Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.746
Filter
1.
Mikrochim Acta ; 191(8): 505, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39097544

ABSTRACT

A novel and sensitive fluorescence ratiometric method is developed for urea detection based  on the pH-sensitive response of two fluorescent carbon dot (CD) systems: R-CDs/methyl red (MR) and NIR-CDs/Cu2+. The sensing mechanism involves breaking down urea using the enzyme urease, releasing ammonia and increasing pH. At higher pH, the fluorescence of NIR-CDs is quenched due to the enhanced interaction with Cu2+, while the fluorescence of R-CDs is restored as the acidic MR converts to its basic form, removing the inner filter effect. The ratiometric signal (F608/F750) of the R-CDs/MR and NIR-CDs/Cu2+ intensities changed in response to the pH induced by urea hydrolysis, enabling selective and sensitive urea detection. Detailed spectroscopic and morphological investigations confirmed the fluorescence probe design and elucidated the sensing mechanism. The method exhibited excellent sensitivity (0.00028 mM LOD) and linearity range (0.001 - 8.0 mM) for urea detection, with successful application in milk samples for monitoring adulteration, demonstrating negligible interference and high recovery levels (96.5% to 101.0%). This ratiometric fluorescence approach offers a robust strategy for selective urea sensing in complicated matrices.


Subject(s)
Carbon , Copper , Fluorescent Dyes , Limit of Detection , Quantum Dots , Spectrometry, Fluorescence , Urea , Urease , Urea/analysis , Urea/chemistry , Urease/chemistry , Copper/chemistry , Carbon/chemistry , Hydrogen-Ion Concentration , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals , Milk/chemistry , Azo Compounds/chemistry , Food Contamination/analysis
2.
Biosens Bioelectron ; 263: 116613, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39084044

ABSTRACT

The biomimetic enzyme cascade system plays a key role in biosensing as a sophisticated signal transduction and amplification strategy. However, constructing a regulated enzyme cascade sensing system remains challenging due to the mismatch of multiple enzyme activities and poor stability. Herein, we design an efficient dual-enhanced enzyme cascade hybrid system (UFD-DEC) containing DNA-controlled nanozymes (Fe-cdDNA) and enzyme (urease) via combining the electrostatic contact effect with the hydrogel-directed confinement effect. Precise modulation of Fe-cdDNA nanozyme by DNA offers a means to control its catalytic efficiency. This regulated UFD-DEC system accelerates the reaction rate and provides remarkable stability compared with the free enzyme system. Benefiting from the plasticity properties of hydrogels, a "lab-in-a-tube" platform was constructed by encapsulating UFD-DEC in a microcentrifuge tube. Such a UFD-DEC-based hydrogel tube exhibits sufficient adaptability to profile urea when used in conjunction with a smartphone-assisted image processing algorithm, which on-site delivers urea information with a detection limit of 0.12 mmol L-1. This customizable and inexpensive miniaturized biosensor platform for monitoring urea may facilitate point-of-care testing applications.


Subject(s)
Biosensing Techniques , Hydrogels , Limit of Detection , Urease , Biosensing Techniques/methods , Hydrogels/chemistry , Urease/chemistry , Urea/analysis , Urea/chemistry , DNA, Catalytic/chemistry , DNA/chemistry
3.
Sci Rep ; 14(1): 14658, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918518

ABSTRACT

Previous published data have confirmed that the addition of a citric acid meal improves the accuracy of the 13C-urea breath test (13C-UBT). However, some studies have suggested that a citric acid test meal may not be necessary. Thus, the aim of this study was to evaluate the combination of a 13C-UBT with a citric acid meal for the diagnosis of Helicobacter pylori (Hp) infection in a Chinese population, particularly for patients with results in the gray zone. In this paired self-controlled study, all subjects had previously undergone 13C-UBTs without citric acid meals and were randomly divided into two groups based on different doses of citric acid (a low-dose citric acid group and a high-dose citric acid group, comprising meals with 0.68 g and 3.84 g citric acid powder, respectively). Positive rapid urease test (CLO) test and histology results were considered the 'gold standard'. The mean delta over baseline (DOB) value, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were compared between the two groups, particularly for patients with results in the gray zone. In total, 285 patients were tested. Of these patients, 189 were included in the low-dose citric acid group, and 96 were included in the high-dose citric acid group. Among patients with a positive 13C-UBT result without citric acid [delta over baseline (DOB) value ≥ 4‰, n = 174] and a negative 13C-UBT result without citric acid (DOB value < 4‰, n = 111), 8.0% (14/174) were false positive, and 0.9% (1/111) was false negative as determined by gold standard. Of 14 patients with false positive, 78.6% (11/14) false positive were in the gray zone of 4-10‰. However, there were no false positive 13C-UBT results with citric acid in the the gray zone of 4-10‰. In the comparison of the commercial 13C-UBT with the 13C-UBT in the low-dose citric acid group, the sensitivity, specificity, PPV, NPV and accuracy at 15 min were as follows: 99.1% vs. 99.1%, 97.5% vs. 88.9%, 98.2% vs. 92.2%, 98.8% vs. 98.6% and 98.4% vs. 94.7%, respectively. In the the gray zone of 4.0-10.0‰, the comparison of the commercial 13C-UBT with the 13C-UBT in the low-dose citric acid group, the sensitivity, specificity, PPV, and accuracy at 15 min were as follows: 94.4% vs. 100.0%, 100.0% vs. 0%, 100.0% vs. 75.0% and 95.8% vs. 75.0%, respectively. No significant difference was observed between the 15-min and 30-min measurement intervals in the low- and high-dose citric acid groups, including patients with results in the gray zone. The low-dose citric acid test, with an optimal measurement interval of 15 min, was highly accurate in the diagnosis of Hp infection in the Chinese population, especially for individuals with results in the gray zone.


Subject(s)
Breath Tests , Carbon Isotopes , Citric Acid , Helicobacter Infections , Helicobacter pylori , Urea , Humans , Breath Tests/methods , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Male , Female , Urea/analysis , Middle Aged , Adult , China , Aged , Sensitivity and Specificity , East Asian People
4.
Analyst ; 149(16): 4267-4275, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38904993

ABSTRACT

Vertical flow assay (VFA) is an effective point-of-care (POC) diagnostic tool for widespread application. Nevertheless, the lack of multi-target detection and multi-signal readout capability still remains a challenge. Herein, a brand new VFA scheme for multi-target saliva detection based on electronic tags was proposed, where AlGaN/GaN HEMT sensors modified with different bio-receptors as electronic tags endowed the VFA with multi-target detection capability. In addition, the use of electronic tags instead of optical tags allowed the VFA to simultaneously carry out direct multi-target readouts, which ensure effective POC diagnostics for saliva analysis. Moreover, by integrating a hydrophilically optimized micro-sieve, impurities like sticky filaments, epidermal cells and other large-scale charged particles in saliva were effectively screened, which enabled the direct detection of saliva using AlGaN/GaN HEMT sensors. Glucose, urea, and cortisol were selected to verify the feasibility of the multi-target e-VFA scheme, and the results showed that the limit of detection (LOD) was as low as 100 aM. The linear response was demonstrated in the dynamic range of 100 aM to 100 µM, and the specificity, long-term stability and validity of the actual saliva test were also verified. These results demonstrated that the as-proposed e-VFA has potential for application in saliva detection for simultaneous multi-target detection, and it is expected to achieve the real-time detection of more biological targets in saliva.


Subject(s)
Gallium , Hydrocortisone , Limit of Detection , Saliva , Saliva/chemistry , Gallium/chemistry , Humans , Hydrocortisone/analysis , Glucose/analysis , Urea/analysis , Urea/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Point-of-Care Systems , Aluminum Compounds/chemistry
6.
Anal Methods ; 16(26): 4381-4386, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38896043

ABSTRACT

The abundant bio-markers in saliva provide a new option for non-invasive testing. However, due to the presence of impurities in the saliva background, most of the existing saliva testing methods rely on pre-processing, which limits the application of saliva testing as a convenient means of testing in daily life. Herein, a disposable-gate AlGaN/GaN high electron mobility transistor (HEMT) biosensor integrated with a micro-sieve was introduced to solve the problem of signal interference caused by charged impurities in saliva for HEMT based biosensors, where the micro-sieve was utilized as a pre-treatment unit to remove large particles of impurities from saliva through the size effect and thus greatly improving the accuracy of detection. The experimental results showed that the HEMT based biosensor has excellent linearity (R2 = 0.9977) and a high sensitivity of 6.552 µA dec-1 for urea sensing from 1 fM to 100 mM in 0.1× PBS solution. When it comes to artificial saliva detection, compared to the HEMT sensor without the micro-sieve (sensitivity = 3.07432 µA dec-1), the sensitivity of the HEMT sensor integrated with the micro-sieve showed almost no change. Moreover, to verify that urea can be detected in actual saliva, urea is sensed directly in human saliva. The addition of the microsieve module provides a new way for biosensors to detect specific markers in saliva in real time, and the designed HEMT biosensor with the microsieve function has a wide range of application potential in rapid saliva detection.


Subject(s)
Biosensing Techniques , Gallium , Saliva , Transistors, Electronic , Urea , Gallium/chemistry , Gallium/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Urea/analysis , Urea/chemistry , Saliva/chemistry , Humans , Aluminum Compounds/chemistry , Aluminum Compounds/analysis , Limit of Detection , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Equipment Design
7.
Analyst ; 149(13): 3673-3680, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38819227

ABSTRACT

Benzoylurea (BU) insecticides have been widely used for pest control as third-generation insecticides. Considering that their residues in food may cause adverse effects on human health, the upper limits of BUs remaining in food have been set by the administration. Therefore, it is essential to develop a sensitive and efficient analytical method to determine the residues of BUs in food. Stir bar sorptive extraction (SBSE) is a novel sample preparation technique, and stainless steel wire (SSW) is an ideal substrate for an SBSE device. In this work, a novel SBSE device of SSW jacket-free stir bar with a dumbbell shape was designed and prepared. The conjugated microporous polymer CMP-F6, which possesses a porous structure, high hydrophobicity and rich fluorine-containing functional groups, was immobilized on the surface of SSW by the method of polyacrylonitrile glue adhesion. Compared with previous studies, which used SSW as a substrate, the method of etching partial SSW with hydrochloric acid, on the one hand, made the surface of SSW rough and easy to modify the extraction coating, and on the other hand, converted itself into a dumbbell-shaped structure, which is conducive to improving the extraction efficiency and stability of the SBSE device. The method of SBSE-HPLC-UV was established for determining five BUs. Owing to the hydrophobic interaction and F-F interaction between CMP-F6 and analytes, this method showed good extraction efficiency and had good linearity (R2 ≥ 0.9945) and high sensitivity (LODs in the range of 0.1-0.2 ng mL-1). It was used for the analysis of benzoylurea in an apple juice sample, and the recoveries were 74.3-117.9%.


Subject(s)
Fruit and Vegetable Juices , Polymers , Stainless Steel , Stainless Steel/chemistry , Porosity , Fruit and Vegetable Juices/analysis , Polymers/chemistry , Limit of Detection , Food Contamination/analysis , Urea/chemistry , Urea/analysis , Insecticides/analysis , Insecticides/isolation & purification , Insecticides/chemistry , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Adsorption , Pesticide Residues/analysis , Pesticide Residues/isolation & purification
8.
World J Gastroenterol ; 30(17): 2302-2307, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38813047

ABSTRACT

In this editorial, we discuss the article in the World Journal of Gastroenterology. The article conducts a meta-analysis of the diagnostic accuracy of the urea breath test (UBT), a non-invasive method for detecting Helicobacter pylori (H. pylori) infection in humans. It is based on radionuclide-labeled urea. Various methods, both invasive and non-invasive, are available for diagnosing H. pylori infection, including endoscopy with biopsy, serology for immunoglobulin titers, stool antigen analysis, and UBT. Several guidelines recommend UBTs as the primary choice for diagnosing H. pylori infection and for reexamining after eradication therapy. It is used to be the first choice non-invasive test due to their high accuracy, specificity, rapid results, and simplicity. Moreover, its performance remains unaffected by the distribution of H. pylori in the stomach, allowing a high flow of patients to be tested. Despite its widespread use, the performance characteristics of UBT have been inconsistently described and remain incompletely defined. There are two UBTs available with Food and Drug Administration approval: The 13C and 14C tests. Both tests are affordable and can provide real-time results. Physicians may prefer the 13C test because it is non-radioactive, compared to 14C which uses a radioactive isotope, especially in young children and pregnant women. Although there was heterogeneity among the studies regarding the diagnostic accuracy of both UBTs, 13C-UBT consistently outperforms the 14C-UBT. This makes the 13C-UBT the preferred diagnostic approach. Furthermore, the provided findings of the meta-analysis emphasize the significance of precise considerations when choosing urea dosage, assessment timing, and measurement techniques for both the 13C-UBT and 14C-UBT, to enhance diagnostic precision.


Subject(s)
Breath Tests , Dyspepsia , Helicobacter Infections , Helicobacter pylori , Urea , Adult , Humans , Breath Tests/methods , Carbon Isotopes/analysis , Carbon Radioisotopes , Dyspepsia/microbiology , Dyspepsia/diagnosis , Helicobacter Infections/diagnosis , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Helicobacter pylori/immunology , Sensitivity and Specificity , Urea/analysis , Urea/metabolism , Meta-Analysis as Topic
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692110

ABSTRACT

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Subject(s)
Molecularly Imprinted Polymers , Urea , Urethane , Wine , Urethane/analysis , Urethane/chemistry , Molecularly Imprinted Polymers/chemistry , Urea/analysis , Urea/chemistry , Wine/analysis , Spectrometry, Fluorescence/methods , Azides/chemistry , Limit of Detection , Adsorption , Metal-Organic Frameworks/chemistry , Molecular Imprinting/methods
10.
IEEE Trans Nanobioscience ; 23(3): 403-409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38722715

ABSTRACT

A fiber-optic urea sensor based on surface plasmon resonance (SPR) and Mach-Zehnder interference (MZI) combined principle was designed and implemented. By plating gold film on the single-mode-no-core-thin-core-single-mode fiber structure, we successfully excited both SPR and MZI, and constructed two parallel detection channels for simultaneously measurement of urea concentration and temperature. Urease was immobilized on the gold film by metal-organic zeolite skeleton (ZIF-8), which can not only fix a large number of urease to improve measurement sensitivity of urea, but also protect urease activity to ensure the sensor stability. Experimental results indicate that the designed urea sensor with temperature compensation function can detect urea solution with concentration of 1-9 mM, and the sensitivity is 1.4 nm/mM. The proposed measurement method provides a new choice for monitoring urea concentration in the field of medical diagnosis and human health monitoring.


Subject(s)
Fiber Optic Technology , Surface Plasmon Resonance , Urea , Urease , Urea/chemistry , Urea/analysis , Surface Plasmon Resonance/methods , Surface Plasmon Resonance/instrumentation , Urease/chemistry , Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Equipment Design , Gold/chemistry , Enzymes, Immobilized/chemistry , Interferometry/methods , Interferometry/instrumentation
11.
Vet Res Commun ; 48(4): 2761-2766, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38700811

ABSTRACT

All vertebrates possess a daily rhythm, encompassing a comprehensive set of physiological, cognitive, and behavioral patterns that manifest throughout a 24-hour period. The aim of this study was to compare the effect of crude protein (CP) levels in the diet on the daily rhythm of urea in serum (US) and saliva in alpacas and sheep. Ten alpacas and ten sheep, adult, clinically healthy males, were used; they were maintained in natural light conditions and fed ad libitum with two levels of CP (16 and 7%). Blood and saliva samples were taken every 4 h for 48 h. A two-way ANOVA was conducted to analyze the parameters, including adjusted mean rhythm (MESOR), amplitude, and acrophase. It was found that both US and saliva urea exhibited circadian rhythms with a peak during the midday (10:59 - 12:16 h). The MESOR with low CP diets was higher (P < 0.05) in alpacas. The MESOR of urea levels in saliva was greater (P < 0.05) at the highest level of CP in the diet, with no differences between alpacas and sheep (P > 0.05). The amplitude was greater (P < 0.05) in alpacas and at the high level of CP compared to the low level of CP in the diet. Our findings reveal that both serum and saliva urea levels in alpacas and sheep follow a daily rhythm and the MESOR of US was higher in alpacas when they consume food with low CP content, and this difference disappears when CP levels are increased in the diet.


Subject(s)
Animal Feed , Camelids, New World , Circadian Rhythm , Diet , Saliva , Urea , Animals , Circadian Rhythm/physiology , Urea/analysis , Urea/blood , Urea/metabolism , Camelids, New World/physiology , Saliva/chemistry , Male , Sheep/physiology , Diet/veterinary , Animal Feed/analysis , Dietary Proteins/analysis
12.
Anal Chem ; 96(22): 9159-9166, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38726669

ABSTRACT

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.


Subject(s)
Hydrogels , Lasers , Skin , Sweat , Wearable Electronic Devices , Humans , Skin/chemistry , Skin/metabolism , Hydrogels/chemistry , Sweat/chemistry , Sweat/metabolism , Glucose/analysis , Glucose/metabolism , Urea/chemistry , Urea/analysis , Lactic Acid/analysis , Lactic Acid/chemistry , Liquid Crystals/chemistry , Methylgalactosides
13.
Nanotechnology ; 35(31)2024 May 17.
Article in English | MEDLINE | ID: mdl-38631327

ABSTRACT

Clean room facilities are becoming more popular in both academic and industry settings, including low-and middle-income countries. This has led to an increased demand for cost-effective gas sensors to monitor air quality. Here we have developed a gas sensor using CoNiO2nanoparticles through combustion method. The sensitivity and selectivity of the sensor towards CO2were influenced by the structure of the nanoparticles, which were affected by the reducing agent (biofuels) used during synthesis. Among all reducing agents, urea found to yield highly crystalline and uniformly distributed CoNiO2nanoparticles, which when developed into sensors showed high sensitivity and selectivity for the detection of CO2gas in the presence of common interfering volatile organic compounds observed in cleanroom facilities including ammonia, formaldehyde, acetone, toluene, ethanol, isopropanol and methanol. In addition, the urea-mediated nanoparticle-based sensors exhibited room temperature operation, high stability, prompt response and recovery rates, and excellent reproducibility. Consequently, the synthesis approach to nanoparticle-based, energy efficient and affordable sensors represent a benchmark for CO2sensing in cleanroom settings.


Subject(s)
Carbon Dioxide , Nanoparticles , Urea , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Urea/analysis , Nanoparticles/chemistry , Volatile Organic Compounds/analysis , Silicon Dioxide/chemistry , Reproducibility of Results
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124271, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38613899

ABSTRACT

As an important biomarker for renal related diseases, detection of urea is playing a vital role in human biofluids on clinical diagnosis concern. In this work, a synthetic salicyaldehyde based imine fluorophore was synthesized using sonication method and conjugated with urease which was used as fluorescent biosensor for the detection of urea in serum samples. This enzyme based biosensor has shown a good selectivity and sensitivity towards urea with the linear range from 2 to 80 mM and the detection limit of 73 µM. The sensing response obtain is highly agreeing with existing analytical technique for urea detection which strongly recommends this biosensor for clinical application.


Subject(s)
Biosensing Techniques , Urea , Urease , Humans , Urea/analysis , Urea/blood , Biosensing Techniques/methods , Urease/chemistry , Urease/metabolism , Limit of Detection , Fluorometry/methods , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
15.
ACS Appl Bio Mater ; 7(3): 1621-1642, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38430188

ABSTRACT

Here, iron chalcogenide thin films were developed for the first time by using the less hazardous electrodeposition technique at optimized conditions on an FTO glass substrate. The chalcogenides have different surface, morphological, structural, and optical properties, as well as an enzyme-free sensing behavior toward urea. Numerous small crystallites of about ∼20 to 25 nm for FeSe, ∼18 to 25 nm for FeTe, and ∼18 to 22 nm in diameter for FeSeTe are observed with partial agglomeration under an electron microscope, having a mixed phase of tetragonal and orthorhombic structures of FeSe, FeTe, and, FeSeTe, respectively. Profilometry, XRD, FE-SEM, HR-TEM, XPS, EDX, UV-vis spectroscopy, and FT-IR spectroscopy were used for the analysis of binary and ternary composite semiconductors, FeSe, FeTe, and FeSeTe, respectively. Electrochemical experiments were conducted with the chalcogenide thin films and urea as the analyte in phosphate-buffered media at a pH of ∼ 7.4 in the concentration range of 3-413 µM. Cyclic voltammetry was performed to determine the sensitivity of the prepared electrode at an optimized scan rate of 50 mV s-1. The electrodeposited chalcogenide films appeared with a low detection limit and satisfactory sensitivity, of which the ternary chalcogenide film has the lowest LOD of 1.16 µM and the maximum sensitivity of 74.22 µA µM-1 cm-2. The transition metal electrode has a very wide range of detection limit of 1.25-2400 µM with a short response time of 4 s. This fabricated biosensor is capable of exhibiting almost 75% of its starting activity after 2 weeks of storage in the freezer at 4 °C. Simple methods of preparation, a cost-effective process, and adequate electrochemical sensing of urea confirm that the prepared sensor is suitable as an enzyme-free urea sensor and can be utilized for future studies.


Subject(s)
Chalcogens , Iron , Urea/analysis , Spectroscopy, Fourier Transform Infrared , Chalcogens/chemistry
16.
Environ Res ; 252(Pt 1): 118758, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38527724

ABSTRACT

Under the system of full straw returning, the relationship between soil fungal community diversity and soil physiochemical properties, and the combined application of slow-release nitrogen and urea is unclear. To evaluate its effect and provide an effective strategy for sustainable agricultural production, a 2-year field positioning trial was conducted using maize as the research object. The experiment was designed with two factors: straw treatment(S) and nitrogen fertilizer treatment(N),Six experimental treatments were set up,S1N0,S1N1,S1N2,S1N3,S1N4,S0N2,respectively.Analysis of 54 soil samples revealed 15 fungal phyla and 49 fungal classes. The composition of fungal communities in each treatment was basically the same, but there were significant differences in species abundance. Under total straw returning conditions, the combined application of slow-release nitrogen fertilizer and normal nitrogen fertilizer significantly increased the relative abundance of Ascomycota. During the jointing stage, tasseling stage and maturity stage, S1N4, S1N3 and S1N2 increased by 25.76%, 22.97%, 20.74%; 25.11%, 30.02%, 23.64% and 22.47%, 28.14%, 22.71% respectively compared with S0N2.The relative abundance of Basidiomycota was significantly reduced. Alpha diversity analysis showed that the straw returning mode significantly increased the Shannon index and decreased the Simpson index, which was obvious in the jointing stage and tasseling stage. The principal coordinate analysis analysis results showed that the fungal communities formed different clusters in the horizontal and vertical directions at the three growth stages of corn jointing, tasseling and maturity. At the jointing stage and tasseling stage, the communities of the straw return treatment and the straw removal treatment were separated, and the community distribution of each treatment was not significantly different in the mature stage. Total straw returning combined with slow-release fertilizer significantly (P<0.05) increased the soil organic carbon, nitrate nitrogen and ammonia nitrogen content in each growth period, and increased the soil total nitrogen and hydrolyzable nitrogen content (P>0.05).After the straw was returned to the field, the combined application of slow-release nitrogen fertilizer and common urea had a significant impact on soil urease, catalase, and sucrase activities. Among them, the three enzyme activities were the highest in the S1N3 treatment at the jointing stage and maturity stage, and the S1N4 treatment at the tasseling stage had the highest enzyme activity. Fungal community composition is closely related to environmental factors. Soil organic carbon, urease and catalase are positively correlated with Ascomycota and negatively correlated with Basidiomycota.


Subject(s)
Fertilizers , Fungi , Nitrogen , Soil Microbiology , Soil , Urea , Zea mays , Fertilizers/analysis , Nitrogen/analysis , Soil/chemistry , Urea/analysis , Zea mays/growth & development , Agriculture/methods
17.
Anim Biotechnol ; 35(1): 2322542, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38426941

ABSTRACT

Milk urea (MU) concentration is proposed as an indicator trait for breeding toward reduced nitrogen (N) emissions and leaching in dairy. We selected 20 German Holstein cows based on MU breeding values, with 10 cows each having low (LMUg) and high (HMUg) MU genetic predisposition. Using RNA-seq, we characterized these cows to unravel molecular pathways governing post-absorptive body N pools focusing on renal filtration and reabsorption of nitrogenous compounds, hepatic urea formation and mammary gland N excretion. While we observed minor adjustments in cellular energy metabolism in different tissues associated with different MU levels, no transcriptional differences in liver ammonia detoxification were detected, despite significant differences in MU between the groups. Differential expression of AQP3 and SLC38A2 in the kidney provides evidence for higher urea concentration in the collecting duct of LMU cows than HMU cows. The mammary gland exhibited the most significant differences, particularly in tricarboxylic acid (TCA) cycle genes, amino acid transport, tRNA binding, and casein synthesis. These findings suggest that selecting for lower MU could lead to altered urinary urea (UU) handling and changes in milk protein synthesis. However, given the genetic variability in N metabolism components, the long-term effectiveness of MU-based selection in reducing N emissions remains uncertain.


Subject(s)
Lactation , Milk , Female , Cattle/genetics , Animals , Milk/chemistry , Milk Proteins , Urea/analysis , Urea/metabolism , RNA-Seq , Nitrogen/metabolism , Diet/veterinary
18.
Clin Chem Lab Med ; 62(6): 1118-1125, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38253354

ABSTRACT

OBJECTIVES: Urea and creatinine concentrations in plasma are used to guide hemodialysis (HD) in patients with end-stage renal disease (ESRD). To support individualized HD treatment in a home situation, there is a clinical need for a non-invasive and continuous alternative to plasma for biomarker monitoring during and between cycles of HD. In this observational study, we therefore established the correlation of urea and creatinine concentrations between sweat, saliva and plasma in a cohort of ESRD patients on HD. METHODS: Forty HD patients were recruited at the Dialysis Department of the Catharina Hospital Eindhoven. Sweat and salivary urea and creatinine concentrations were analyzed at the start and at the end of one HD cycle and compared to the corresponding plasma concentrations. RESULTS: A decrease of urea concentrations during HD was observed in sweat, from 27.86 mmol/L to 12.60 mmol/L, and saliva, from 24.70 mmol/L to 5.64 mmol/L. Urea concentrations in sweat and saliva strongly correlated with the concentrations in plasma (ρ 0.92 [p<0.001] and 0.94 [p<0.001], respectively). Creatinine concentrations also decreased in sweat from 43.39 µmol/L to 19.69 µmol/L, and saliva, from 59.00 µmol/L to 13.70 µmol/L. However, for creatinine, correlation coefficients were lower than for urea for both sweat and saliva compared to plasma (ρ: 0.58 [p<0.001] and 0.77 [p<0.001], respectively). CONCLUSIONS: The results illustrate a proof of principle of urea measurements in sweat and saliva to monitor HD adequacy in a non-invasive and continuous manner. Biosensors enabling urea monitoring in sweat or saliva could fill in a clinical need to enable at-home HD for more patients and thereby decrease patient burden.


Subject(s)
Creatinine , Renal Dialysis , Saliva , Sweat , Urea , Humans , Urea/analysis , Urea/blood , Saliva/chemistry , Creatinine/blood , Creatinine/analysis , Sweat/chemistry , Female , Male , Cohort Studies , Middle Aged , Aged , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/blood , Adult , Biomarkers/analysis , Biomarkers/blood
19.
Postgrad Med J ; 100(1181): 179-186, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38079630

ABSTRACT

OBJECTIVES: We determined the common clinical characteristics of patients infected with Helicobacter pylori (H. pylori) and investigated the relationship between H. pylori infection, and clinical symptoms, and gastroscopic manifestations. Our focus was specifically on the clinical manifestations in asymptomatic patients. METHODS: We obtained the physical examination data of patients who underwent the 14C urea breath test between January 2018 and December 2020 at our Hospital. Basic demographic data, questionnaire data on clinical symptoms, and clinical examination data of the patients were also collected, and the correlation analysis was performed. RESULTS: A total of 2863 participants were included in the study. The overall H. pylori infection rate was 26.30%. The clinical symptoms between H. pylori-positive patients and H. pylori-negative patients did not differ significantly (P > .05). However, H. pylori-positive patients exhibited more severe gastroscopic manifestations (P < .001). The 14C urea breath test disintegrations per minute (DPM) values in H. pylori-positive patients correlated with their serum pepsinogen and gastrin-17 levels. With an increase in the DPM value, more combinations of clinical symptoms appeared in the patients. Among H. pylori-positive patients, DPM levels in asymptomatic patients were lower than those in symptomatic patients (P < .001). However, gastroscopic manifestations did not vary significantly between asymptomatic and symptomatic patients (P > .05). CONCLUSION: Patients infected with H. pylori showed no specific gastrointestinal symptoms. Patients with asymptomatic infection showed lower DPM levels, but their gastroscopic manifestations were similar to those of patients with symptomatic infection, and their lesions were more severe than H. pylori-negative people.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Asymptomatic Infections/epidemiology , Urea/analysis , Gastroscopy , Helicobacter Infections/diagnosis , Helicobacter Infections/epidemiology , Carbon Radioisotopes
20.
J Dairy Sci ; 107(5): 3306-3318, 2024 May.
Article in English | MEDLINE | ID: mdl-38101740

ABSTRACT

In dairy cows, the lactating mammary glands synthesize serotonin, which acts in an autocrine-paracrine manner in the glands and is secreted into the periphery. Serotonin signaling during lactation modulates nutrient metabolism in peripheral tissues such as adipose and liver. We hypothesized that the elevation of circulating serotonin during lactation would increase nutrient partitioning to the mammary glands, thereby promoting milk production. Our objective was to elevate circulating serotonin via intravenous infusion of the serotonin precursor 5-hydroxytryptophan (5-HTP) to determine its effects on mammary supply and extraction efficiency of AA, and milk components production. Twenty-two multiparous mid-lactation Holstein cows were intravenously infused with 5-HTP (1 mg/kg body weight) or saline, in a crossover design with two 21-d periods. Treatments were infused via jugular catheters for 1 h/d, on d 1 to 3, 8 to 10, and 15 to 17 of each period, to maintain consistent elevation of peripheral serotonin throughout the period. Milk and blood samples were collected in the last 96 h of each period. Whole-blood serotonin concentration was elevated above saline control for 96 h after the last 5-HTP infusion. Dry matter intake was decreased for cows receiving 5-HTP, and on average they lost body weight over the 21-d period, in contrast to saline cows who gained body weight. Milk production and milk protein yield were lower in cows receiving 5-HTP during the 3 infusion days, but both recovered to saline cow yields in the days after. Although milk fat yield exhibited a day-by-treatment interaction, no significant difference occurred on any given day. Milk urea nitrogen concentration was lower in 5-HTP cows on the days following the end of infusions, but not different from saline cows on infusion days. Meanwhile, plasma urea nitrogen was not affected by 5-HTP infusion. Circulating concentrations of AA were overall transiently decreased by 5-HTP, with concentrations mostly returning to baseline within 7 h after the end of 5-HTP infusion. Mammary extraction efficiency of AA was unaffected by 5-HTP infusion. Overall, both lactation performance and circulating AA were transiently reduced in cows infused with 5-HTP, despite sustained elevation of circulating serotonin concentration.


Subject(s)
5-Hydroxytryptophan , Lactation , Animals , Cattle , Female , Amino Acids/metabolism , Body Weight , Diet/veterinary , Infusions, Intravenous/veterinary , Milk Proteins , Serotonin , Urea/analysis
SELECTION OF CITATIONS
SEARCH DETAIL