Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.694
Filter
1.
BMC Womens Health ; 24(1): 448, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118058

ABSTRACT

BACKGROUND: A recent meta-analysis revealed that vagally mediated heart rate variability (vmHRV; a biomarker of emotion regulation capacity) significantly decreases in the luteal phase of the menstrual cycle. As two follow-up studies suggest, these vmHRV decreases are driven primarily by increased luteal progesterone (P4). However, analyses also revealed significant interindividual differences in vmHRV reactivity to the cycle, which is in line with longstanding evidence for interindividual differences in mood sensitivity to the cycle. The present study begins to investigate whether these interindividual differences in vmHRV cyclicity can explain who is at higher risk of showing premenstrual emotional changes. We expected a greater degree of midluteal vmHRV decrease to be predictive of a greater premenstrual increase in negative affect. METHODS: We conducted an observational study with a naturally cycling community sample (N = 31, M = 26.03 years). Over a span of six weeks, participants completed (a) daily ratings of negative affect and (b) counterbalanced lab visits in their ovulatory, midluteal, and perimenstrual phases. Lab visits were scheduled based on positive ovulation tests and included assessments of baseline vmHRV and salivary ovarian steroid levels. RESULTS: In line with previous research, multilevel models suggest that most of the sample shows ovulatory-to-midluteal vmHRV decreases which, however, were not associated with premenstrual emotional changes. Interestingly, it was only the subgroup with luteal increases in vmHRV whose negative affect markedly worsened premenstrually and improved postmenstrually. CONCLUSION: The present study begins to investigate cyclical changes in vmHRV as a potential biomarker of mood sensitivity to the menstrual cycle. The results demonstrate a higher level of complexity in these associations than initially expected, given that only atypical midluteal increases in vmHRV are associated with greater premenstrual negative affect. Potential underlying mechanisms are discussed, among those the possibility that luteal vmHRV increases index compensatory efforts to regulate emotion in those with greater premenstrual negative affect. However, future studies with larger and clinical samples and more granular vmHRV assessments should build on these findings and further explore associations between vmHRV cyclicity and menstrually related mood changes.


Subject(s)
Heart Rate , Luteal Phase , Progesterone , Humans , Female , Luteal Phase/physiology , Luteal Phase/psychology , Heart Rate/physiology , Adult , Progesterone/blood , Emotions/physiology , Affect/physiology , Vagus Nerve/physiology , Young Adult , Premenstrual Syndrome/physiopathology , Premenstrual Syndrome/psychology
2.
Nutrients ; 16(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125278

ABSTRACT

(1) Background: We examined the effect of the acute administration of olive oil (EVOO), linseed oil (GLO), soybean oil (SO), and palm oil (PO) on gastric motility and appetite in rats. (2) Methods: We assessed food intake, gastric retention (GR), and gene expression in all groups. (3) Results: Both EVOO and GLO were found to enhance the rate of stomach retention, leading to a decrease in hunger. On the other hand, the reduction in food intake caused by SO was accompanied by delayed effects on stomach retention. PO caused an alteration in the mRNA expression of NPY, POMC, and CART. Although PO increased stomach retention after 180 min, it did not affect food intake. It was subsequently verified that the absence of an autonomic reaction did not nullify the influence of EVOO in reducing food consumption. Moreover, in the absence of parasympathetic responses, animals that received PO exhibited a significant decrease in food consumption, probably mediated by lower NPY expression. (4) Conclusions: This study discovered that different oils induce various effects on parameters related to food consumption. Specifically, EVOO reduces food consumption primarily through its impact on the gastrointestinal tract, making it a recommended adjunct for weight loss. Conversely, the intake of PO limits food consumption in the absence of an autonomic reaction, but it is not advised due to its contribution to the development of cardiometabolic disorders.


Subject(s)
Appetite Regulation , Hypothalamus , Neuropeptide Y , Olive Oil , Palm Oil , Soybean Oil , Vagus Nerve , Animals , Vagus Nerve/drug effects , Vagus Nerve/physiology , Hypothalamus/metabolism , Hypothalamus/drug effects , Male , Olive Oil/pharmacology , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Palm Oil/pharmacology , Appetite Regulation/drug effects , Soybean Oil/administration & dosage , Soybean Oil/pharmacology , Rats, Wistar , Linseed Oil/pharmacology , Rats , Eating/drug effects , Plant Oils/pharmacology , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Gastrointestinal Motility/drug effects , Gene Expression Regulation/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics
3.
IEEE J Transl Eng Health Med ; 12: 520-532, 2024.
Article in English | MEDLINE | ID: mdl-39050620

ABSTRACT

Slow and deep breathing (SDB) is a relaxation technique that can increase vagal activity. Respiratory sinus arrhythmia (RSA) serves as an index of vagal function usually quantified by the high-frequency power of heart rate variability (HRV). However, the low breathing rate during SDB results in deviations when estimating RSA by HRV. Besides, the impact of the inspiration-expiration (I: E) ratio and guidelines ways (fixed breathing rate or intelligent guidance) on SDB is not yet clear. In our study, 30 healthy people (mean age = 26.5 years, 17 females) participated in three SDB modes, including 6 breaths per minute (bpm) with an I:E ratio of 1:1/ 1:2, and intelligent guidance mode (I:E ratio of 1:2 with guiding to gradually lower breathing rate to 6 bpm). Parameters derived from HRV, multimodal coupling analysis (MMCA), Poincaré plot, and detrended fluctuation analysis were introduced to examine the effects of SDB exercises. Besides, multiple machine learning methods were applied to classify breathing patterns (spontaneous breathing vs. SDB) after feature selection by max-relevance and min-redundancy. All vagal-activity markers, especially MMCA-derived RSA, statistically increased during SDB. Among all SDB modes, breathing at 6 bpm with a 1:1 I:E ratio activated the vagal function the most statistically, while the intelligent guidance mode had more indicators that still significantly increased after training, including SDRR and MMCA-derived RSA, etc. About the classification of breathing patterns, the Naive Bayes classifier has the highest accuracy (92.2%) with input features including LFn, CPercent, pNN50, [Formula: see text], SDRatio, [Formula: see text], and LF. Our study proposed a system that can be applied to medical devices for automatic SDB identification and real-time feedback on the training effect. We demonstrated that breathing at 6 bpm with an I:E ratio of 1:1 performed best during the training phase, while intelligent guidance mode had a more long-lasting effect.


Subject(s)
Breathing Exercises , Heart Rate , Vagus Nerve , Humans , Female , Adult , Male , Vagus Nerve/physiology , Heart Rate/physiology , Breathing Exercises/methods , Respiratory Sinus Arrhythmia/physiology , Respiratory Rate/physiology , Young Adult , Respiration , Signal Processing, Computer-Assisted , Electrocardiography , Machine Learning
4.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-39071113

ABSTRACT

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF, and stimulated using light. RNA sequencing of left ventricular myocardium identified 294 differentially expressed genes (DEGs, false discovery rate <0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z-score of ≥2/≤-2, including EIF-2, IL-2, Integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signalling, inflammation, and hypertrophy. IPA further predicted that the identified DEGs were the targets of 50 upstream regulators, including transcription factors (e.g., MYC, NRF1) and microRNAs (e.g., miR-335-3p, miR-338-3p). These data demonstrate that the vagus nerve has a major impact on myocardial expression of genes involved in regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.


Subject(s)
Vagus Nerve Stimulation , Vagus Nerve , Animals , Vagus Nerve Stimulation/methods , Rats , Vagus Nerve/physiology , Vagus Nerve/metabolism , Heart/physiology , Male , Myocardium/metabolism , Rats, Sprague-Dawley , Optogenetics/methods , Gene Expression Regulation , Transcription, Genetic , Gene Expression Profiling
5.
Nat Commun ; 15(1): 6119, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033186

ABSTRACT

Bioelectronic therapies modulating the vagus nerve are promising for cardiovascular, inflammatory, and mental disorders. Clinical applications are however limited by side-effects such as breathing obstruction and headache caused by non-specific stimulation. To design selective and functional stimulation, we engineered VaStim, a realistic and efficient in-silico model. We developed a protocol to personalize VaStim in-vivo using simple muscle responses, successfully reproducing experimental observations, by combining models with trials conducted on five pigs. Through optimized algorithms, VaStim simulated the complete fiber population in minutes, including often omitted unmyelinated fibers which constitute 80% of the nerve. The model suggested that all Aα-fibers across the nerve affect laryngeal muscle, while heart rate changes were caused by B-efferents in specific fascicles. It predicted that tripolar paradigms could reduce laryngeal activity by 70% compared to typically used protocols. VaStim may serve as a model for developing neuromodulation therapies by maximizing efficacy and specificity, reducing animal experimentation.


Subject(s)
Computer Simulation , Vagus Nerve Stimulation , Vagus Nerve , Animals , Swine , Vagus Nerve/physiology , Vagus Nerve Stimulation/methods , Heart Rate/physiology , Algorithms
7.
J Comp Neurol ; 532(7): e25656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980012

ABSTRACT

Some recent publications have used the term "vagal-adrenal axis" to account for mechanisms involved in the regulation of inflammation by electroacupuncture. This concept proposes that efferent parasympathetic nerve fibers in the vagus directly innervate the adrenal glands to influence catecholamine secretion. Here, we discuss evidence for anatomical and functional links between the vagi and adrenal glands that may be relevant in the context of inflammation and its neural control by factors, including acupuncture. First, we find that evidence for any direct vagal parasympathetic efferent innervation of the adrenal glands is weak and likely artifactual. Second, we find good evidence that vagal afferent fibers directly innervate the adrenal gland, although their function is uncertain. Third, we highlight a wealth of evidence for indirect pathways, whereby vagal afferent signals act via the central nervous system to modify adrenal-dependent anti-inflammatory responses. Vagal afferents, not efferents, are thus the likely key to these phenomena.


Subject(s)
Adrenal Glands , Vagus Nerve , Vagus Nerve/physiology , Humans , Animals , Adrenal Glands/physiology , Inflammation
8.
PLoS One ; 19(7): e0298751, 2024.
Article in English | MEDLINE | ID: mdl-38968274

ABSTRACT

OBJECTIVE: Winter-over expeditioners in Antarctica are challenged by various environmental and psycho-social stress factors, which may induce psychophysiological changes. The autonomic nervous system (ANS) plays a crucial role in the adaptation process under stress. However, the relationship between ANS activity and the mood states of expeditioners remains largely unexplored. This study aims to uncover the pattern of ANS adjustment under extreme Antarctic environments and provide new insights into the correlations between ANS activity and mood state changes, which may provide scientific data for medical interventions. METHODS: Fourteen expeditioners at Zhongshan Station participated in this study. The study was conducted during four representative periods: pre-Antarctica, Antarctica-1 (pre-winter), Antarctica-2 (winter), and Antarctica-3 (summer). The heart rate variability (HRV) of the expeditioners was continuously measured for 24 hours to evaluate ANS activity. Plasma levels of catecholamines were tested by ELISA. Mood states were assessed by the Profile of Mood States (POMS) scale. RESULTS: HRV analysis showed a disturbance of ANS during winter and summer periods. For frequency domain parameters, very low frequency (VLF), low frequency (LF), high frequency (HF), and total power (TP) significantly increased during the second half of the mission. Especially, LF/HF ratio decreased during summer, indicating the predominance of vagal tone. Results of the time domain analysis showed increased heart rate variability during the austral winter and summer. Plasma epinephrine (E) significantly increased during residence in Antarctica. Compared with pre-Antarctica, the vigor, depression, and anger scores of the expeditioners decreased significantly during the austral summer. Notably, the depression score showed a moderate positive correlation with LF/HF, while weak negative correlations with other HRV indicators, including TP, VLF, and LF. Anger score showed a moderate positive correlation with LF/HF and weak negative correlations with the average normal-to-normal (NN) interval, and the root mean square of differences between adjacent RR intervals (RMSSD). Plasma E level weakly correlated with the average NN interval. CONCLUSION: Prolonged residence in Antarctica increased the ANS activities and shifted the cardiac autonomic modulation towards vagal predominance. The alteration of HRV correlated with mood states and plasma epinephrine levels.


Subject(s)
Affect , Expeditions , Heart Rate , Seasons , Humans , Antarctic Regions , Affect/physiology , Male , Adult , Heart Rate/physiology , Vagus Nerve/physiology , Female , Autonomic Nervous System/physiology , Catecholamines/blood
9.
Nature ; 631(8021): 601-609, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987587

ABSTRACT

Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.


Subject(s)
Allergens , Brain Stem , Bronchial Hyperreactivity , Dopamine beta-Hydroxylase , Lung , Neurons , Animals , Female , Male , Mice , Allergens/immunology , Asthma/immunology , Asthma/physiopathology , Brain Stem/cytology , Brain Stem/physiology , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Interleukin-4/immunology , Lung/drug effects , Lung/immunology , Lung/innervation , Lung/physiopathology , Mast Cells/immunology , Neurons/enzymology , Neurons/physiology , Norepinephrine/antagonists & inhibitors , Norepinephrine/metabolism , Solitary Nucleus/cytology , Solitary Nucleus/physiology , Vagus Nerve/cytology , Vagus Nerve/physiology , Medulla Oblongata/cytology , Medulla Oblongata/drug effects , Ganglia, Autonomic/cytology , Dopamine beta-Hydroxylase/metabolism
10.
J Physiol ; 602(16): 4027-4052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031516

ABSTRACT

Transcutaneous auricular vagus nerve stimulation (taVNS) targets subcutaneous axons in the auricular branch of the vagus nerve at the outer ear. Its non-invasive nature makes it a potential treatment for various disorders. taVNS induces neuromodulatory effects within the nucleus of the solitary tract (NTS), and due to its widespread connectivity, the NTS acts as a gateway to elicit neuromodulation in both higher-order brain regions and other brainstem nuclei (e.g. spinal trigeminal nucleus; Sp5). Our objective was to examine stimulation parameters on single-neuron electrophysiological responses in α-chloralose-anaesthetized Sprague-Dawley rats within NTS and Sp5. taVNS was also compared to traditional cervical VNS (cVNS) on single neuronal activation. Specifically, electrophysiological extracellular recordings were evaluated for a range of frequency and intensity parameters (20-250 Hz, 0.5-1.0 mA). Neurons were classified as positive, negative or non-responders based on increased activity, decreased activity or no response during stimulation, respectively. Frequency-dependent analysis showed that 20 and 100 Hz generated the highest proportion of positive responders in NTS and Sp5 with 1.0 mA intensities eliciting the greatest magnitude of response. Comparisons between taVNS and cVNS revealed similar parameter-specific activation for caudal NTS neuronal populations; however, individual neurons showed different activation profiles. The latter suggests that cVNS and taVNS send afferent input to NTS via different neuronal pathways. This study demonstrates differential parameter-specific taVNS responses and begins an investigation of the mechanisms responsible for taVNS modulation. Understanding the neuronal pathways responsible for eliciting neuromodulatory effects will enable more tailored taVNS treatments in various clinical disorders. KEY POINTS: Transcutaneous auricular vagus nerve stimulation (taVNS) offers a non-invasive alternative to invasive cervical vagus nerve stimulation (cVNS) by activating vagal afferents in the ear to induce neuromodulation. Our study evaluated taVNS effects on neuronal firing patterns in the nucleus of the solitary tract (NTS) and spinal trigeminal nucleus (Sp5) and found that 20 and 100 Hz notably increased neuronal activity during stimulation in both nuclei. Increasing taVNS intensity not only increased the number of neurons responding in Sp5 but also increased the magnitude of response, suggesting a heightened sensitivity to taVNS compared to NTS. Comparisons between cVNS and taVNS revealed similar overall activation but different responses on individual neurons, indicating distinct neural pathways. These results show parameter-specific and nuclei-specific responses to taVNS and confirm that taVNS can elicit responses comparable to cVNS at the neuronal level, but it does so through different neuronal pathways.


Subject(s)
Brain Stem , Neurons , Rats, Sprague-Dawley , Solitary Nucleus , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Animals , Vagus Nerve Stimulation/methods , Male , Rats , Brain Stem/physiology , Transcutaneous Electric Nerve Stimulation/methods , Neurons/physiology , Solitary Nucleus/physiology , Vagus Nerve/physiology
11.
Neuroimage ; 297: 120725, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38977040

ABSTRACT

Phasic cardiac vagal activity (CVA), reflecting ongoing, moment-to-moment psychophysiological adaptations to environmental changes, can serve as a predictor of individual difference in executive function, particularly executive performance. However, the relationship between phasic CVA and executive function demands requires further validation because of previous inconsistent findings. Moreover, it remains unclear what types of phasic changes of CVA may be adaptive in response to heightened executive demands. This study used the standard N-back task to induce different levels of working memory (WM) load and combined functional Near-Infrared Spectroscopy (fNIRS) with a multipurpose polygraph to investigate the variations of CVA and its interactions with cognitive and prefrontal responses as executive demands increased in fifty-two healthy young subjects. Our results showed phasic decreases in CVA as WM load increased (t (51) = -3.758, p < 0.001, Cohen's d = 0.526). Furthermore, phasic changes of CVA elicited by increased executive demands moderated the association of cognitive and cerebral hemodynamic variations in the prefrontal cortex (B = 0.038, SE = 0.014, p < 0.05). Specifically, as executive demands increased, individuals with larger phasic CVA withdrawal showed a positive relationship between cognitive and hemodynamic variations in the prefrontal cortex (ß = 0.281, p = 0.031). No such significant relationship was observed in individuals with smaller phasic CVA withdrawal. The current findings demonstrate a decrease in CVA with increasing executive demands and provide empirical support for the notion that a larger phasic CVA withdrawal can be considered adaptive in situations requiring high executive function demands.


Subject(s)
Executive Function , Memory, Short-Term , Prefrontal Cortex , Spectroscopy, Near-Infrared , Vagus Nerve , Humans , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Male , Female , Young Adult , Vagus Nerve/physiology , Adult , Executive Function/physiology , Memory, Short-Term/physiology , Cognition/physiology , Hemodynamics/physiology , Heart Rate/physiology , Cerebrovascular Circulation/physiology
12.
Medicine (Baltimore) ; 103(28): e38802, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996137

ABSTRACT

BACKGROUND AND AIMS: To develop a model that describes how the pancreas functions, how the rate of synthesis of digestive enzymes is regulated, and finally what puts the pancreas to rest between meals. METHODS: We applied the principals of control theory to previously published canine data to develop a model for how the canine pancreas functions. Using this model, we then describe the steps needed to apply this model to the human pancreas. RESULTS: This new closed-loop negative feedback model describes what regulates digestive enzyme synthesis. This model is based on basolateral exocytosis of butyrylcholinesterase (BCHE) into the interstitial space. It is this level of BCHE * BCHE activity that controls the rate of canine pancreas digestive enzyme synthesis, and in the absence of stimulation from the vagus nerve, puts the pancreas to rest between meals. CONCLUSIONS: Finding secretagogue-specific inhibitory enzymes in the human pancreas that are analogous to BCHE in the canine, and blocking its associated receptors, may lead to a cure for human pancreatitis.


Subject(s)
Butyrylcholinesterase , Feedback, Physiological , Pancreas , Pancreas/enzymology , Dogs , Humans , Animals , Butyrylcholinesterase/metabolism , Models, Biological , Pancreatitis , Vagus Nerve/physiology
13.
Am J Physiol Regul Integr Comp Physiol ; 327(2): R173-R187, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38860288

ABSTRACT

Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.


Subject(s)
Intestinal Mucosa , Intestine, Small , Vagus Nerve , Animals , Vagus Nerve/physiology , Intestinal Mucosa/innervation , Intestinal Mucosa/metabolism , Humans , Intestine, Small/innervation , Intestine, Small/metabolism , Afferent Pathways/physiology , Taste/physiology , Neurons, Afferent/physiology
14.
Auton Neurosci ; 254: 103192, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896931

ABSTRACT

BACKGROUND: Para-sympathetic vagal activation has profound influence on heart rate and other cardiovascular parameters. We tested the hypothesis that transcutaneous Vagal Nerve Stimulation (tVNS) through the auricular branch of the vagus nerve would attenuate the normal sympathetic response to central blood volume reduction by lower body negative pressure (LBNP). METHOD: 10 healthy volunteers (6 female; age 21 ± 2 years; weight 62 ± 13 kg; height 167 ± 12 cm) were included in this cross-over design trial. After 15 min rest in supine position, subjects underwent three 15-min periods of 30 mmHg LBNP intervention with and without cyclic tVNS stimulation. Continuous cardiovascular parameters (Nexfin) were recorded. RESULTS: Overall tVNS did not convincingly attenuate sympathetic response to central hypovolemia. Deactivation of the tVNS during LBNP resulted in increased MAP at 2.3 ± 0.5 mmHg (P < 0.001). Comparing the cyclic actual active stimulation periods to periods with pause during tVNS intervention showed a decrease in HR by 72.9 ± 11.2 to 70.2 ± 11.6 bpm (mean ± SD; P < 0.05), and concomitant increases in SV (86.0 ± 12.1 to 87.2 ± 12.6 mL; P < 0.05), MAP (82.9 ± 6.3 to 84.0 ± 6.2 mmHg; P < 0.05) and TPR (1116.0 ± 111.1 to 1153 ± 104.8 dyn*s/cm5; P < 0.05). CONCLUSION: tVNS in 30 s cycles during LBNP can selectively attenuate HR, prompting a compensatory augmented sympathetic response. It would appear the method used in this study at least, has an isolated cardiac inhibitory effect probably mediated by augmented vagal activity on the sinoatrial or atrio-ventricular node, possibly in combination with reduced activity in the sympathetic cardiac nerve.


Subject(s)
Cross-Over Studies , Heart Rate , Lower Body Negative Pressure , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Female , Male , Vagus Nerve Stimulation/methods , Lower Body Negative Pressure/methods , Transcutaneous Electric Nerve Stimulation/methods , Young Adult , Heart Rate/physiology , Blood Pressure/physiology , Adult , Vagus Nerve/physiology , Sympathetic Nervous System/physiology
15.
Neurobiol Dis ; 199: 106569, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38885849

ABSTRACT

The vagus nerve serves as an interoceptive relay between the body and the brain. Despite its well-established role in feeding behaviors, energy metabolism, and cognitive functions, the intricate functional processes linking the vagus nerve to the hippocampus and its contribution to learning and memory dynamics remain still elusive. Here, we investigated whether and how the gut-brain vagal axis contributes to hippocampal learning and memory processes at behavioral, functional, cellular, and molecular levels. Our results indicate that the integrity of the vagal axis is essential for long-term recognition memories, while sparing other forms of memory. In addition, by combing multi-scale approaches, our findings show that the gut-brain vagal tone exerts a permissive role in scaling intracellular signaling events, gene expressions, hippocampal dendritic spines density as well as functional long-term plasticities (LTD and LTP). These results highlight the critical role of the gut-brain vagal axis in maintaining the spontaneous and homeostatic functions of hippocampal ensembles and in regulating their learning and memory functions. In conclusion, our study provides comprehensive insights into the multifaceted involvement of the gut-brain vagal axis in shaping time-dependent hippocampal learning and memory dynamics. Understanding the mechanisms underlying this interoceptive body-brain neuronal communication may pave the way for novel therapeutic approaches in conditions associated with cognitive decline, including neurodegenerative disorders.


Subject(s)
Brain-Gut Axis , Hippocampus , Memory , Neuronal Plasticity , Vagus Nerve , Animals , Hippocampus/physiology , Vagus Nerve/physiology , Neuronal Plasticity/physiology , Memory/physiology , Male , Brain-Gut Axis/physiology , Mice , Mice, Inbred C57BL
16.
Nutrients ; 16(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38931247

ABSTRACT

Guarana (GUA), a Brazilian seed extract, contains caffeine and other bioactive compounds that may have psychoactive effects. To assess the acute effects of GUA compared to a low dose of caffeine (CAF) on cognitive and mood parameters, twenty participants completed a double-blind, crossover experiment where they ingested capsules containing the following: (1) 100 mg CAF, (2) 500 mg GUA containing 130 mg caffeine, or (3) placebo (PLA). Cognitive tests (Simon and 2N-Back Task) were performed at the baseline (pre-ingestion) and 60 min after ingestion. The response time for the cognitive tests and heart rate variability were unaffected (p > 0.05) by treatment, although 2N-Back was overall faster (p = 0.001) across time. The accuracy in the 2N-Back Task showed a significant interaction effect (p = 0.029) due to higher post-ingestion versus pre-ingestion levels (p = 0.033), but only with the PLA. The supplements also had no effect on cognitive measures following physical fatigue (n = 11). There was an interaction effect on perceived mental energy, where the pre-ingestion of GUA had lower mental pep ratings compared to post-ingestion (p = 0.006) and post-exercise (p = 0.018) levels. Neither the acute ingestion of GUA nor low dose of CAF influenced cognitive performance or provided consistent benefit on mood or mental workload through vagal modulation. Additional investigations are beneficial to determining the lowest effective dose for CAF or GUA to influence mood and/or cognitive performance.


Subject(s)
Affect , Caffeine , Cognition , Cross-Over Studies , Heart Rate , Paullinia , Humans , Caffeine/administration & dosage , Caffeine/pharmacology , Paullinia/chemistry , Male , Double-Blind Method , Cognition/drug effects , Adult , Young Adult , Female , Heart Rate/drug effects , Affect/drug effects , Vagus Nerve/physiology , Vagus Nerve/drug effects , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Dietary Supplements
18.
J Bodyw Mov Ther ; 38: 449-453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38763591

ABSTRACT

INTRODUCTION: Parasympathetic nervous system (PSNS) function can be inferred by heart rate variability (HRV) providing indications about an individual's health. Manual therapy may influence PSNS function, however the research outcomes in this regard are equivocal. This study explored the PSNS effect of a measured breathing technique with suboccipital balanced ligamentous tension, an osteopathic manipulative therapy technique. METHODS: Healthy adult participants in this crossover study (n = 18) were randomly allocated into two groups with differing order of interventions. A 1:1 breathing rate of 6 breaths per minute maintained for 5 min was compared to the osteopathic intervention. HRV was measured for 5 min before and after each intervention and analysed using the root mean square of successive differences (RMSSD) between normal heartbeats and high frequency normalised units (HFnu). RESULTS: The RMSSD data demonstrated no significant difference between groups or within groups (p > 0.05) over time. HFnu results showed a significant between-group difference over the four time points (p = 0.004) with a medium effect size (ηp2 = 0.240), and no significant within-group difference (p > 0.05). DISCUSSION: The osteopathic intervention raised HRV to a small extent, however measured breathing lowered HRV. In the group that received the osteopathic technique first, HFnu values continued to rise post-osteopathic treatment possibly indicating an increasing parasympathetic effect over time. Recommendations for future studies include changing the breathing ratio to ensure parasympathetic response, take into account potential delayed effects of interventions, consider outcome measures less variable than HRV, and longer follow up times. CONCLUSION: This study suggests parasympathetic stimulation may occur with the application of suboccipital balanced ligamentous tension and sympathetic stimulation from measured breathing.


Subject(s)
Breathing Exercises , Cross-Over Studies , Heart Rate , Manipulation, Osteopathic , Parasympathetic Nervous System , Humans , Manipulation, Osteopathic/methods , Heart Rate/physiology , Male , Adult , Female , Breathing Exercises/methods , Young Adult , Parasympathetic Nervous System/physiology , Vagus Nerve/physiology
19.
Int J Surg ; 110(8): 4993-5006, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38729100

ABSTRACT

Currently, clinical practice and scientific research mostly revolve around a single disease or system, but the single disease-oriented diagnostic and therapeutic paradigm needs to be revised. This review describes how transcutaneous auricular vagus nerve stimulation (taVNS), a novel non-invasive neuromodulation approach, connects the central and peripheral systems of the body. Through stimulation of the widely distributed vagus nerve from the head to the abdominal cavity, this therapy can improve and treat central system disorders, peripheral system disorders, and central-peripheral comorbidities caused by autonomic dysfunction. In the past, research on taVNS has focused on the treatment of central system disorders by modulating this brain nerve. As the vagus nerve innervates the heart, lungs, liver, pancreas, gastrointestinal tract, spleen and other peripheral organs, taVNS could have an overall modulatory effect on the region of the body where the vagus nerve is widespread. Based on this physiological basis, the authors summarize the existing evidence of the taVNS ability to regulate cardiac function, adiposity, glucose levels, gastrointestinal function, and immune function, among others, to treat peripheral system diseases, and complex diseases with central and peripheral comorbidities. This review shows the successful examples and research progress of taVNS using peripheral neuromodulation mechanisms from more perspectives, demonstrating the expanded scope and value of taVNS to provide new ideas and approaches for holistic therapy from both central and peripheral perspectives.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve/physiology , Central Nervous System Diseases/therapy , Central Nervous System Diseases/physiopathology
20.
Neuroscience ; 551: 153-165, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38821242

ABSTRACT

The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.


Subject(s)
Heart , Lung , Motor Neurons , Vagus Nerve , Animals , Motor Neurons/physiology , Male , Heart/physiology , Heart/innervation , Lung/physiology , Lung/innervation , Vagus Nerve/physiology , Medulla Oblongata/physiology , Medulla Oblongata/cytology , Medulla Oblongata/metabolism , Action Potentials/physiology , Rats, Sprague-Dawley , Rats , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL