Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 342
Filter
1.
J Exp Clin Cancer Res ; 42(1): 270, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858159

ABSTRACT

BACKGROUND: Epithelial ovarian cancer (EOC) is a global health burden, with the poorest five-year survival rate of the gynecological malignancies due to diagnosis at advanced stage and high recurrence rate. Recurrence in EOC is driven by the survival of chemoresistant, stem-like tumor-initiating cells (TICs) that are supported by a complex extracellular matrix and immunosuppressive microenvironment. To target TICs to prevent recurrence, we identified genes critical for TIC viability from a whole genome siRNA screen. A top hit was the cancer-associated, proteoglycan subunit synthesis enzyme UDP-glucose dehydrogenase (UGDH). METHODS: Immunohistochemistry was used to characterize UGDH expression in histological and molecular subtypes of EOC. EOC cell lines were subtyped according to the molecular subtypes and the functional effects of modulating UGDH expression in vitro and in vivo in C1/Mesenchymal and C4/Differentiated subtype cell lines was examined. RESULTS: High UGDH expression was observed in high-grade serous ovarian cancers and a distinctive survival prognostic for UGDH expression was revealed when serous cancers were stratified by molecular subtype. High UGDH was associated with a poor prognosis in the C1/Mesenchymal subtype and low UGDH was associated with poor prognosis in the C4/Differentiated subtype. Knockdown of UGDH in the C1/mesenchymal molecular subtype reduced spheroid formation and viability and reduced the CD133 + /ALDH high TIC population. Conversely, overexpression of UGDH in the C4/Differentiated subtype reduced the TIC population. In co-culture models, UGDH expression in spheroids affected the gene expression of mesothelial cells causing changes to matrix remodeling proteins, and fibroblast collagen production. Inflammatory cytokine expression of spheroids was altered by UGDH expression. The effect of UGDH knockdown or overexpression in the C1/ Mesenchymal and C4/Differentiated subtypes respectively was tested on mouse intrabursal xenografts and showed dynamic changes to the tumor stroma. Knockdown of UGDH improved survival and reduced tumor burden in C1/Mesenchymal compared to controls. CONCLUSIONS: These data show that modulation of UGDH expression in ovarian cancer reveals distinct roles for UGDH in the C1/Mesenchymal and C4/Differentiated molecular subtypes of EOC, influencing the tumor microenvironmental composition. UGDH is a strong potential therapeutic target in TICs, for the treatment of EOC, particularly in patients with the mesenchymal molecular subtype.


Subject(s)
Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Tumor Microenvironment , Uridine Diphosphate Glucose Dehydrogenase , Animals , Female , Humans , Mice , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Prognosis , RNA, Small Interfering/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Uridine Diphosphate Glucose Dehydrogenase/genetics , Uridine Diphosphate Glucose Dehydrogenase/immunology
2.
Oncotarget ; 14: 843-857, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37769033

ABSTRACT

UDP-glucose-6-dehydrogenase (UGDH) is a cytosolic, hexameric enzyme that converts UDP-glucose to UDP-glucuronic acid (UDP-GlcUA), a key reaction in hormone and xenobiotic metabolism and in the production of extracellular matrix precursors. In this review, we classify UGDH as a molecular indicator of tumor progression in multiple cancer types, describe its involvement in key canonical cancer signaling pathways, and identify methods to inhibit UGDH, its substrates, and its downstream products. As such, we position UGDH as an enzyme to be exploited as a potential prognostication marker in oncology and a therapeutic target in cancer biology.


Subject(s)
Neoplasms , Uridine Diphosphate Glucose Dehydrogenase , Humans , Uridine Diphosphate Glucose Dehydrogenase/genetics , Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose , Neoplasms/genetics , Medical Oncology , Glucose , Biology , Glucose Dehydrogenases
3.
PLoS One ; 17(9): e0274420, 2022.
Article in English | MEDLINE | ID: mdl-36107941

ABSTRACT

UDP-glucose dehydrogenase (UGDH) generates essential precursors of hyaluronic acid (HA) synthesis, however mechanisms regulating its activity are unclear. We used enzyme histostaining and quantitative image analysis to test whether cytokines that stimulate HA synthesis upregulate UGDH activity. Fibroblast-like synoviocytes (FLS, from N = 6 human donors with knee pain) were cultured, freeze-thawed, and incubated for 1 hour with UDP-glucose, NAD+ and nitroblue tetrazolium (NBT) which allows UGDH to generate NADH, and NADH to reduce NBT to a blue stain. Compared to serum-free medium, FLS treated with PDGF showed 3-fold higher UGDH activity and 6-fold higher HA release, but IL-1beta/TGF-beta1 induced 27-fold higher HA release without enhancing UGDH activity. In selected proliferating cells, UGDH activity was lost in the cytosol, but preserved in the nucleus. Cell-free assays led us to discover that diaphorase, a cytosolic enzyme, or glutathione reductase, a nuclear enzyme, was necessary and sufficient for NADH to reduce NBT to a blue formazan dye in a 1-hour timeframe. Primary synovial fibroblasts and transformed A549 fibroblasts showed constitutive diaphorase/GR staining activity that varied according to supplied NADH levels, with relatively stronger UGDH and diaphorase activity in A549 cells. Unilateral knee injury in New Zealand White rabbits (N = 3) stimulated a coordinated increase in synovial membrane UGDH and diaphorase activity, but higher synovial fluid HA in only 2 out of 3 injured joints. UGDH activity (but not diaphorase) was abolished by N-ethyl maleimide, and inhibited by peroxide or UDP-xylose. Our results do not support the hypothesis that UGDH is a rate-liming enzyme for HA synthesis under catabolic inflammatory conditions that can oxidize and inactivate the UGDH active site cysteine. Our novel data suggest a model where UGDH activity is controlled by a redox switch, where intracellular peroxide inactivates, and high glutathione and diaphorase promote UGDH activity by maintaining the active site cysteine in a reduced state, and by recycling NAD+ from NADH.


Subject(s)
Synoviocytes , Animals , Cysteine/metabolism , Fibroblasts/metabolism , Formazans , Glucose/pharmacology , Glucose Dehydrogenases/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Humans , Hyaluronic Acid/metabolism , Hyaluronic Acid/pharmacology , Maleimides , NAD/metabolism , Nitroblue Tetrazolium , Oxidation-Reduction , Peroxides , Rabbits , Synoviocytes/metabolism , Transforming Growth Factor beta1/metabolism , Uridine Diphosphate/metabolism , Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Xylose
4.
Clin Transl Med ; 12(8): e995, 2022 08.
Article in English | MEDLINE | ID: mdl-35979621

ABSTRACT

BACKGROUND: Glucuronic acid metabolism participates in cellular detoxification, extracellular matrix remodeling and cell adhesion and migration. Here, we aimed to explore the crosstalk between dysregulated glucuronic acid metabolism and crucial metastatic signalling in glutathione S-transferase zeta 1 (GSTZ1)-deficient hepatocellular carcinoma (HCC). METHODS: Transwell, HCC xenograft and Gstz1-/- mouse models were used to examine the role of GSTZ1 in HCC metastasis. Non-targeted and targeted metabolomics and global transcriptomic analyses were performed to screen significantly altered metabolic and signalling pathways in GSTZ1 overexpressing hepatoma cells. Further, RNA-binding protein immunoprecipitation, Biotin-RNA pull-down, mRNA decay assays and luciferase reporter assays were used to explore the interaction between RNA and RNA-binding proteins. RESULTS: GSTZ1 was universally silenced in both human and murine HCC cells, and its deficiency contributed to HCC metastasis in vitro and in vivo. UDP-glucose 6-dehydrogenase (UGDH)-mediated UDP-glucuronic acid (UDP-GlcUA) accumulation promoted hepatoma cell migration upon GSTZ1 loss. UDP-GlcUA stabilized TGFßR1 mRNA by enhancing its binding to polypyrimidine tract binding protein 3, contributing to the activation of TGFß/Smad signalling. UGDH or TGFßR1 blockade impaired HCC metastasis. In addition, UGDH up-regulation and UDP-GlcUA accumulation correlated with increased metastatic potential and decreased patient survival in GSTZ1-deficient HCC. CONCLUSIONS: GSTZ1 deficiency and subsequent up-regulation of the glucuronic acid metabolic pathway promotes HCC metastasis by increasing the stability of TGFßR1 mRNA and activating TGFß/Smad signalling. UGDH and a key metabolite, UDP-GlcUA, may serve as prognostic markers. Targeting UGDH might be a promising strategy for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Glucuronic Acid , Glutathione Transferase , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , RNA, Messenger/genetics , Transforming Growth Factor beta/genetics , Uridine Diphosphate , Uridine Diphosphate Glucose Dehydrogenase/genetics , Uridine Diphosphate Glucose Dehydrogenase/metabolism
5.
Biochem Biophys Res Commun ; 613: 207-213, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35617808

ABSTRACT

As the first-generation targeted therapy, sorafenib remains an effective single-drug treatment for advanced hepatocellular carcinoma (HCC). Unfortunately, the existence of resistance restricts the long-term benefit of patients. UDP-glucose 6-dehydrogenase (UGDH) is the key enzyme of glucuronic acid metabolism which was largely reported in mediating drug systemic elimination. In this study, we explore its critical role in regulating sorafenib sensitivity. Here we find sorafenib exposure could activate glucuronic acid metabolism, accompanied with the elevated expression of UGDH. Interference with the route by silencing UGDH could boost HCC cells sensitivity to sorafenib. Meanwhile, the analysis of HCC patients with sorafenib treatment displayed that low UGDH expression predicted superior prognosis. Further screening assay suggested that unfolded protein response (UPR) involves in UGDH silencing-mediated apoptosis. Xenograft model confirmed that combined UGDH intervention could significantly improve sorafenib efficacy. Our results reveal the impact of sorafenib exposure on glucuronic acid metabolism reprogramming and provide UGDH as a promising target to improve sorafenib efficacy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Unfolded Protein Response , Uridine Diphosphate Glucose Dehydrogenase , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Glucuronic Acid/metabolism , Humans , Liver Neoplasms/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Xenograft Model Antitumor Assays
6.
Mol Oncol ; 16(9): 1816-1840, 2022 05.
Article in English | MEDLINE | ID: mdl-34942055

ABSTRACT

Metabolic rewiring is one of the indispensable drivers of epithelial-mesenchymal transition (EMT) involved in breast cancer metastasis. In this study, we explored the metabolic changes during spontaneous EMT in three separately established breast EMT cell models using a proteomic approach supported by metabolomic analysis. We identified common proteomic changes, including the expression of CDH1, CDH2, VIM, LGALS1, SERPINE1, PKP3, ATP2A2, JUP, MTCH2, RPL26L1 and PLOD2. Consistently altered metabolic enzymes included the following: FDFT1, SORD, TSTA3 and UDP-glucose dehydrogenase (UGDH). Of these, UGDH was most prominently altered and has previously been associated with breast cancer patient survival. siRNA-mediated knock-down of UGDH resulted in delayed cell proliferation and dampened invasive potential of mesenchymal cells and downregulated expression of the EMT transcription factor SNAI1. Metabolomic analysis revealed that siRNA-mediated knock-down of UGDH decreased intracellular glycerophosphocholine (GPC), whereas levels of acetylaspartate (NAA) increased. Finally, our data suggested that platelet-derived growth factor receptor beta (PDGFRB) signalling was activated in mesenchymal cells. siRNA-mediated knock-down of PDGFRB downregulated UGDH expression, potentially via NFkB-p65. Our results support an unexplored relationship between UGDH and GPC, both of which have previously been independently associated with breast cancer progression.


Subject(s)
Breast Neoplasms , Ketone Oxidoreductases , Breast Neoplasms/pathology , Carbohydrate Epimerases , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Female , Glucose Dehydrogenases , Humans , Proteomics , RNA, Small Interfering , Receptor, Platelet-Derived Growth Factor beta , Uridine Diphosphate , Uridine Diphosphate Glucose Dehydrogenase/metabolism
7.
Microb Pathog ; 159: 105145, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34411653

ABSTRACT

Pasteurella multocida (P. multocida) is a Gram-negative bacterium which causes diseases in poultry, livestock, and humans, resulting in huge economic losses. P. multocida serovar A CQ6 (PmCQ6) is a naturally occurring attenuated strain with a thin capsule. Thus, we aimed to explore why this strain is less virulent and produces less capsule compared with P. multocida serovar A strain CQ2 (PmCQ2). Analysis of capsular polysaccharide synthesis genes in PmCQ6 revealed that, compared with PmCQ2, there was only a single point mutation in the initiation codon sequence of the hyaC gene. To test whether this point mutation caused capsular deficiency and reduced virulence, we rescued this hyaC mutation and observed a restoration of capsule production and higher virulence. Transcriptome analysis showed that the hyaC point mutation led to a downregulation of capsule synthesis and/or iron utilization related-genes. Taken together, the results indicate that the start codon mutation of hyaC is an important factor affecting the capsule synthesis and virulence of PmCQ6.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Uridine Diphosphate Glucose Dehydrogenase/genetics , Humans , Pasteurella Infections/veterinary , Pasteurella multocida/enzymology , Pasteurella multocida/genetics , Point Mutation , Serogroup , Virulence/genetics
8.
Biochemistry ; 60(9): 725-734, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33621065

ABSTRACT

Campylobacter jejuni is a pathogenic organism that can cause campylobacteriosis in children and adults. Most commonly, campylobacter infection is brought on by consumption of raw or undercooked poultry, unsanitary drinking water, or pet feces. Surrounding the C. jejuni bacterium is a coat of sugar molecules known as the capsular polysaccharide (CPS). The capsular polysaccharide can be very diverse among the different strains of C. jejuni, and this diversity is considered important for evading the host immune system. Modifications to the CPS of C. jejuni NCTC 11168 include O-methylation, phosphoramidylation, and amidation of glucuronate with either serinol or ethanolamine. The enzymes responsible for amidation of glucuronate are currently unknown. In this study, Cj1441, an enzyme expressed from the CPS biosynthetic gene cluster in C. jejuni NCTC 11168, was shown to catalyze the oxidation of UDP-α-d-glucose into UDP-α-d-glucuronic acid with NAD+ as the cofactor. No amide products were found in an attempt to determine whether the putative thioester intermediate formed during the oxidation of UDP-glucose by Cj1441 could be captured in the presence of added amines. The three-dimensional crystal structure of Cj1441 was determined in the presence of NAD+ and UDP-glucose bound in the active site of the enzyme (Protein Data Bank entry 7KWS). A more thorough bioinformatic analysis of the CPS gene cluster suggests that the amidation activity is localized to the t-terminal half of Cj1438, a bifunctional enzyme that is currently annotated as a sugar transferase.


Subject(s)
Bacterial Capsules/metabolism , Campylobacter jejuni/enzymology , Polysaccharides/biosynthesis , Uridine Diphosphate Glucose Dehydrogenase/chemistry , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Uridine Diphosphate/metabolism , Catalytic Domain , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation
9.
Biomolecules ; 11(2)2021 02 09.
Article in English | MEDLINE | ID: mdl-33572239

ABSTRACT

UDP-glucose-dehydrogenase (UGDH) synthesizes UDP-glucuronic acid. It is involved in epirubicin detoxification and hyaluronan synthesis. This work aimed to evaluate the effect of UGDH knockdown on epirubicin response and hyaluronan metabolism in MDA-MB-231 breast cancer cells. Additionally, the aim was to determine UGDH as a possible prognosis marker in breast cancer. We studied UGDH expression in tumors and adjacent tissue from breast cancer patients. The prognostic value of UGDH was studied using a public Kaplan-Meier plotter. MDA-MB-231 cells were knocked-down for UGDH and treated with epirubicin. Epirubicin-accumulation and apoptosis were analyzed by flow cytometry. Hyaluronan-coated matrix and metabolism were determined. Autophagic-LC3-II was studied by Western blot and confocal microscopy. Epirubicin accumulation increased and apoptosis decreased during UGDH knockdown. Hyaluronan-coated matrix increased and a positive modulation of autophagy was detected. Higher levels of UGDH were correlated with worse prognosis in triple-negative breast cancer patients that received chemotherapy. High expression of UGDH was found in tumoral tissue from HER2--patients. However, UGDH knockdown contributes to epirubicin resistance, which might be associated with increases in the expression, deposition and catabolism of hyaluronan. The results obtained allowed us to propose UGDH as a new prognostic marker in breast cancer, positively associated with development of epirubicin resistance and modulation of extracellular matrix.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Biomarkers, Tumor/metabolism , Hyaluronic Acid/biosynthesis , Triple Negative Breast Neoplasms/enzymology , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Epirubicin/pharmacology , Female , Humans , Prognosis , Triple Negative Breast Neoplasms/pathology
10.
J Clin Endocrinol Metab ; 106(1): e20-e33, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32968816

ABSTRACT

CONTEXT: CD34+ fibrocytes have been implicated in development of thyroid-associated ophthalmopathy (TAO), a consequential autoimmune manifestation of Graves disease (GD). In TAO, CD34+ fibrocytes appear to masquerade as CD34+ orbital fibroblasts mixed with CD34- OF (collectively, GD-OF). Slit2, an axon guidance glycoprotein, is expressed by CD34- OF and attenuates GD-OF gene expression. Cardinal features of TAO include hyaluronan (HA) accumulation and cytokine-driven inflammation. OBJECTIVE: Compare expression of HA synthase isoenzymes (HAS1-3), UDP-glucose dehydrogenase (UGDH), synthesis of HA, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in fibrocytes and GD-OF. Determine whether Slit2 alters gene expression patterns. DESIGN/SETTING/PARTICIPANTS: Patients with TAO and healthy donors were recruited from an academic practice. MAIN OUTCOME MEASURES: Real-time polymerase chain reaction, HA, IL-6, and TNF-α immunoassays. RESULTS: HA synthesis and release from fibrocytes is substantially lower than in GD-OF. HAS1 expression dominates in fibrocytes while HAS2 in GD-OF. In contrast, HAS2 and UGDH expression dominate GD-OF and localize to CD34- OF. Recombinant human Slit2 (rhSlit2) substantially upregulates HA synthesis and HAS2 expression in fibrocytes but attenuates IL-6 and TNF-α production in these cells. In contrast, knocking down Slit2 in GD-OF reduces HA synthesis and HAS2 and UGDH expression while upregulating IL-6 and TNF-α. CONCLUSION: The dramatic differences in HA, IL-6, and TNF-α production, and HAS and UGDH expression found in fibrocytes and GD-OF appear, at least in part, to be attributable to Slit2. These findings provide novel insight into the differences in gene expression exhibited by CD34+ fibrocytes and CD34+ OF and therefore reveal important aspects of disease pathogenesis.


Subject(s)
Cytokines/metabolism , Fibroblasts/metabolism , Hyaluronic Acid/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Nerve Tissue Proteins/physiology , Case-Control Studies , Cells, Cultured , Fibroblasts/pathology , Graves Disease/complications , Graves Disease/genetics , Graves Disease/metabolism , Graves Disease/pathology , Graves Ophthalmopathy/genetics , Graves Ophthalmopathy/metabolism , Graves Ophthalmopathy/pathology , Humans , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Interleukin-6/metabolism , Orbit/metabolism , Orbit/pathology , Tumor Necrosis Factor-alpha/metabolism , Uridine Diphosphate Glucose Dehydrogenase/genetics , Uridine Diphosphate Glucose Dehydrogenase/metabolism
11.
J Histochem Cytochem ; 69(1): 9-11, 2021 01.
Article in English | MEDLINE | ID: mdl-33180636

ABSTRACT

In times where many people have suffered loss and others of us are dealing with stress, disruption, and fear, there is a lot of comfort to be taken in reading. If we are not able to meet up and discuss our work in person, exploring published studies provides some succor, even without the cheese, wine, and other traditions of our usual get-togethers. Fortunately, recent months have seen many high-quality papers around the topic of glycosaminoglycans. I can only pick up on a very few here, those that I have particularly enjoyed, but the following collection of reviews will also be a treat and hopefully tide us over until our research community can regroup.


Subject(s)
Glycosaminoglycans/metabolism , Animals , Biosynthetic Pathways , Chondroitin Sulfate Proteoglycans/metabolism , Glycocalyx/metabolism , Heparitin Sulfate/metabolism , Humans , Hyaluronan Synthases/metabolism , Hyaluronic Acid/metabolism , Proteoglycans/metabolism , Uridine Diphosphate Glucose Dehydrogenase/metabolism
12.
J Histochem Cytochem ; 69(1): 13-23, 2021 01.
Article in English | MEDLINE | ID: mdl-32749901

ABSTRACT

Regulation of proteoglycan and glycosaminoglycan synthesis is critical throughout development, and to maintain normal adult functions in wound healing and the immune system, among others. It has become increasingly clear that these processes are also under tight metabolic control and that availability of carbohydrate and amino acid metabolite precursors has a role in the control of proteoglycan and glycosaminoglycan turnover. The enzyme uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) produces UDP-glucuronate, an essential precursor for new glycosaminoglycan synthesis that is tightly controlled at multiple levels. Here, we review the cellular mechanisms that regulate UGDH expression, discuss the structural features of the enzyme, and use the structures to provide a context for recent studies that link post-translational modifications and allosteric modulators of UGDH to its function in downstream pathways.


Subject(s)
Proteoglycans/metabolism , Sugars/metabolism , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Allosteric Regulation , Animals , Biosynthetic Pathways , Humans , Models, Molecular , Neoplasms/metabolism , Protein Processing, Post-Translational , Uridine Diphosphate Glucose Dehydrogenase/chemistry
13.
PLoS Genet ; 16(10): e1008926, 2020 10.
Article in English | MEDLINE | ID: mdl-33090996

ABSTRACT

The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models.


Subject(s)
Dwarfism/genetics , F-Box-WD Repeat-Containing Protein 7/genetics , Genome/genetics , Uridine Diphosphate Glucose Dehydrogenase/genetics , Whole Genome Sequencing , Alleles , Animals , Cats , Chromosome Mapping , Genetic Predisposition to Disease , Genomics , Humans , Male , Molecular Sequence Annotation , Phylogeny , Polymorphism, Single Nucleotide/genetics
14.
Int J Biol Macromol ; 165(Pt B): 1656-1663, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33091476

ABSTRACT

In order to increase content of glucuronic acid in the exopolysaccharide (EPS) and its flocculating activity, an UDP-glucose dehydrogenase gene was overexpressed in Lipomyces starkeyi V19. The obtained U9 strain could produce 62.1 ± 1.2 g/l EPS while the V19 strain only produced 53.5 ± 1.3 g/l EPS. The compositions of monosaccharides (mannose, glucuronic acid and galactose) in the purified EPS (U9-EPS) from the U9 strain contained 3.79:1:5.52 while those in the purified EPS (V19-EPS) were 3.94:1:6.29. The flocculation rate of the U9-EPS on kaolin clay reached 87.9%, which was significantly higher than that (74.7%) of the V19-EPS while the decolorization rate of Congo Red (CR) by the U9-EPS reached 94.3%, which was significantly higher than that of CR by the V19-EPS (86.23%). The results showed that the purified bioflocculant U9-EPS had effective flocculation of kaolin clay. The U9-EPS also had high ability to flocculate the polluted river water and decolorize Congo red.


Subject(s)
Lipomyces/enzymology , Polysaccharides/biosynthesis , Uridine Diphosphate Glucose Dehydrogenase/genetics , Batch Cell Culture Techniques , Biomass , Fermentation , Flocculation , Freeze Drying , Kaolin/chemistry , Lipomyces/cytology , Polysaccharides/isolation & purification , Reference Standards , Time Factors , Transformation, Genetic , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Water Pollutants, Chemical/analysis , Water Pollution
15.
J Cell Mol Med ; 24(20): 11883-11902, 2020 10.
Article in English | MEDLINE | ID: mdl-32893977

ABSTRACT

More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.


Subject(s)
Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Actins/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , G1 Phase Cell Cycle Checkpoints , Gene Knockdown Techniques , Humans , MAP Kinase Signaling System , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Neoplasm Invasiveness , Neoplasm Metastasis , Polymerization , Proteomics , RNA, Small Interfering/metabolism , Wound Healing , Xenograft Model Antitumor Assays
16.
FASEB J ; 34(9): 12834-12846, 2020 09.
Article in English | MEDLINE | ID: mdl-32767431

ABSTRACT

Maternal dexamethasone decreases the body length of the newborn. However, whether dexamethasone inhibits the development of the growth plate of the fetal long bone is still unknown. Here, we found that lengths of fetal femur and growth plate were both shorter in the fetuses with maternal dexamethasone (0.2 mg/kg.d from gestation day 9 to 20), with a decreased proteoglycan content of the growth plate in the fetal rat. Notable decreases in both the gene expression and H3K9 acetylation of UDP-glucose dehydrogenase (Ugdh) gene, which codes a key enzyme in the proteoglycan biosynthesis in the chondrocyte, were also observed. Meanwhile, up-regulation of glucocorticoid receptor (GR), specific protein 3 (Sp3), and histone deacetylase 1 (Hdac1) gene expression were detected in the fetal growth plate. Similar changes were also observed in the chondrogenic rat bone marrow stromal cells (BMSCs) with excessive exogenous dexamethasone. However, antagonizing GR with RU486 and silencing Hdac1 or Sp3 with specific siRNAs could all stimulate the H3K9 acetylation and gene expression of Ugdh previously inhibited by dexamethasone. Meanwhile, dexamethasone also induced the nuclear translocation of GR, which further directly bound to the Ugdh promoter and interacted with HDAC1 and Sp3, respectively. Collectively, our study revealed that maternal dexamethasone induced the direct binding of GR to the Ugdh promoter of the chondrocyte in the rat fetal growth plate, which recruited HDAC1 and Sp3, induced deacetylation of the H3K9, and subsequently inhibited Ugdh gene expression. Such changes further led to attenuated proteoglycan synthesis in the developing chondrocyte and therefore disrupted the development of growth plate and fetal long bone.


Subject(s)
Dexamethasone/adverse effects , Femur , Fetal Development/drug effects , Growth Plate , Maternal Exposure/adverse effects , Mesenchymal Stem Cells/drug effects , Animals , Cells, Cultured , Female , Femur/drug effects , Femur/embryology , Femur/pathology , Gene Expression Regulation, Developmental/drug effects , Growth Plate/drug effects , Growth Plate/embryology , Growth Plate/pathology , Histone Deacetylase 1/metabolism , Male , Maternal-Fetal Exchange , Mesenchymal Stem Cells/cytology , Pregnancy , Rats , Rats, Wistar , Receptors, Glucocorticoid/metabolism , Signal Transduction , Sp3 Transcription Factor/metabolism , Uridine Diphosphate Glucose Dehydrogenase/metabolism
17.
Cancer Lett ; 492: 21-30, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32768525

ABSTRACT

Dysregulated metabolism is a hallmark of cancer that supports tumor growth and metastasis. One understudied aspect of cancer metabolism is altered nucleotide sugar biosynthesis, which drives aberrant cell surface glycosylation known to support various aspects of cancer cell behavior including migration and signaling. We examined clinical association of nucleotide sugar pathway gene expression and found that UGDH, encoding UDP-glucose 6-dehydrogenase which catalyzes production of UDP-glucuronate, is associated with worse breast cancer patient survival. Knocking out the mouse homolog Ugdh in highly-metastatic 6DT1 breast cancer cells impaired migration ability without affecting in vitro proliferation. Further, Ugdh-KO resulted in significantly decreased metastatic capacity in vivo when the cells were orthotopically injected in syngeneic mice. Our experiments show that UDP-glucuronate biosynthesis is critical for metastasis in a mouse model of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Lung Neoplasms/secondary , Uridine Diphosphate Glucose Dehydrogenase/physiology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Female , Humans , Mice , Uridine Diphosphate Glucuronic Acid/biosynthesis
18.
BMC Genet ; 21(1): 67, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32605545

ABSTRACT

BACKGROUND: Munchkin cats were founded on a naturally occurring mutation segregating into long-legged and short-legged types. Short-legged cats showed disproportionate dwarfism (chondrodysplasia) in which all four legs are short and are referred as standard Munchkin cats. Long-legged animals are referred as non-standard Munchkin cats. A previous study using genome-wide single nucleotide polymorphisms (SNPs) for genome-wide association analysis identified a significantly associated region at 168-184 Mb on feline chromosome (FCA) B1. RESULTS: In this study, we validated the critical region on FCA B1 using a case-control study with 89 cats and 14 FCA B1-SNPs. A structural variant within UGDH (NC_018726.2:g.173294289_173297592delins108, Felis catus 8.0, equivalent to NC_018726.3:g.174882895_174886198delins108, Felis catus 9.0) on FCA B1 was perfectly associated with the phenotype of short-legged standard Munchkin cats. CONCLUSION: This UGDH structural variant very likely causes the chondrodysplastic (standard) phenotype in Munchkin cats. The lack of homozygous mutant phenotypes and reduced litter sizes in standard Munchkin cats suggest an autosomal recessive lethal trait in the homozygote state. We propose an autosomal dominant mode of inheritance for the chondrodysplastic condition in Munchkin cats.


Subject(s)
Cats/genetics , Uridine Diphosphate Glucose Dehydrogenase/genetics , Animals , Breeding , Case-Control Studies , DNA Mutational Analysis/veterinary , Female , Genes, Lethal , Genes, Recessive , Haplotypes , Homozygote , Male , Mutation , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Whole Genome Sequencing/veterinary
19.
Sci Rep ; 10(1): 10124, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576917

ABSTRACT

Uridine diphosphate glucose dehydrogenases (UGDHs) are critical for synthesizing many nucleotide sugars and help promote the carbohydrate metabolism related to cell wall synthesis. In plants, UGDHs are encoded by a small gene family. Genome-wide analyses of these genes have been conducted in Glycine max and Arabidopsis thaliana, however, the UGDH gene family has not been comprehensively and systematically investigated in moso bamboo (Phyllostachys edulis), which is a special woody grass monocotyledonous species. In this study, we identified nine putative PeUGDH genes. Furthermore, analysis of gene duplication events and divergences revealed that the expansion of the PeUGDH family was mainly due to segmental and tandem duplications approximately 4.76-83.16 million years ago. An examination of tissue-specific PeUGDH expression indicated that more than 77% of the genes were predominantly expressed in the stem. Based on relative expression levels among PeUGDH members in different tissues in moso bamboo, PeUGDH4 was selected for detailed analysis. The results of subcellular localization indicated that PeUGDH4-GFP fusion proteins was observed to be localized in the cytoplasm. The ectopic overexpression of PeUGDH4 in Arabidopsis significantly increased the contents of hemicellulose and soluble sugar, suggesting that PeUGDH4 acts as a key enzyme involved in bamboo cell wall synthesis.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Genomics/methods , Polysaccharides/biosynthesis , Sasa/genetics , Sasa/metabolism , Uridine Diphosphate Glucose Dehydrogenase/genetics , Uridine Diphosphate Glucose Dehydrogenase/physiology , Carbohydrate Metabolism/genetics , Carbohydrate Metabolism/physiology , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Sasa/cytology
20.
Nat Commun ; 11(1): 595, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001716

ABSTRACT

Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.


Subject(s)
Epilepsy/genetics , Genes, Recessive , Loss of Function Mutation/genetics , Oxidoreductases/genetics , Uridine Diphosphate Glucose Dehydrogenase/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Female , Humans , Infant , Kinetics , Male , Organoids/pathology , Oxidoreductases/chemistry , Pedigree , Protein Domains , Syndrome , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...