Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 723
Filter
1.
Nat Commun ; 15(1): 5705, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977710

ABSTRACT

In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.


Subject(s)
Oxidation-Reduction , Urate Oxidase , Uric Acid , Substrate Specificity , Urate Oxidase/chemistry , Urate Oxidase/metabolism , Uric Acid/chemistry , Uric Acid/metabolism , Uric Acid/urine , Ligands , Humans , Nickel/chemistry , Nickel/metabolism , Binding Sites , Catalytic Domain , Catalysis , Models, Molecular , X-Ray Absorption Spectroscopy
2.
Molecules ; 29(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38930980

ABSTRACT

Two-dimensional MXenes have become an important material for electrochemical sensing of biomolecules due to their excellent electric properties, large surface area and hydrophilicity. However, the simultaneous detection of multiple biomolecules using MXene-based electrodes is still a challenge. Here, a simple solvothermal process was used to synthesis the Ti3C2Tx coated with TiO2 nanosheets (Ti3C2Tx@TiO2 NSs). The surface modification of TiO2 NSs on Ti3C2Tx can effectively reduce the self-accumulation of Ti3C2Tx and improve stability. Glassy carbon electrode was modified by Ti3C2Tx@TiO2 NSs (Ti3C2Tx@TiO2 NSs/GCE) and was able simultaneously to detect dopamine (DA), ascorbic acid (AA) and uric acid (UA). Under concentrations ranging from 200 to 1000 µM, 40 to 300 µM and 50 to 400 µM, the limit of detection (LOD) is 2.91 µM, 0.19 µM and 0.25 µM for AA, DA and UA, respectively. Furthermore, Ti3C2Tx@TiO2 NSs/GCE demonstrated remarkable stability and reliable reproducibility for the detection of AA/DA/UA.


Subject(s)
Ascorbic Acid , Dopamine , Nanostructures , Titanium , Uric Acid , Titanium/chemistry , Uric Acid/analysis , Uric Acid/chemistry , Dopamine/analysis , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Nanostructures/chemistry , Limit of Detection , Electrochemical Techniques/methods , Electrodes , Reproducibility of Results , Biosensing Techniques/methods
3.
Biosens Bioelectron ; 261: 116509, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38914028

ABSTRACT

Current advances in non-invasive fluid diagnostics highlight unique benefits for monitoring metabolic diseases. However, the low concentrations and complex compositions of biomarkers in fluids such as sweat, urine, and saliva impose stringent demands on the sensitivity and stability of detection technologies. Here, we developed a high-sensitivity, low-cost instantaneous electrochemical sensor based on the superadditive effect mechanism of Cu-TCPP(Fe)/Mxene (MMs Paper-ECL Sensor), which has been successfully applied for the simultaneous real-time detection of glucose and uric acid. Strong interfacial interactions between Mxene and Cu-TCPP(Fe) were revealed through precise simulation calculations and multi-dimensional characterization analysis, significantly enhancing the sensor's electrocatalytic performance and reaction kinetics. Experimentally, this exceptional electrocatalytic activity was demonstrated in its unprecedented high sensitivity and wide linear detection range for glucose and uric acid, with a non-invasive linear range from 0.001 nM to 5 mM, 0.025 nM-5 mM, detection limits as low as 1.88 aM and 5.80 pM, and stability extending up to 100 days. This represents not only a breakthrough in sensitivity and stability but also provides an effective, low-cost solution that overcomes the limitations of existing electronic devices, enabling multi-channel simultaneous detection. The universality of this sensor holds vast potential for application in the field of non-invasive fluid diagnostics.


Subject(s)
Biosensing Techniques , Copper , Electrochemical Techniques , Glucose , Limit of Detection , Paper , Uric Acid , Biosensing Techniques/methods , Uric Acid/urine , Uric Acid/analysis , Uric Acid/chemistry , Humans , Electrochemical Techniques/methods , Copper/chemistry , Glucose/analysis
4.
Biosens Bioelectron ; 261: 116486, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38861811

ABSTRACT

Current uric acid detection methodologies lack the requisite sensitivity and selectivity for point-of-care applications. Plasmonic sensors, while promising, demand refinement for improved performance. This work introduces a biofunctionalized sensor predicated on surface plasmon resonance to quantify uric acid within physiologically relevant concentration ranges. The sensor employs the covalent immobilization of uricase enzyme using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) crosslinking agents, ensuring the durable adherence of the enzyme onto the sensor probe. Characterization through atomic force microscopy and Fourier transform infrared spectroscopy validate surface alterations. The Langmuir adsorption isotherm model elucidates binding kinetics, revealing a sensor binding affinity of 298.83 (mg/dL)-1, and a maximum adsorption capacity of approximately 1.0751°. The biofunctionalized sensor exhibits a sensitivity of 0.0755°/(mg/dL), a linear correlation coefficient of 0.8313, and a limit of detection of 0.095 mg/dL. Selectivity tests against potentially competing interferents like glucose, ascorbic acid, urea, D-cystine, and creatinine showcase a significant resonance angle shift of 1.1135° for uric acid compared to 0.1853° for interferents at the same concentration. Significantly, at a low uric acid concentration of 0.5 mg/dL, a distinct shift of 0.3706° was observed, setting it apart from the lower values noticed at higher concentrations for all typical interferent samples. The uricase enzyme significantly enhances plasmonic sensors for uric acid detection, showcasing a seamless integration of optical principles and biological recognition elements. These sensors hold promise as vital tools in clinical and point-of-care settings, offering transformative potential in biosensing technologies and the potential to revolutionize healthcare outcomes in biomedicine.


Subject(s)
Biosensing Techniques , Enzymes, Immobilized , Gold , Surface Plasmon Resonance , Urate Oxidase , Uric Acid , Urate Oxidase/chemistry , Uric Acid/chemistry , Uric Acid/analysis , Gold/chemistry , Humans , Enzymes, Immobilized/chemistry , Biosensing Techniques/methods , Limit of Detection , Metal Nanoparticles/chemistry , Succinimides
5.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38831060

ABSTRACT

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Subject(s)
Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
6.
Int J Nanomedicine ; 19: 5297-5316, 2024.
Article in English | MEDLINE | ID: mdl-38859955

ABSTRACT

Propose: Oxyberberine (OBB), one of the main metabolites of berberine derived from intestinal and erythrocyte metabolism, exhibits appreciable anti-hyperuricemic activity. However, the low water solubility and poor plasma concentration-effect relationship of OBB hamper its development and utilization. Therefore, an OBB-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) supersaturated drug delivery system (SDDS) was prepared and characterized in this work. Methods: OBB-HP-ß-CD SDDS was prepared using the ultrasonic-solvent evaporation method and characterized. Additionally, the in vitro and in vivo release experiments were conducted to assess the release kinetics of OBB-HP-ß-CD SDDS. Subsequently, the therapeutic efficacy of OBB-HP-ß-CD SDDS on hyperuricemia (HUA) was investigated by means of histopathological examination and evaluation of relevant biomarkers. Results: The results of FT-IR, DSC, PXRD, NMR and molecular modeling showed that the crystallized form of OBB was transformed into an amorphous OBB-HP-ß-CD complex. Dynamic light scattering indicated that this system was relatively stable and maintained by formation of nanoaggregates with an average diameter of 23 nm. The dissolution rate of OBB-HP-ß-CD SDDS was about 5 times higher than that of OBB raw material. Furthermore, the AUC0-t of OBB-HP-ß-CD SDDS (10.882 µg/mL*h) was significantly higher than that of the raw OBB counterpart (0.701 µg/mL*h). The oral relative bioavailability of OBB-HP-ß-CD SDDS was also enhanced by 16 times compared to that of the raw material. Finally, in vivo pharmacodynamic assay showed the anti-hyperuricemic potency of OBB-HP-ß-CD SDDS was approximately 5-10 times higher than that of OBB raw material. Conclusion: Based on our findings above, OBB-HP-ß-CD SDDS proved to be an excellent drug delivery system for increasing the solubility, dissolution, bioavailability, and anti-hyperuricemic potency of OBB.


Subject(s)
Berberine , Animals , Berberine/pharmacokinetics , Berberine/chemistry , Berberine/administration & dosage , Berberine/pharmacology , Male , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/pharmacokinetics , Hyperuricemia/drug therapy , Hyperuricemia/blood , Drug Delivery Systems/methods , Solubility , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley , Drug Liberation , Particle Size , Biological Availability , Uric Acid/chemistry , Uric Acid/blood
7.
Int J Nanomedicine ; 19: 5139-5156, 2024.
Article in English | MEDLINE | ID: mdl-38859954

ABSTRACT

Introduction: Although flavonoid compounds exhibit various pharmacological activities, their clinical applications are restricted by low oral bioavailability owing to their poor solubility. Nanocrystals (NCs) represent an excellent strategy for enhancing the oral bioavailability of flavonoids. Hydroxyethyl starch (HES), a biomaterial compound used as a plasma expander, could be an ideal stabilizer material for preparing flavonoid NCs. Methods: HES was used to stabilize flavonoid nanocrystals (NCs), using luteolin (LUT) as a model drug. After full characterization, the freeze-drying and storage stability, solubility, intestinal absorption, pharmacokinetics, and in vivo anti-hyperuricemic effect of the optimized HES-stabilized LUT NCs (LUT-HES NCs) were investigated. Results: Uniformed LUT-HES NCs were prepared with mean particle size of 191.1±16.8 nm, zeta potential of about -23 mV, drug encapsulation efficiency of 98.52 ± 1.01%, and drug loading of 49.26 ± 0.50%. The freeze-dried LUT-HES NCs powder showed good re-dispersibility and storage stability for 9 months. Notably, compared with the coarse drug, LUT-HES NCs exhibited improved saturation solubility (7.49 times), increased drug dissolution rate, enhanced Caco-2 cellular uptake (2.78 times) and oral bioavailability (Fr=355.7%). Pharmacodynamic studies showed that LUT-HES NCs remarkably lowered serum uric acid levels by 69.93% and ameliorated renal damage in hyperuricemic mice. Conclusion: HES is a potential stabilizer for poorly soluble flavonoid NCs and provides a promising strategy for the clinical application of these compounds. LUT-HES NCs may be an alternative or complementary strategy for hyperuricemia treatment.


Subject(s)
Hydroxyethyl Starch Derivatives , Hyperuricemia , Luteolin , Nanoparticles , Animals , Nanoparticles/chemistry , Hydroxyethyl Starch Derivatives/chemistry , Hydroxyethyl Starch Derivatives/pharmacokinetics , Hydroxyethyl Starch Derivatives/administration & dosage , Hydroxyethyl Starch Derivatives/pharmacology , Luteolin/pharmacokinetics , Luteolin/pharmacology , Luteolin/chemistry , Luteolin/administration & dosage , Mice , Caco-2 Cells , Hyperuricemia/drug therapy , Hyperuricemia/blood , Humans , Male , Particle Size , Disease Models, Animal , Solubility , Uric Acid/blood , Uric Acid/chemistry , Biological Availability , Administration, Oral , Drug Stability
8.
Nat Commun ; 15(1): 5039, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866775

ABSTRACT

Urate, the physiological form of uric acid and a potent antioxidant in serum, plays a pivotal role in scavenging reactive oxygen species. Yet excessive accumulation of urate, known as hyperuricemia, is the primary risk factor for the development of gout. The high-capacity urate transporter GLUT9 represents a promising target for gout treatment. Here, we present cryo-electron microscopy structures of human GLUT9 in complex with urate or its inhibitor apigenin at overall resolutions of 3.5 Å and 3.3 Å, respectively. In both structures, GLUT9 exhibits an inward open conformation, wherein the substrate binding pocket faces the intracellular side. These structures unveil the molecular basis for GLUT9's substrate preference of urate over glucose, and show that apigenin acts as a competitive inhibitor by occupying the substrate binding site. Our findings provide critical information for the development of specific inhibitors targeting GLUT9 as potential therapeutics for gout and hyperuricemia.


Subject(s)
Apigenin , Cryoelectron Microscopy , Glucose Transport Proteins, Facilitative , Uric Acid , Humans , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Glucose Transport Proteins, Facilitative/chemistry , Uric Acid/metabolism , Uric Acid/chemistry , Apigenin/pharmacology , Apigenin/chemistry , Binding Sites , Protein Binding , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Models, Molecular , Gout/drug therapy , Gout/metabolism , HEK293 Cells
9.
Talanta ; 276: 126247, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759358

ABSTRACT

This work presents a significant investigation involving both electrochemical experiment and quantum chemical simulation approaches. The objective was to characterize the electrochemical detection of dopamine (DA). The detection was carried out using a modified carbon paste electrode (CPE) incorporating bentonite (Bent) and l-cysteine (CySH) (named as CySH/Bent/CPE). To understand and explain the oxidation mechanism of DA on the CySH/Bent modified electrode surface, the coupling of the two approaches were exploited. The CySH/Bent/CPE showed excellent electroactivity toward DA such as good sensibility, selectivity, stability, and regenerative ability. The developed sensor shows a dynamic linear range from 0.8 to 80 µM with a limit of detection and quantification of 0.5 µM and 1.5 µM, respectively. During the quantitative analysis of DA in presence of ascorbic acid (AA) and uric acid (UA) the electrochemical oxidation signals of AA, DA, and UA distinctly appear as three separate peaks. The potential differences between the peaks are 190 mv, 150 mv, and 340 mV for the AA-DA, DA-UA, and AA-UA oxidation pairs, respectively. These observations stem from square wave voltammetry (SWV) studies, along with the corresponding redox peak potential separations. The developed sensor is simple and accurate to monitor DA in human serum samples. On the other hand, CySH acts as an electrocatalyst on the CySH/Bent/CPE surface by increasing its active electron transfer sites, as suggested by the quantum chemical modeling with analytical results of Fukui. Furthermore, the voltammetric results obtained agree well with the theoretical calculations.


Subject(s)
Bentonite , Carbon , Cysteine , Dopamine , Electrochemical Techniques , Electrodes , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Cysteine/chemistry , Cysteine/analysis , Cysteine/blood , Carbon/chemistry , Bentonite/chemistry , Electrochemical Techniques/methods , Quantum Theory , Oxidation-Reduction , Limit of Detection , Humans , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis
10.
Nano Lett ; 24(22): 6634-6643, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38742828

ABSTRACT

The effect of strong metal-support interaction (SMSI) has never been systematically studied in the field of nanozyme-based catalysis before. Herein, by coupling two different Pd crystal facets with MnO2, i.e., (100) by Pd cube (Pdc) and (111) by Pd icosahedron (Pdi), we observed the reconstruction of Pd atomic structure within the Pd-MnO2 interface, with the reconstructed Pdc (100) facet more disordered than Pdi (111), verifying the existence of SMSI in such coupled system. The rearranged Pd atoms in the interface resulted in enhanced uricase-like catalytic activity, with Pdc@MnO2 demonstrating the best catalytic performance. Theoretical calculations suggested that a more disordered Pd interface led to stronger interactions with intermediates during the uricolytic process. In vitro cell experiments and in vivo therapy results demonstrated excellent biocompatibility, therapeutic effect, and biosafety for their potential hyperuricemia treatment. Our work provides a brand-new perspective for the design of highly efficient uricase-mimic catalysts.


Subject(s)
Hyperuricemia , Manganese Compounds , Oxides , Urate Oxidase , Hyperuricemia/drug therapy , Urate Oxidase/chemistry , Urate Oxidase/therapeutic use , Urate Oxidase/metabolism , Oxides/chemistry , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Humans , Palladium/chemistry , Palladium/pharmacology , Animals , Catalysis , Uric Acid/chemistry , Mice
11.
Anal Chem ; 96(21): 8630-8640, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722183

ABSTRACT

Development of reliable methods for the detection of potential biomarkers is of the utmost importance for an early diagnosis of critical diseases and disorders. In this study, a novel lanthanide-functionalized carbon dot-based fluorescent probe Zn-CD@Eu is reported for the ratiometric detection of dipicolinic acid (DPA) and uric acid (UA). The Zn-CD@Eu nanoprobe was obtained from a simple room-temperature reaction of zinc-doped carbon dots (Zn-CD) and the EDTA-Eu lanthanide complex. Under optimal conditions, a good linear response was obtained for DPA in two concentration ranges of 0-55 and 55-100 µM with a limit of detection of 0.53 and 2.2 µM respectively, which is significantly below the infectious dosage of anthrax (∼55 µM). Furthermore, the Zn-CD@Eu/DPA system was employed for the detection of UA with a detection limit of 0.36 µM in the linear range of 0-100 µM. The fluorescent probe was successfully implemented for determining DPA and UA in human blood serum, sweat, and natural water bodies with considerable recovery rates. In addition, the potential of the nanoprobe for ex vivo visualization of UA was demonstrated in fruit fly (Drosophila melanogaster) as a model organism.


Subject(s)
Fluorescent Dyes , Picolinic Acids , Uric Acid , Zinc , Fluorescent Dyes/chemistry , Picolinic Acids/analysis , Picolinic Acids/chemistry , Uric Acid/analysis , Uric Acid/chemistry , Humans , Zinc/chemistry , Zinc/analysis , Animals , Europium/chemistry , Quantum Dots/chemistry , Cadmium/analysis , Cadmium/chemistry , Carbon/chemistry , Limit of Detection , Optical Imaging , Drosophila melanogaster
12.
ACS Nano ; 18(21): 13794-13807, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38741414

ABSTRACT

Gout flare-up, commonly resulting from monosodium urate monohydrate (MSUM) crystallization, has led to painful inflammatory arthritis among hundreds of millions of people. Herein, a kind of hydrogel nanoparticles (HNPs) with specific properties was developed, aimed at providing a promising pathway for MSUM crystallization control. The experimental and molecular dynamics simulation results synchronously indicate that the fabricated HNPs achieve efficient inhibition of MSUM crystallization governed by the mechanism of "host-guest interaction" even under very low-dose administration. HNPs as the host dispersed in the hyperuricemic model effectively lift the relative heterogeneous nucleation barrier of the MSUM crystal and hinder solute aggregation with strong electronegativity and hydrophobicity. The initial appearance of MSUM crystals was then delayed from 94 to 334 h. HNPs as the guest on the surface of the formed crystal can decelerate the growth rate by anchoring ions and occupying the active sites on the surface, and the terminal yield of the MSUM crystal declined to less than 1% of the control group. The good biocompatibility of HNPs (cell viability > 94%) renders it possible for future clinical applications. This study can guide the rational design of inhibitory nanomaterials and the development of their application in the control of relevant pathological crystallization.


Subject(s)
Crystallization , Hydrogels , Molecular Dynamics Simulation , Nanoparticles , Uric Acid , Uric Acid/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Animals , Cell Survival/drug effects , Mice , Particle Size , Ions/chemistry , Surface Properties
13.
Am J Biol Anthropol ; 184(3): e24938, 2024 07.
Article in English | MEDLINE | ID: mdl-38623788

ABSTRACT

OBJECTIVES: This research aimed to replicate the Swinson, D., Snaith, J., Buckberry, J., & Brickley, M. (2010). High performance liquid chromatography (HPLC) in the investigation of gout in paleopathology. International Journal of Osteoarchaeology, 20, 135-143. https://doi.org/10.1002/oa.1009 method for detecting uric acid in archeological human remains to investigate gout in past populations and to improve the original High Performance Liquid Chromatography-ultraviolet (HPLC-UV) method by using HPLC-mass spectrometry (HPLC-MS), a more sensitive, compound-specific detection method. MATERIALS AND METHODS: We used reference samples of uric acid to create a dilution series to assess the limits of quantification and detection. Samples from individuals with and without gout lesions were taken from foot bones and ribs from the English cemeteries of Tanyard, Hickleton, Gloucester, and Lincoln. RESULTS: We could not replicate the results of Swinson and colleagues using HPLC-UV. Tests using a dilution series of uric acid showed HPLC-MS was approximately 100× more sensitive than HPLC-UV, with the additional benefit of being compound specific. A newly developed hydrophilic interaction chromatography (HILIC) method improved retention characteristics. Fourteen samples from eight individuals, five with skeletal lesions consistent with gout, were analyzed with the final method. None showed evidence of uric acid despite the newly developed method's improved sensitivity and specificity. DISCUSSION: The lack of detectable uric acid extracted from these samples suggests that (1) urate crystals were not present in any of the bone samples, regardless of gout status; (2) urate crystals did not survive these specific archeological conditions; or (3) the concentration of uric acid in our bone extracts was low, and thus larger samples would be required.


Subject(s)
Gout , Uric Acid , Humans , Chromatography, High Pressure Liquid/methods , Uric Acid/analysis , Uric Acid/chemistry , Gout/diagnosis , Body Remains/chemistry , Mass Spectrometry/methods
14.
STAR Protoc ; 5(2): 103030, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38678566

ABSTRACT

Gout is caused by the deposition of monosodium urate crystals (MSUc) in the joints, triggering a unique inflammatory and metabolic response in macrophages. Here, we present a protocol to generate MSUc for in vitro and in vivo studies in mouse and human cells. We describe steps for dissolving uric acid followed by crystallizing, purifying, evaluating, and analyzing MSUc. We then detail procedures for stimulating human/mouse-derived macrophages and determining endotoxin levels in MSUc preparation.


Subject(s)
Crystallization , Gout , Macrophages , Uric Acid , Uric Acid/metabolism , Uric Acid/chemistry , Animals , Humans , Mice , Macrophages/metabolism , Gout/metabolism
15.
Colloids Surf B Biointerfaces ; 238: 113913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608463

ABSTRACT

A gout attack could be viewed as a nucleation event. Many reports have shown that the typical molecular structure of crystallization inhibitors usually contains carboxyl and hydroxyl groups, which could interact with solute molecules through hydrogen bonding, thereby suppressing the nucleation and growth of crystals. Since 1923, l-lactic acid (LA), a molecule with structural features of inhibitors, has been speculated to be a trigger for acute gout because metabolized LA temporarily reduces uric acid excretion and leads to a slow increase in serum uric acid concentration. However, many cases of gout presumably triggered by elevated lactate in a very short period of 4 h are often inexplicable. Here, we present the unexpected result that LA has a significant "opposite effect" on the nucleation and growth of gouty pathological crystals, which is that as the concentration of the additive LA increases, the nucleation and growth of the crystals is suppressed and then facilitated. This approach may help our clarifying the long-standing "misunderstandings" and further understanding the association between metabolized LA and increased risk of gout attacks. Finally, a novel mechanism called "tailed-made occupancy (TMO)" was used to explain the nucleation and crystallization effects of LA on sodium urate monohydrate (MSUM).


Subject(s)
Crystallization , Gout , Lactic Acid , Uric Acid , Gout/metabolism , Lactic Acid/chemistry , Lactic Acid/metabolism , Humans , Uric Acid/chemistry , Uric Acid/metabolism
16.
Anal Methods ; 16(16): 2496-2504, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38578053

ABSTRACT

This work describes an electrochemical sensor for the fast noninvasive detection of uric acid (UA) in saliva. The sensing material was based on a cobalt-containing Prussian blue analogue (Na2-xCo[Fe(CN)6]1-y, PCF). By optimizing the ratio of Co and Fe as 1.5 : 1 in PCF (PCF1.5,0), particles with a regular nanocubic morphology were formed. The calcination of PCF1.5,0 produced a carbon-coated CoFe alloy (CCF1.5), which possessed abundant defects and achieved an excellent electrochemical performance. Subsequently, CCF1.5 was modified on a screen-printed carbon electrode (SPCE) to fabricate the electrochemical sensor, CCF1.5/SPCE, which showed a sensitive and selective response toward salivary UA owing to its good conductivity, sufficient surface active sites and efficient catalytic activity. The determination of UA in artificial saliva achieved the wide linear range of 40 nM-30 µM and the low limit of detection (LOD) of 15.3 nM (3σ/s of 3). The performances of the sensor including its reproducibility, stability and selectivity were estimated to be satisfactory. The content of UA in human saliva was determined and the recovery was in the range of 98-107% and the total RSD was 4.14%. The results confirmed the reliability of CCF1.5/SPCE for application in noninvasive detection.


Subject(s)
Alloys , Carbon , Cobalt , Electrochemical Techniques , Ferrocyanides , Uric Acid , Uric Acid/chemistry , Uric Acid/analysis , Ferrocyanides/chemistry , Cobalt/chemistry , Carbon/chemistry , Humans , Electrochemical Techniques/methods , Alloys/chemistry , Iron/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Saliva/chemistry , Reproducibility of Results , Electrodes
17.
Anal Sci ; 40(5): 951-958, 2024 May.
Article in English | MEDLINE | ID: mdl-38598048

ABSTRACT

Daily monitoring of serum uric acid levels is very important to provide appropriate treatment according to the constitution and lifestyle of individual hyperuricemic patients. We have developed a suspension-based assay to measure uric acid by adding a sample solution to the suspension containing micro-sized particles immobilized on uricase and horseradish peroxidase (HRP). In the proposed method, the mediator reaction of uricase, HRP, and uric acid produces resorufin from Amplex red. This resorufin is adsorbed onto enzyme-immobilized micro-sized particles simultaneously with its production, resulting in the red color of the micro-sized particles. The concentration of resorufin on the small surface area of the microscopic particles achieves a colorimetric analysis of uric acid with superior visibility. In addition, ethanol-induced desorption of resorufin allowed quantitative measurement of uric acid using a 96-well fluorescent microplate reader. The limit of detection (3σ) and RSD (n = 3) were estimated to be 2.2 × 10-2 µg/mL and ≤ 12.1%, respectively. This approach could also be applied to a portable fluorometer.


Subject(s)
Colorimetry , Enzymes, Immobilized , Fluorometry , Horseradish Peroxidase , Urate Oxidase , Uric Acid , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Urate Oxidase/chemistry , Urate Oxidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Particle Size , Humans , Suspensions , Oxazines/chemistry
18.
J Colloid Interface Sci ; 667: 450-459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38643742

ABSTRACT

Single-atom catalysts (SACs) have attracted extensive attention in the field of catalysis due to their excellent catalytic ability and enhanced atomic utilization, but the multi-mode single-atom nanozymes for biosensors remain a challenging issue. In this work, iron-doped carbon dots (Fe CDs) were loaded onto the edges and pores of Mo SACs with nanoflower morphology; accordingly, a composite material Fe CDs/Mo SACs was prepared successfully, which improves the catalytic performance and develops a fluorescence mode without changing the original morphology. The steady-state kinetic data indicates that the material prepared have better affinity for substrates and faster reaction rates under optimized conditions. The specific kinetic parameters Km and Vmax were calculated as 0.39 mM and 7.502×10-7 M·s-1 respectively. The excellent peroxidase-like activity of Fe CDs/Mo SACs allows H2O2 to decompose into •OH, which in turn oxidizes colorless o-phenylenediamine (OPD) to yellow 2,3-diaminophenazine (DAP). At the same time, the fluorescence signal of Fe CDs/Mo SACs quenches obviously by DAP at 460 nm through internal filtration effect (IFE), while the characteristic fluorescence response of DAP gradually increases at 590 nm. Based on this sensing mechanism, a sensitive and accurate dual-mode (colorimetric and ratiometric fluorescent) sensor was constructed to detect H2O2 and uric acid, and the rate of recovery and linearity were acceptable for the detection of UA in human serum and urine samples. This method provides a new strategy for rapid and sensitive detection of UA, and also broadens the development of SACs in the field of biosensors.


Subject(s)
Carbon , Hydrogen Peroxide , Iron , Molybdenum , Quantum Dots , Uric Acid , Uric Acid/analysis , Uric Acid/urine , Uric Acid/blood , Uric Acid/chemistry , Molybdenum/chemistry , Hydrogen Peroxide/analysis , Hydrogen Peroxide/chemistry , Carbon/chemistry , Iron/chemistry , Quantum Dots/chemistry , Catalysis , Humans , Biosensing Techniques , Limit of Detection , Particle Size , Nanostructures/chemistry , Surface Properties , Phenylenediamines/chemistry
19.
Food Chem ; 448: 139076, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38537545

ABSTRACT

One of the main reasons for hyperuricemia is high purine intake. The primary strategy for treating hyperuricemia is blocking the purine metabolism enzyme. However, by binding the purine bases directly, we suggested a unique therapeutic strategy that might interfere with purine metabolism. There have been numerous reports of extensive interactions between proteins and purine bases. Adenine, constituting numerous protein co-factors, can interact with the adenine-binding motif. Using Bayesian Inference and Markov chain Monte Carlo sampling, we created a novel adenine-binding peptide Ile-Tyr-Val-Thr based on the structure of the adenine-binding motifs. Ile-Tyr-Val-Thr generates a semi-pocket that can clip the adenine within, as demonstrated by docking. Then, using thermodynamic techniques, the interaction between Ile-Tyr-Val-Thr and adenine was confirmed. The KD value is 1.50e-5 (ΔH = -20.2 kJ/mol and ΔG = -27.6 kJ/mol), indicating the high affinity. In brief, the adenine-binding peptide Ile-Tyr-Val-Thr may help lower uric acid level by blocking the absorption of food-derived adenine.


Subject(s)
Adenine , Bayes Theorem , Monte Carlo Method , Peptides , Adenine/chemistry , Adenine/metabolism , Peptides/chemistry , Peptides/metabolism , Molecular Docking Simulation , Protein Binding , Hyperuricemia/metabolism , Humans , Thermodynamics , Uric Acid/chemistry , Uric Acid/metabolism , Binding Sites
20.
Analyst ; 149(9): 2728-2737, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38525963

ABSTRACT

This work presents the synthesis and characterization of an innovative F,S-doped carbon dots/CuONPs hybrid nanostructure obtained by a direct mixture between F,S-doped carbon dots obtained electrochemically and copper nitrate alcoholic solution. The hybrid nanostructures synthesized were characterized by absorption spectroscopy in the Ultraviolet region (UV-vis), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and different electrochemical techniques. The fluoride and sulfur-doped carbon dots/CuONPs nanostructures were used to prepare a non-enzymatic biosensor on a printed carbon electrode, exhibiting excellent electrocatalytic activity for the simultaneous determination of NADH, dopamine, and uric acid in the presence of ascorbic acid with a detection limit of 20, 80, and 400 nmol L-1, respectively. The non-enzymatic biosensors were also used to determine NADH, dopamine, and uric acid in plasma, and they did not suffer significant interference from each other.


Subject(s)
Biosensing Techniques , Carbon , Copper , Dopamine , Electrochemical Techniques , Limit of Detection , NAD , Uric Acid , Uric Acid/blood , Uric Acid/chemistry , Biosensing Techniques/methods , Dopamine/blood , Dopamine/analysis , Carbon/chemistry , NAD/chemistry , NAD/blood , Copper/chemistry , Electrochemical Techniques/methods , Humans , Sulfur/chemistry , Fluorides/chemistry , Quantum Dots/chemistry , Nanostructures/chemistry , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...