disorders, precipitating a gradual decline in renal function. Renal fibrosis is a serious complication of many kidney conditions and is characterized by the overgrowth of fibrotic tissue in the glomerular and tubular interstitium, leading to the progressive failure of renal function. Studies have shown that, during the onset and progression of kidney disease, ERS causes various problems in the kidneys, a process that can lead to kidney fibrosis. This article elucidates the underlying intracellular signaling pathways modulated by ERS, delineating its role in triggering diverse forms of cell death. Additionally, it comprehensively explores a spectrum of potential pharmacological agents and molecular interventions aimed at mitigating ERS, thereby charting novel research avenues and therapeutic advancements in the management of renal fibrosis.


Subject(s)
Cell Death , Endoplasmic Reticulum Stress , Fibrosis , Kidney Diseases , Humans , Fibrosis/metabolism , Animals , Kidney Diseases/metabolism , Kidney Diseases/pathology , Signal Transduction , Kidney/pathology , Kidney/metabolism , Endoplasmic Reticulum/metabolism , Unfolded Protein Response
15.
Cell Commun Signal ; 22(1): 421, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215343

ABSTRACT

The primary challenge in today's world of neuroscience is the search for new therapeutic possibilities for neurodegenerative disease. Central to these disorders lies among other factors, the aberrant folding, aggregation, and accumulation of proteins, resulting in the formation of toxic entities that contribute to neuronal degeneration. This review concentrates on the key proteins such as ß-amyloid (Aß), tau, and α-synuclein, elucidating the intricate molecular events underlying their misfolding and aggregation. We critically evaluate the molecular mechanisms governing the elimination of misfolded proteins, shedding light on potential therapeutic strategies. We specifically examine pathways such as the endoplasmic reticulum (ER) and unfolded protein response (UPR), chaperones, chaperone-mediated autophagy (CMA), and the intersecting signaling of Keap1-Nrf2-ARE, along with autophagy connected through p62. Above all, we emphasize the significance of these pathways as protein quality control mechanisms, encompassing interventions targeting protein aggregation, regulation of post-translational modifications, and enhancement of molecular chaperones and clearance. Additionally, we focus on current therapeutic possibilities and new, multi-target approaches. In conclusion, this review systematically consolidates insights into emerging therapeutic strategies predicated on protein aggregates clearance.


Subject(s)
Neurodegenerative Diseases , Protein Folding , Humans , Neurodegenerative Diseases/metabolism , Animals , Protein Aggregates , Unfolded Protein Response , Protein Aggregation, Pathological/metabolism , Endoplasmic Reticulum/metabolism , Molecular Chaperones/metabolism
16.
Cells ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38994992

ABSTRACT

Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.


Subject(s)
Endoplasmic Reticulum , Heat-Shock Response , Thermogenesis , Humans , Animals , Endoplasmic Reticulum/metabolism , Mice , Unfolded Protein Response , Cell Line, Tumor , Endoplasmic Reticulum Stress , Hyperthermia/metabolism , Hyperthermia/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Fibroblasts/metabolism , Protein Serine-Threonine Kinases/metabolism
17.
Mol Biol Rep ; 51(1): 802, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001949

ABSTRACT

BACKGROUND: Alzheimer's disease is a neurological disease characterized by the build-up of amyloid beta peptide (Aß) and lipopolysaccharide (LPS), which causes synapse dysfunction, cell death, and neuro-inflammation. A maladaptive unfolded protein response (UPR), excessive autophagy, and pyroptosis aggravate the disease. Melatonin (MEL) and hydroxybutyrate (BHB) have both shown promise in terms of decreasing Aß pathology. The goal of this study was to see how BHB and MEL affected the UPR, autophagy, and pyroptosis pathways in Aß1-42 and LPS-induced SH-SY5Y cells. MATERIALS AND METHODS: Human neuroblastoma SH-SY5Y cells were treated with BHB, MEL, or a combination of the two after being exposed to A ß1-42 and LPS. Cell viability was determined using the MTT test, and gene expression levels of UPR (ATF6, PERK, and CHOP), autophagy (Beclin-1, LC3II, P62, and Atg5), and pyroptosis-related markers (NLRP3, TXNIP, IL-1ß, and NFκB1) were determined using quantitative Real-Time PCR (qRT-PCR). For statistical analysis, one-way ANOVA was employed, followed by Tukey's post hoc test. RESULTS: BHB and MEL significantly increased SH-SY5Y cell viability in the presence of A ß1-42 and LPS. Both compounds inhibited the expression of maladaptive UPR and autophagy-related genes, as well as inflammatory and pyroptotic markers caused by Aß1-42 and LPS-induced SH-SY5Y cells. CONCLUSION: BHB and MEL rescue neurons in A ß1-42 and LPS-induced SH-SY5Y cells by reducing maladaptive UPR, excessive autophagy, and pyroptosis. More research is needed to fully comprehend the processes behind their beneficial effects and to discover their practical applications in the treatment of neurodegenerative disorders.


Subject(s)
3-Hydroxybutyric Acid , Amyloid beta-Peptides , Autophagy , Lipopolysaccharides , Melatonin , Peptide Fragments , Pyroptosis , Unfolded Protein Response , Humans , Melatonin/pharmacology , Amyloid beta-Peptides/metabolism , Autophagy/drug effects , Pyroptosis/drug effects , Lipopolysaccharides/pharmacology , Cell Line, Tumor , Unfolded Protein Response/drug effects , 3-Hydroxybutyric Acid/pharmacology , Peptide Fragments/pharmacology , Cell Survival/drug effects , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology
18.
CNS Neurosci Ther ; 30(7): e14839, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021040

ABSTRACT

BACKGROUND: The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS: This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS: The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION: Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.


Subject(s)
Brain Neoplasms , Drug Resistance, Neoplasm , Endoplasmic Reticulum Chaperone BiP , Glioblastoma , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Unfolded Protein Response/physiology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Drug Resistance, Neoplasm/physiology , Drug Resistance, Neoplasm/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
19.
Front Immunol ; 15: 1427859, 2024.
Article in English | MEDLINE | ID: mdl-39026685

ABSTRACT

Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.


Subject(s)
CD8-Positive T-Lymphocytes , Endoplasmic Reticulum Stress , Signal Transduction , Unfolded Protein Response , Unfolded Protein Response/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Animals , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/metabolism , Activating Transcription Factor 6/metabolism , Endoribonucleases/metabolism , Endoribonucleases/immunology , Lymphocyte Activation/immunology
20.
Front Endocrinol (Lausanne) ; 15: 1386471, 2024.
Article in English | MEDLINE | ID: mdl-38966213

ABSTRACT

Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic ß-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic ß-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, ß-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal ß-cell function. However, excessive or prolonged increased influx of nascent proinsulin into the ER lumen can exceed the ER capacity leading to pancreatic ß-cells ER stress and subsequently to ß-cell dysfunction. In mammalian cells, such as ß-cells, the ER stress response is primarily regulated by three canonical ER-resident transmembrane proteins: ATF6, IRE1, and PERK/PEK. Each of these proteins generates a transcription factor (ATF4, XBP1s, and ATF6, respectively), which in turn activates the transcription of ER stress-inducible genes. An increasing number of evidence suggests that unresolved or dysregulated ER stress signaling pathways play a pivotal role in ß-cell failure leading to insulin secretion defect and diabetes. In this article we first highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on ß-cell function and diabetes and second how the ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of hPSC-derived pancreatic ß-cells to faithfully phenocopy all features of bona fide human ß-cells for diabetes therapy or drug screening.


Subject(s)
Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Unfolded Protein Response , Insulin-Secreting Cells/metabolism , Endoplasmic Reticulum Stress/physiology , Humans , Animals , Unfolded Protein Response/physiology , Diabetes Mellitus/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology
SELECTION OF CITATIONS
SEARCH DETAIL