Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.760
Filter
1.
Mol Biol Rep ; 51(1): 821, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023636

ABSTRACT

BACKGROUND: Our previous study has demonstrated that Nischarin (NISCH) exerts its antitumor effects in breast cancer (BC) by suppressing cell migration and invasion. This study aims to explore the underlying mechanism through which NISCH functions in BC. METHODS AND RESULTS: The relevance between EGF Like Repeats and Discoidin Domains 3 (EDIL3) mRNA expression and the overall survival of tumor patients was depicted by the Kaplan-Meier curve. The findings revealed that overexpressed NISCH attenuated cell motility and colony-forming capacities of Hs578T cells, yet silenced NISCH in MDA-MB-231 cells led to contrasting results. Western blot (WB) analysis indicated that overexpression of NISCH significantly down-regulated the Vimentin and Slug expression, and inactivated the FAK/ERK signaling pathway. RNA sequencing (RNA-seq) was performed in NISCH-overexpressed Hs578T cells and the control cells to analyze differentially expressed genes (DeGs), and the results showed a significant down-regulation of EDIL3 mRNA level upon overexpression of NISCH. Subsequent functional analyses demonstrated that overexpression of EDIL3 attenuated the inhibitory effect of NISCH on cell migration, invasion, colony formation, and tube formation. CONCLUSION: In summary, our finding preliminarily revealed that NISCH inhibits the epithelial-mesenchymal transition (EMT) process and angiogenesis in BC cells by down-regulating EDIL3 to inactivate the FAK/ERK signaling pathway, thereby suppressing the progression of BC. Our results hold promise for contributing to the deep understanding of BC pathogenesis and identifying new therapeutic strategies for clinical application.


Subject(s)
Breast Neoplasms , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Neovascularization, Pathologic , Humans , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Cell Movement/genetics , MAP Kinase Signaling System/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Cell Proliferation/genetics , Vimentin/metabolism , Vimentin/genetics , Signal Transduction , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Angiogenesis , Calcium-Binding Proteins , Cell Adhesion Molecules
2.
PLoS One ; 19(7): e0306515, 2024.
Article in English | MEDLINE | ID: mdl-38954721

ABSTRACT

BACKGROUND: Bicuspid aortic valves (BAV) are frequently associated with ascending aortic aneurysms. The etiology is incompletely understood, but genetic factors, in addition to flow perturbations, are likely involved. Since loss of contractility and elaboration of extracellular matrix in the vessel wall are features of BAV-associated aortopathy, phenotypic modulation of smooth muscle cells (SMCs) may play a role. METHODS: Ascending aortic tissue was collected intra-operatively from 25 individuals with normal (i.e., tricuspid) aortic valves (TAV) and from 25 individuals with BAVs. For both TAV and BAV, 10 patients had non-dilated (ND) and 15 patients had dilated (D) aortas. SMCs were isolated and cultured from a subset of patients from each group. Aortic tissue and SMCs were fluorescently immunolabeled for SMC phenotypic markers (i.e., alpha-smooth muscle actin (ASMA, contractile), vimentin (synthetic) and p16INK4a and p21Cip1 (senescence). SMCs were also analyzed for replicative senescence in culture. RESULTS: In normal-sized and dilated BAV aortas, SMCs switched from the contractile state to either synthetic or senescent phenotypes, as observed by loss of ASMA (ND: P = 0.001, D: P = 0.002) and associated increases in vimentin (ND: P = 0.03, D: P = 0.004) or p16/p21 (ND: P = 0.03, D: P<0.0001) compared to TAV. Dilatation of the aorta exacerbated SMC phenotypic switching in both BAV and TAV aortas (all P<0.05). In SMCs cultured from normal and dilated aortas, those isolated from BAV reached replicative senescence faster than those from TAV aortas (all P = 0.02). Furthermore, there was a stark inverse correlation between ASMA and cell passage number in BAV SMCs (ND: P = 0.0006, D: P = 0.01), but not in TAV SMCs (ND: P = 0.93, D: P = 0.20). CONCLUSIONS: The findings of this study provide direct evidence from cell culture studies implying that SMCs switch from the contractile state to either synthetic or senescent phenotypes in the non-dilated BAV aorta. In cultured SMCs from both non-dilated and dilated aortas, we found that this process may precede dilatation and accompany aneurysm development in BAV. Our findings suggest that therapeutically targeting SMC phenotypic modulation in BAV patients may be a viable option to prevent or delay ascending aortic aneurysm formation.


Subject(s)
Aorta , Aortic Valve , Bicuspid Aortic Valve Disease , Heart Valve Diseases , Myocytes, Smooth Muscle , Phenotype , Humans , Aortic Valve/pathology , Aortic Valve/metabolism , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease/pathology , Bicuspid Aortic Valve Disease/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Heart Valve Diseases/metabolism , Heart Valve Diseases/pathology , Aorta/pathology , Aorta/metabolism , Male , Middle Aged , Female , Dilatation, Pathologic , Adult , Cellular Senescence , Cells, Cultured , Aged , Actins/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Vimentin/metabolism
3.
Cells ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38994947

ABSTRACT

Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell-matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did not dramatically impact corneal fibroblast spreading and mechanical activity (traction force), cell elongation in response to PDGF was reduced in vimentin KO cells as compared to controls. Blocking vimentin polymerization using Withaferin had even more pronounced effects on cell spreading and also inhibited cell-induced matrix contraction. Furthermore, although absence of vimentin did not completely block TGFß-induced myofibroblast transformation, the degree of transformation and amount of αSMA protein expression was reduced. Proteomics showed that vimentin KO cells cultured in TGFß had a similar pattern of protein expression as controls. One exception included periostin, an ECM protein associated with wound healing and fibrosis in other cell types, which was highly expressed only in Vim KO cells. We also demonstrate for the first time that LRRC15, a protein previously associated with myofibroblast transformation of cancer-associated fibroblasts, is also expressed by corneal myofibroblasts. Interestingly, proteins associated with LRRC15 in other cell types, such as collagen, fibronectin, ß1 integrin and α11 integrin, were also upregulated. Overall, our data show that vimentin impacts both corneal fibroblast spreading and myofibroblast transformation. We also identified novel proteins that may regulate corneal myofibroblast transformation in the presence and/or absence of vimentin.


Subject(s)
Cornea , Fibroblasts , Myofibroblasts , Vimentin , Humans , Vimentin/metabolism , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Cornea/cytology , Cornea/metabolism , Transforming Growth Factor beta/metabolism , Cell Movement/drug effects , Withanolides/pharmacology , Cells, Cultured
4.
Anat Histol Embryol ; 53(4): e13088, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979752

ABSTRACT

Intermediate filaments (IFs) are key molecular factors of the cell and have been reported to play an important role in maintaining the structural integrity and functionality of the abomasum. This study was designed to determine the regional distribution, cellular localization and expression of several IFs, including CK8, CK18, CK19, vimentin, desmin, peripherin and nestin, as well as the connective tissue component laminin, in the bovine, ovine and caprine abomasa. Immunohistochemical analyses demonstrated varying levels of expression of CK8, CK18, CK19, vimentin, desmin, nestin, peripherin and laminin in the bovine, ovine and caprine abomasa. CK8 immunoreactions were particularly evident in the luminal and glandular epithelia of the glands found in the abomasal cardia, fundus and pylorus in all three species. In the bovine abomasum, CK18 immunoreactions were stronger in the parietal cells, compared to the chief cells. In the abomasum of all three species, the smooth muscle as well as the smooth muscle cells of the vascular media in the cardiac, fundic and pyloric regions showed strong immunoreactivity. In all three species, the cardiac, fundic and pyloric regions of the abomasum showed strong peripherin and nestin immunoreactions in the luminal and glandular epithelial cells, stromal and smooth muscle cells, nervous plexuses and blood vessels. The expression patterns of IFs and laminin in the ruminant abomasum suggest that these proteins play a structural role in the cytoskeleton and are effective in maintaining abomasal tissue integrity and stability.


Subject(s)
Abomasum , Goats , Immunohistochemistry , Intermediate Filaments , Laminin , Nestin , Animals , Abomasum/metabolism , Cattle , Intermediate Filaments/metabolism , Nestin/metabolism , Sheep , Laminin/metabolism , Immunohistochemistry/veterinary , Vimentin/metabolism , Desmin/metabolism , Peripherins/metabolism
5.
Nat Commun ; 15(1): 5888, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003254

ABSTRACT

Archived patient-derived tissue specimens play a central role in understanding disease and developing therapies. To address specificity and sensitivity shortcomings of existing single-cell resolution proteoform analysis tools, we introduce a hybrid microfluidic platform (DropBlot) designed for proteoform analyses in chemically fixed single cells. DropBlot serially integrates droplet-based encapsulation and lysis of single fixed cells, with on-chip microwell-based antigen retrieval, with single-cell western blotting of target antigens. A water-in-oil droplet formulation withstands the harsh chemical (SDS, 6 M urea) and thermal conditions (98 °C, 1-2 hr) required for effective antigen retrieval, and supports analysis of retrieved protein targets by single-cell electrophoresis. We demonstrate protein-target retrieval from unfixed, paraformaldehyde-fixed (PFA), and methanol-fixed cells. Key protein targets (HER2, GAPDH, EpCAM, Vimentin) retrieved from PFA-fixed cells were resolved and immunoreactive. Relevant to biorepositories, DropBlot profiled targets retrieved from human-derived breast tumor specimens archived for six years, offering a workflow for single-cell protein-biomarker analysis of sparing biospecimens.


Subject(s)
Blotting, Western , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Cell Line, Tumor , Formaldehyde/chemistry , Female , Receptor, ErbB-2/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Tissue Fixation/methods , Proteomics/methods , Vimentin/metabolism , Microfluidics/methods , Microfluidics/instrumentation , Polymers
6.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891784

ABSTRACT

The central nervous system of Pacific salmon retains signs of embryonic structure throughout life and a large number of neuroepithelial neural stem cells (NSCs) in the proliferative areas of the brain, in particular. However, the adult nervous system and neurogenesis studies on rainbow trout, Oncorhynchus mykiss, are limited. Here, we studied the localization of glutamine synthetase (GS), vimentin (Vim), and nestin (Nes), as well as the neurons formed in the postembryonic period, labeled with doublecortin (DC), under conditions of homeostatic growth in adult cerebellum and brainstem of Oncorhynchus mykiss using immunohistochemical methods and Western Immunoblotting. We observed that the distribution of vimentin (Vim), nestin (Nes), and glutamine synthetase (GS), which are found in the aNSPCs of both embryonic types (neuroepithelial cells) and in the adult type (radial glia) in the cerebellum and the brainstem of trout, has certain features. Populations of the adult neural stem/progenitor cells (aNSPCs) expressing GS, Vim, and Nes have different morphologies, localizations, and patterns of cluster formation in the trout cerebellum and brainstem, which indicates the morphological and, obviously, functional heterogeneity of these cells. Immunolabeling of PCNA revealed areas in the cerebellum and brainstem of rainbow trout containing proliferating cells which coincide with areas expressing Vim, Nes, and GS. Double immunolabeling revealed the PCNA/GS PCNA/Vim coexpression patterns in the neuroepithelial-type cells in the PVZ of the brainstem. PCNA/GS coexpression in the RG was detected in the submarginal zone of the brainstem. The results of immunohistochemical study of the DC distribution in the cerebellum and brainstem of trout have showed a high level of expression of this marker in various cell populations. This may indicate: (i) high production of the adult-born neurons in the cerebellum and brainstem of adult trout, (ii) high plasticity of neurons in the cerebellum and brainstem of trout. We assume that the source of new cells in the trout brain, along with PVZ and SMZ, containing proliferating cells, may be local neurogenic niches containing the PCNA-positive and silent (PCNA-negative), but expressing NSC markers, cells. The identification of cells expressing DC, Vim, and Nes in the IX-X cranial nerve nuclei of trout was carried out.


Subject(s)
Brain Stem , Cerebellum , Neural Stem Cells , Neurogenesis , Neuronal Plasticity , Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/metabolism , Oncorhynchus mykiss/growth & development , Cerebellum/metabolism , Cerebellum/cytology , Cerebellum/growth & development , Neurogenesis/physiology , Neuronal Plasticity/physiology , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Brain Stem/metabolism , Brain Stem/cytology , Vimentin/metabolism , Neurons/metabolism , Neurons/cytology , Proliferating Cell Nuclear Antigen/metabolism , Glutamate-Ammonia Ligase/metabolism
7.
BMC Biol ; 22(1): 139, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915055

ABSTRACT

BACKGROUND: The intermediate filament protein vimentin is widely recognized as a molecular marker of epithelial-to-mesenchymal transition. Although vimentin expression is strongly associated with cancer metastatic potential, the exact role of vimentin in cancer metastasis and the underlying mechanism of its pro-metastatic functions remain unclear. RESULTS: This study revealed that vimentin can enhance integrin ß1 surface expression and induce integrin-dependent clustering of cells, shielding them against anoikis cell death. The increased integrin ß1 surface expression in suspended cells was caused by vimentin-mediated protection of the internal integrin ß1 pool against lysosomal degradation. Additionally, cell detachment was found to induce vimentin Ser38 phosphorylation, allowing the translocation of internal integrin ß1 to the plasma membrane. Furthermore, the use of an inhibitor of p21-activated kinase PAK1, one of the kinases responsible for vimentin Ser38 phosphorylation, significantly reduced cancer metastasis in animal models. CONCLUSIONS: These findings suggest that vimentin can act as an integrin buffer, storing internalized integrin ß1 and releasing it when needed. Overall, this study provides insights regarding the strong correlation between vimentin expression and cancer metastasis and a basis for blocking metastasis using this novel therapeutic mechanism.


Subject(s)
Anoikis , Integrin beta1 , Vimentin , Vimentin/metabolism , Vimentin/genetics , Integrin beta1/metabolism , Integrin beta1/genetics , Humans , Animals , Cell Survival , Mice , Cell Line, Tumor , Phosphorylation , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics
8.
BMC Oral Health ; 24(1): 743, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937725

ABSTRACT

BACKGROUND: Ameloblastic fibrosarcoma (AFS) is a rare malignant odontogenic tumor, commonly occurring in young adults and typically affecting the mandibular region. We report an exceptionally rare and highly atypical case of AFS in an elderly female patient originating from the maxillary bone. CASE PRESENTATION: A 66-year-old woman was admitted with a two-week history of a lump in her left upper molar. CT scans suggested a cyst in the maxillary bone. An incisional biopsy revealed a spindle cell neoplasm. MRI showed abnormalities in the left maxilla, indicating a possible tumorous lesion. The patient underwent a subtotal maxillectomy, wide tumor excision, intraoral epithelial flap transplantation, and dental extraction. Histology identified atypical tumor cells with visible mitotic figures. Immunohistochemistry showed negative for PCK and CD34 expression, but positive for Vimentin and SMA expression. The Ki-67 proliferation index ranged from 30 to 50%. These findings suggested a potentially malignant soft tissue tumor in the left maxilla, leaning towards a diagnosis of AFS. The patient received postoperative radiotherapy. There was no recurrence during the six-month follow-up. CONCLUSION: Based on repeated pathological evidence, we report a rare case of an elderly female with AFS originating from the maxillary bone. Surgery and postoperative radiotherapy resulted in a favorable outcome.


Subject(s)
Maxillary Neoplasms , Humans , Female , Aged , Maxillary Neoplasms/pathology , Maxillary Neoplasms/surgery , Maxillary Neoplasms/diagnostic imaging , Odontogenic Tumors/pathology , Odontogenic Tumors/surgery , Odontogenic Tumors/diagnostic imaging , Fibrosarcoma/pathology , Fibrosarcoma/surgery , Fibrosarcoma/diagnostic imaging , Tomography, X-Ray Computed , Vimentin/analysis , Magnetic Resonance Imaging
9.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928294

ABSTRACT

It is known that V-set and immunoglobulin domain containing 1 (VSIG1) is a cell-cell adhesion molecule that can serve as an indicator of better survival in patients with gastric cancer. Its interaction with cytoplasmic thyroid transcription factor 1 (TTF-1) has been hypothesized to characterize gastric-type HCC, but its clinical importance is far from understood. As VSIG1 has also been supposed to be involved in the epithelial-mesenchymal transition (EMT) phenomenon, we checked for the first time in the literature the supposed interaction between VSIG1, TTF-1, and Vimentin (VIM) in HCCs. Immunohistochemical (IHC) stains were performed on 217 paraffin-embedded tissue samples that included tumor cells and normal hepatocytes, which served as positive internal controls. VSIG1 positivity was seen in 113 cases (52.07%). In 71 out of 217 HCCs (32.71%), simultaneous positivity for VSIG1 and TTF-1 was seen, being more specific for G1/G2 carcinomas with a trabecular architecture and a longer OS (p = 0.004). A negative association with VIM was revealed (p < 0.0001). Scirrhous-type HCC proved negative for all three examined markers. The present paper validates the hypothesis of the existence of a gastric-type HCC, which shows a glandular-like architecture and is characterized by double positivity for VSIG1 and TTF-1, vimentin negativity, and a significant OS.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Vimentin , Humans , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Male , Female , Middle Aged , Vimentin/metabolism , Aged , Adult , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Aged, 80 and over , Thyroid Nuclear Factor 1/metabolism , Thyroid Nuclear Factor 1/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Immunohistochemistry
10.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 592-597, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825905

ABSTRACT

Objective: To investigate the expression of DARS2 and its clinical significance in colorectal cancer. Methods: In this study, bioinformatics tools, especially gene expression profile interactive analysis 2 (GEPIA2), were used to conduct an in-depth analysis of DARS2 expression in colorectal cancer tissues. Immunohistochemical staining was carried out in 108 colorectal cancer specimens and 30 normal colorectal tissues obtained from the First Affiliated Hospital of Nanchang University, Nanchang, China. Colorectal cancer cell lines (HCT116 and SW480) were transfected with small interfering RNA (siRNA) and DARS2 overexpression plasmid to examine the effects of DARS2 knockdown and overexpression on cell function. To assess the effects on cell function, CCK8 and transwell migration assays were used to assess proliferation and cell motility, respectively. Additionally, protein immunoblotting was employed to scrutinize the expression of proteins associated with the epithelial-mesenchymal transition of colorectal cancer cells. Results: DARS2 exhibited a pronounced upregulation in expression within colorectal cancer tissues compared to their normal epithelial counterparts. Furthermore, DARS2 expression was higher in colorectal cancer of stage Ⅲ-Ⅳ than those of stage Ⅰ-Ⅱ, exhibiting a significant correlation with N staging, M staging, and pathological staging (P<0.05). Kaplan-Meier analyses showed a decreased overall survival rate in colorectal cancer with DARS2 expression compared to those without DARS2 expression (P<0.05). In the siRNA transfection group, there was a significant reduction in cell proliferation and migration (P<0.01 and P<0.05, respectively). Conversely, the transfection of DARS2 overexpression plasmids substantially increased both cell proliferation and migration (P<0.05). Additionally, immunoblotting revealed that DARS2 knockdown led to an upregulation of E-cadherin expression and a downregulation of N-cadherin and vimentin expression. In contrast, DARS2 overexpression resulted in increased N-cadherin and vimentin expression, coupled with reduction in E-cadherin expression. Conclusions: There is a strong association between DARS2 expression and colorectal cancer progression. Silencing DARS2 inhibits cell proliferation and migration, exerting a discernible influence on the epithelial-mesenchymal transition process.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , RNA, Small Interfering , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , RNA, Small Interfering/genetics , Cell Line, Tumor , Vimentin/metabolism , Vimentin/genetics , Cadherins/metabolism , Cadherins/genetics , Survival Rate , HCT116 Cells , Neoplasm Staging , Up-Regulation , Gene Expression Regulation, Neoplastic , Clinical Relevance
11.
Exp Eye Res ; 245: 109977, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901724

ABSTRACT

The aim of the study was to investigate the effect of ripasudil on corneal endothelial cell survival and migration after two types of descemetorhexis on a human ex vivo model. Eleven human corneoscleral buttons were incubated in either 50 ml organ culture medium containing 10 µM ripasudil or 50 µl dimethyl sulfoxide (DMSO), the vehicle in ripasudil for 2 days prior to wound creation then for 14 days after. The wound was created with either full trephination scoring or by shallow trephination plus manual peeling. At day 14, immunohistochemistry with vimentin and Na+/K+/ATPase markers was conducted. Tissues were assessed at day 3, 7 and 14 for morphology, cell migration, cell viability and cell density. Full trephination scoring created more damage on tissues compared to shallow trephination with full Descemet membrane peeling. In the full trephination scoring group, no differences in cell viability were noted when ripasudil and DMSO were compared. With the peeling method, Ripasudil could protect the endothelial cell death and maintain the morphology compared to the control. At day 14, no differences in the peripheral cell viability and density were found between ripasudil and DMSO, although the ripasudil group presented significantly increased central cell count and cell viability. Increased cell migration was noted with ripasudil and the initial cell morphology of those migrated cells was similar to that of fibroblasts. In conclusion, ex vivo modelling suggested that peeling resulted in less cell damage than scoring and ripasudil maintained better morphology and promoted migration. These effects might be via transformation of endothelial cells into a more motile spindle-like phenotype.


Subject(s)
Cell Movement , Cell Survival , Descemet Membrane , Endothelium, Corneal , Sulfonamides , Humans , Endothelium, Corneal/drug effects , Endothelium, Corneal/pathology , Endothelium, Corneal/cytology , Cell Movement/drug effects , Sulfonamides/pharmacology , Aged , Cell Count , Isoquinolines/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Vimentin/metabolism , Organ Culture Techniques , Aged, 80 and over , Male , Female , Wound Healing/drug effects , Middle Aged
12.
J R Soc Interface ; 21(215): 20230641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835244

ABSTRACT

Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.


Subject(s)
Cell Movement , Cell Polarity , Centrosome , Microtubules , Vimentin , Animals , Mice , Acetylation , Centrosome/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Mice, Knockout , Microtubules/metabolism , Vimentin/metabolism
13.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831508

ABSTRACT

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Subject(s)
Intermediate Filaments , Vimentin , Vimentin/metabolism , Vimentin/chemistry , Humans , Intermediate Filaments/metabolism , Animals , Intermediate Filament Proteins/metabolism , Intermediate Filament Proteins/chemistry
14.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822516

ABSTRACT

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Subject(s)
Cadherins , Diphtheria Toxin , Epithelial-Mesenchymal Transition , Promoter Regions, Genetic , Humans , A549 Cells , Antigens, CD/genetics , Antigens, CD/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Cadherins/genetics , Cadherins/metabolism , Cell Movement/genetics , Cell Movement/drug effects , Diphtheria Toxin/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, Transgenic, Suicide , Promoter Regions, Genetic/genetics , Vimentin/genetics , Vimentin/metabolism
15.
Rev. esp. patol ; 57(2): 128-132, Abr-Jun, 2024. ilus
Article in English | IBECS | ID: ibc-232418

ABSTRACT

Primary hepatic liposarcoma is an extremely rare malignant tumour derived from adipocytes and is part of the group of mesenchymal tumours. We present the case of a 43-year-old Hispanic male patient with a pleomorphic hepatic liposarcoma and absence of MDM2 gene amplification. Two years and six months after surgery, the patient is asymptomatic. The present case is the first report of this entity with positive immunohistochemical testing for p16, p53, S100, vimentin and absence of MDM2 gene amplification. (AU)


El liposarcoma hepático primario es un tumor maligno extremadamente raro, derivado de adipocitos, y forma parte del grupo de tumores mesenquimales. Presentamos el caso de un paciente masculino de 43 años con diagnóstico de liposarcoma hepático pleomorfo con ausencia de amplificación del gen MDM2. Dos años y 6 meses después de la cirugía el paciente se encuentra asintomático. El presente caso es el primer informe de esta entidad con estudio inmunohistoquímico positivo para p16, p53, S100, vimentina y ausencia de amplificación del gen MDM2. (AU)


Subject(s)
Humans , Male , Adult , Liposarcoma , Neoplasms , Adipocytes , Mesenchymal Stem Cells , Vimentin
16.
ACS Appl Bio Mater ; 7(6): 3997-4006, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38815185

ABSTRACT

Epithelial-mesenchymal transition (EMT) is critical for tumor invasion and many other cell-relevant processes. While much progress has been made about EMT, no report concerns the EMT of cells on topological biomaterial interfaces with significant nuclear deformation. Herein, we prepared a poly(lactide-co-glycolide) micropillar array with an appropriate dimension to enable significant deformation of cell nuclei and examined EMT of a human lung cancer epithelial cell (A549). We show that A549 cells undergo serious nuclear deformation on the micropillar array. The cells express more E-cadherin and less vimentin on the micropillar array than on the smooth surface. After transforming growth factor-ß1 (TGF-ß1) treatment, the expression of E-cadherin as an indicator of the epithelial phenotype is decreased and the expression of vimentin as an indicator of the mesenchymal phenotype is increased for the cells both on smooth surfaces and on micropillar arrays, indicating that EMT occurs even when the cell nuclei are deformed and the culture on the micropillar array more enhances the expression of vimentin. Expression of myosin phosphatase targeting subunit 1 is reduced in the cells on the micropillar array, possibly affecting the turnover of myosin light chain phosphorylation and actin assembly; this makes cells on the micropillar array prefer the epithelial-like phenotype and more sensitive to TGF-ß1. Overall, the micropillar array exhibits a promoting effect on the EMT.


Subject(s)
Biocompatible Materials , Epithelial-Mesenchymal Transition , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Vimentin/metabolism , A549 Cells , Materials Testing , Particle Size , Cadherins/metabolism , Surface Properties
17.
Biomolecules ; 14(5)2024 May 10.
Article in English | MEDLINE | ID: mdl-38785974

ABSTRACT

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Subject(s)
Disease Models, Animal , Ependymoglial Cells , Gliosis , Mice, Transgenic , Microglia , Animals , Gliosis/pathology , Gliosis/metabolism , Gliosis/chemically induced , Mice , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Ependymoglial Cells/drug effects , Retina/metabolism , Retina/pathology , Retina/drug effects , Hypoxia/metabolism , Hypoxia/pathology , Astrocytes/metabolism , Astrocytes/pathology , Astrocytes/drug effects , Glial Fibrillary Acidic Protein/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Cytokines/metabolism , Vimentin/metabolism , Vimentin/genetics , Diphtheria Toxin
18.
J Med Life ; 17(1): 4-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737656

ABSTRACT

Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Early Detection of Cancer , Epigenesis, Genetic , Septins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Early Detection of Cancer/methods , Septins/genetics , DNA Methylation/genetics , Syndecan-2/genetics , Vimentin/genetics
19.
J Clin Periodontol ; 51(7): 806-817, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38708491

ABSTRACT

AIM: To qualitatively and quantitatively evaluate the formation and maturation of peri-implant soft tissues around 'immediate' and 'delayed' implants. MATERIALS AND METHODS: Miniaturized titanium implants were placed in either maxillary first molar (mxM1) fresh extraction sockets or healed mxM1 sites in mice. Peri-implant soft tissues were evaluated at multiple timepoints to assess the molecular mechanisms of attachment and the efficacy of the soft tissue as a barrier. A healthy junctional epithelium (JE) served as positive control. RESULTS: No differences were observed in the rate of soft-tissue integration of immediate versus delayed implants; however, overall, mucosal integration took at least twice as long as osseointegration in this model. Qualitative assessment of Vimentin expression over the time course of soft-tissue integration indicated an initially disorganized peri-implant connective tissue envelope that gradually matured with time. Quantitative analyses showed significantly less total collagen in peri-implant connective tissues compared to connective tissue around teeth around implants. Quantitative analyses also showed a gradual increase in expression of hemidesmosomal attachment proteins in the peri-implant epithelium (PIE), which was accompanied by a significant inflammatory marker reduction. CONCLUSIONS: Within the timeframe examined, quantitative analyses showed that connective tissue maturation never reached that observed around teeth. Hemidesmosomal attachment protein expression levels were also significantly reduced compared to those in an intact JE, although quantitative analyses indicated that macrophage density in the peri-implant environment was reduced over time, suggesting an improvement in PIE barrier functions. Perhaps most unexpectedly, maturation of the peri-implant soft tissues was a significantly slower process than osseointegration.


Subject(s)
Dental Implants , Osseointegration , Animals , Mice , Osseointegration/physiology , Tooth Socket/surgery , Epithelial Attachment , Dental Implantation, Endosseous/methods , Immediate Dental Implant Loading , Titanium , Connective Tissue , Vimentin/analysis , Vimentin/metabolism , Collagen/metabolism , Gingiva , Time Factors
20.
Neurosurg Focus ; 56(5): E17, 2024 05.
Article in English | MEDLINE | ID: mdl-38691868

ABSTRACT

OBJECTIVE: There is a lack of effective drugs to treat the progression and recurrence of chordoma, which is widely resistant to treatment in chemotherapy. The authors investigated the functional and therapeutic relevance of the E1A-binding protein p300 (EP300) in chordoma. METHODS: The expression of EP300 and vimentin was examined in specimens from 9 patients with primary and recurrent chordoma with immunohistochemistry. The biological functions of EP300 were evaluated with Cell Counting Kit-8, clonogenic assays, and transwell assays. The effects of EP300 inhibitors (C646 and SGC-CBP30) on chordoma cell motility were assessed with these assays. The effect of the combination of EP300 inhibitors and cisplatin on chordoma cells was evaluated with clonogenic assays. Reverse transcription quantitative polymerase chain reaction and Western blot techniques were used to explore the potential mechanism of EP300 through upregulation of the expression of vimentin to promote the progression of chordoma. RESULTS: Immunohistochemistry analysis revealed a positive correlation between elevated EP300 expression levels and recurrence. The upregulation of EP300 stimulated the growth of and increased the migratory and invasive capabilities of chordoma cells, along with upregulating vimentin expression and consequently impacting their invasive properties. Conversely, EP300 inhibitors decreased cell proliferation and downregulated vimentin. Furthermore, the combination of EP300 inhibition and cisplatin exhibited an enhanced anticancer effect on chordoma cells, indicating that EP300 may influence chordoma sensitivity to chemotherapy. CONCLUSIONS: These findings indicate that EP300 functions as an oncogene in chordoma. Targeting EP300 offers a novel approach to the development and clinical treatment of chordoma.


Subject(s)
Chordoma , Disease Progression , E1A-Associated p300 Protein , Up-Regulation , Vimentin , Humans , Chordoma/genetics , Chordoma/metabolism , Vimentin/metabolism , Vimentin/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Male , Up-Regulation/drug effects , Female , Middle Aged , Adult , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Movement/drug effects , Cell Line, Tumor , Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/genetics , Gene Expression Regulation, Neoplastic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...