Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.533
Filter
1.
Methods Mol Biol ; 2837: 159-170, 2024.
Article in English | MEDLINE | ID: mdl-39044083

ABSTRACT

In recent years, serum hepatitis B virus (HBV) RNA has been identified as a promising noninvasive surrogate biomarker of intrahepatic covalently closed circular DNA (cccDNA), detection of which requires an invasive liver biopsy in patients with chronic HBV infection. It is impractical to detect intrahepatic cccDNA as a routine diagnosis for chronic hepatitis B (CHB) patients in clinical management. Here, we describe a detailed protocol for serum HBV RNA quantification, which can reflect the activity of intrahepatic cccDNA. The procedure includes three major steps: (1) Simultaneous isolation of HBV DNA and RNA from patients' serum, (2) DNase I digestion for removing HBV DNA contamination, and (3) HBV RNA quantification by one-step reverse transcription qPCR.


Subject(s)
Hepatitis B virus , RNA, Viral , Humans , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , RNA, Viral/blood , RNA, Viral/genetics , RNA, Viral/isolation & purification , DNA, Viral/blood , DNA, Viral/genetics , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , DNA, Circular/blood , DNA, Circular/isolation & purification , DNA, Circular/genetics , Viral Load/methods , Real-Time Polymerase Chain Reaction/methods
2.
Methods Mol Biol ; 2824: 447-459, 2024.
Article in English | MEDLINE | ID: mdl-39039429

ABSTRACT

Rift Valley fever virus is able to infect multiple organs and cell types, and the course of infection varies between viral strains and between individuals in particular according to age, genetic background, and physiological status. Studies on viral and host factors involve detecting and quantifying viral load at multiple time points and in multiple tissues. While this is classically performed by genome quantification or viral titration, in vivo imaging techniques using recombinant viruses expressing a bioluminescent or fluorescent protein allow noninvasive longitudinal studies on the same group of mice over the entire course of disease and the detection of unsuspected sites of infection. Here, we describe the protocol to monitor and characterize mouse infection with Rift Valley fever virus by in vivo imaging using recombinant viruses expressing light-emitting reporter genes.


Subject(s)
Genes, Reporter , Luminescent Measurements , Rift Valley fever virus , Animals , Mice , Luminescent Measurements/methods , Rift Valley fever virus/genetics , Rift Valley Fever/virology , Rift Valley Fever/diagnosis , Viral Load/methods , Disease Models, Animal , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism
3.
Front Cell Infect Microbiol ; 14: 1422299, 2024.
Article in English | MEDLINE | ID: mdl-38988808

ABSTRACT

Objectives: Precise HDV-RNA detection and quantification are pivotal for diagnosis and monitoring of response to newly approved treatment. We evaluate the performance of three HDV RNA detection and quantification assays. Methods: Hepatitis Delta RT-PCR system kit, EurobioPlex HDV assay, and RoboGene HDV RNA Quantification kit 2.0 were used for testing 151 HBsAg-positive samples, 90 HDV-RNA negative and 61 HDV-RNA positive. We also evaluated serial dilutions of the WHO international standard for HDV, PEI 7657/12. All HDV-RNA positive samples were genotyped using a next-generation sequencing strategy. Results: Qualitative results indicated a 100% concordance between tests. Quantitative results correlated well, r2 = 0.703 (Vircell-vs-Eurobio), r2 = 0.833 (Vircell-vs-RoboGene), r2 = 0.835 (Robogene-vs-Eurobio). Bias index was 2.083 (Vircell-vs-Eurobio), -1.283 (Vircell-vs-RoboGene), and -3.36 (Robogene-vs-Eurobio). Using the WHO IS, Vircell overestimated the viral load by 0.98 log IU/mL, Eurobio by 1.46 log IU/mL, and RoboGene underestimated it by 0.98 log IU/mL. Fifty-nine samples were successfully genotyped (Genotype 1, n=52; Genotype 5, n=7; Genotype 6, n=1), with similar results for correlation and bias. Conclusion: This study underscores the necessity of using reliable HDV-RNA detection and quantification assays, as evidenced by the high concordance rates in qualitative detection and the observed variability in quantitative results. These findings highlight the importance of consistent assay use in clinical practice to ensure accurate diagnosis and effective treatment monitoring of HDV infection.


Subject(s)
Genotype , Hepatitis D , Hepatitis Delta Virus , RNA, Viral , Viral Load , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/isolation & purification , Humans , RNA, Viral/genetics , Viral Load/methods , Hepatitis D/diagnosis , Hepatitis D/virology , Reagent Kits, Diagnostic/standards , Sensitivity and Specificity , High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods
4.
Viruses ; 16(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39066179

ABSTRACT

Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL using the coordination of common motif (CoCoMo) degenerate primers. Here, we constructed a novel duplex BLV-CoCoMo qPCR assay that can amplify two genes simultaneously using a FAM-labeled MGB probe for the BLV LTR gene and a VIC-labeled MGB probe for the BoLA-DRA gene. This liquid duplex assay maintained its original sensitivity and reproducibility in field samples. Furthermore, we developed a dry duplex assay composed of PCR reagents necessary for the optimized liquid duplex assay. We observed a strong positive correlation between the PVLs measured using the dry and liquid duplex assays. Validation analyses showed that the sensitivity of the dry duplex assay was slightly lower than that of the other methods for the detection of a BLV molecular clone, but it showed similar sensitivity to the singleplex assay and slightly higher sensitivity than the liquid duplex assay for the PVL quantification of 82 field samples. Thus, our liquid and dry duplex assays are useful for measuring the BLV PVL in field samples, similar to the original singleplex assay.


Subject(s)
Enzootic Bovine Leukosis , Leukemia Virus, Bovine , Proviruses , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Viral Load , Leukemia Virus, Bovine/genetics , Leukemia Virus, Bovine/isolation & purification , Animals , Cattle , Proviruses/genetics , Viral Load/methods , Enzootic Bovine Leukosis/virology , Enzootic Bovine Leukosis/diagnosis , Reproducibility of Results , Real-Time Polymerase Chain Reaction/methods , DNA Primers/genetics , Multiplex Polymerase Chain Reaction/methods
5.
Methods Mol Biol ; 2829: 271-275, 2024.
Article in English | MEDLINE | ID: mdl-38951343

ABSTRACT

This chapter outlines a rapid detection method to determine the virus titer of your baculovirus stock. Staining of cells with fluorescently labeled gp64 antibody allows for flow cytometer-based quantitation of baculovirus-infected insect cells. In this assay, Sf9 cells are infected with tenfold serial dilutions of the test virus stock, and baculovirus titers are calculated based on the ratio of infected to uninfected cells 13 to 18 h after inoculation.


Subject(s)
Baculoviridae , Flow Cytometry , Flow Cytometry/methods , Baculoviridae/genetics , Animals , Sf9 Cells , Viral Load/methods
6.
Methods Mol Biol ; 2829: 267-270, 2024.
Article in English | MEDLINE | ID: mdl-38951342

ABSTRACT

There are many methods that can be used to determine the infectious titer of your baculovirus stock. The TCID50 method is a simple end-point dilution method that determines the amount of baculovirus virus needed to produce a cytopathic effect or kill 50% of inoculated insect cells. Serial dilutions of baculovirus stock are added to Sf9 cells cultivated in 96-well plates and 3-5 days after infection, cells are monitored for cell death or cytopathic effect. The titer can then be calculated by the Reed-Muench method as described in this method.


Subject(s)
Baculoviridae , Baculoviridae/genetics , Animals , Sf9 Cells , Cytopathogenic Effect, Viral , Spodoptera/virology , Viral Load/methods , Cell Line
7.
Mikrobiyol Bul ; 58(3): 284-292, 2024 Jul.
Article in Turkish | MEDLINE | ID: mdl-39046210

ABSTRACT

Viral load monitoring is important in identifying patients at risk of developing cytomegalovirus (CMV) related complications after transplantation and for this purpose, quantitative real-time polymerase chain reaction (Rt-qPCR) tests are most commonly used. The main problem in CMV DNA Rt-qPCR tests that make quantitative measurements is that there are significant differences in measurements performed with different kits in different laboratories. Comparability of viral load measurements between laboratories has increased with the introduction of quantitative PCR tests calibrated with the CMV International Quantitation Standard (IQS) developed by the World Health Organization (WHO). However, quantitative agreement between measurements made with different kits has still not been fully achieved. In this study, it was aimed to investigate the quantitative compatibility between measurements made with Cobas 6800 (Roche Diagnostics, Mannheim, Germany) and NeuMoDx (Qiagen, Ann Arbor, USA) CMV DNA Rt-qPCR tests, which are fully automated new generation systems calibrated with the WHO CMV IQS. The results of 214 plasma samples, which were studied simultaneously with Cobas 6800 CMV Rt-qPCR and NeuMoDx CMV Rt-qPCR tests were analyzed. In the tests, the extraction, amplification and detection stages were carried out fully automatically. CMV DNA was detected in 144 (67.28%) samples in both tests and was not detected in 53 (24.76%) samples. Incompatible results were obtained in a total of 17 (7.94%) samples. Good agreement was found between the qualitative results of both tests (kappa= 0.80, p< 0.001). When the quantitative results (n= 129) obtained in the dynamic measurement range of both tests were examined, the median viral load values measured by Cobas 6800 CMV Rt-qPCR and NeuMoDx CMV Rt-qPCR tests were 513 IU/mL (range= 35-37000) and 741 IU/mL (range= 68-48978), respectively. According to the correlation analysis, a very strong correlation was found between the results of both tests (r= 0.94, p< 0.001). According to Bland-Altman analysis; the average difference between the results of the NeuMoDx CMV Rt-qPCR test and the Cobas 6800 CMV Rt-qPCR test was found to be -0.14 log10 [standard deviation (SD)= 0.23] IU/mL and it was determined that the Cobas 6800 CMV Rt-qPCR test had lower measurements than the NeuMoDx CMV Rt-qPCR test. In 120 of 129 samples (93%) whose results were within the dynamic measurement range of both tests, the measurement difference was within ± 0.5 log10 IU/mL and in 9 (7%), it was detected as more than ± 0.5 log10 (median 0.54 log10 IU/ml; range= 0.51-0.81). No measurement difference of more than ± 1.0 log10 was detected in any sample. In this study, quantitative agreement was found in the measurements made in plasma samples with the fully automated Cobas 6800 CMV Rt-qPCR and NeuMoDx CMV Rt-qPCR tests calibrated with the CMV IQS. To the best of our knowledge, a study comparing viral load measurements made with Cobas 6800 and NeuMoDx fully automated systems in the detection of CMV DNA has not yet been conducted, and this is the first study on this subject.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , DNA, Viral , Real-Time Polymerase Chain Reaction , Viral Load , Humans , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/virology , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Viral Load/methods , Viral Load/standards , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , DNA, Viral/analysis , DNA, Viral/blood , Reagent Kits, Diagnostic/standards
8.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892344

ABSTRACT

SARS-CoV-2 is a highly infectious virus responsible for the COVID-19 pandemic. Therefore, it is important to assess the risk of SARS-CoV-2 infection, especially in persistently positive patients. Rapid discrimination between infectious and non-infectious viruses aids in determining whether prevention, control, and treatment measures are necessary. For this purpose, a method was developed and utilized involving a pre-treatment with 50 µM of propidium monoazide (PMAxx, a DNA intercalant) combined with a digital droplet PCR (ddPCR). The ddPCR method was performed on 40 nasopharyngeal swabs (NPSs) both before and after treatment with PMAxx, revealing a reduction in the viral load at a mean of 0.9 Log copies/mL (SD ± 0.6 Log copies/mL). Furthermore, six samples were stratified based on the Ct values of SARS-CoV-2 RNA (Ct < 20, 20 < Ct < 30, Ct > 30) and analyzed to compare the results obtained via a ddPCR with viral isolation and a negative-chain PCR. Of the five samples found positive via a ddPCR after the PMAxx treatment, two of the samples showed the highest post-treatment SARS-CoV-2 loads. The virus was isolated in vitro from both samples and the negative strand chains were detected. In three NPS samples, SARS CoV-2 was present post-treatment at a low level; it was not isolated in vitro, and, when detected, the strand was negative. Our results indicate that the established method is useful for determining whether the SARS-CoV-2 within positive NPS samples is intact and capable of causing infection.


Subject(s)
Azides , COVID-19 , Nasopharynx , Propidium , SARS-CoV-2 , Viral Load , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Azides/chemistry , Propidium/analogs & derivatives , Propidium/chemistry , COVID-19/virology , Viral Load/methods , Nasopharynx/virology , RNA, Viral/genetics , RNA, Viral/isolation & purification , COVID-19 Nucleic Acid Testing/methods , Polymerase Chain Reaction/methods
9.
Microbiol Spectr ; 12(7): e0420123, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38842363

ABSTRACT

Quantitation of cytomegalovirus (CMV) DNA load in specimens other than blood such as bronchoalveolar lavages, intestinal biopsies, or urine has become a common practice as an ancillary tool for the diagnosis of CMV pneumonitis, intestinal disease, or congenital infection, respectively. Nevertheless, most commercially available CMV PCR platforms have not been validated for CMV DNA detection in these specimen types. In this study, a laboratory-developed test based on Alinity m CMV ("Alinity LDT") was evaluated. Reproducibility assessment using spiked bronchial aspirate (BAS) or urine samples showed low standard deviations of 0.08 and 0.27 Log IU/mL, respectively. Evaluating the clinical performance of Alinity LDT in comparison to a laboratory-developed test based on RealTime CMV ("RealTime LDT") showed good concordance across 200 clinical specimens including respiratory specimens, intestinal biopsies, urine, and stool. A high Pearson's correlation coefficient of r = 0.92, a low mean bias of -0.12 Log IU/mL, a good qualitative agreement of 90%, and a Cohen's kappa value of 0.76 (substantial agreement) were observed. In separate analyses of the sample types BAS, tracheal aspirates, bronchoalveolar lavage, biopsies, and urine, the assay results correlated well between the two platforms with r values between 0.88 and 0.99 and a bias <0.5 Log IU/mL. Overall, the fully automated, continuous, random access Alinity LDT yielded good reproducibility, high concordance, and good correlation to RealTime LDT in respiratory, gastrointestinal, and urine samples and may enhance patient management with rapid result reporting.IMPORTANCEIn transplant recipients, a major cause for morbidity and mortality is end-organ disease by primary or secondary CMV infection of the respiratory or gastrointestinal tract. In addition, sensorineural hearing loss and neurodevelopmental abnormalities are frequent sequelae of congenital CMV infections in newborns. Standard of care for highly sensitive detection and quantitation of the CMV DNA load in plasma and whole blood specimens is real-time PCR testing. Beyond that, there is a need for quantitative determination of CMV DNA levels in respiratory, gastrointestinal, and urinary tract specimens using a highly automated, random access CMV PCR assay with a short turnaround time to enable early diagnosis and treatment. In the present study, clinical performance of the fully automated Alinity m analyzer in comparison to the current RealTime LDT assay was evaluated in eight different off-label sample types.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , DNA, Viral , Gastrointestinal Tract , Humans , Cytomegalovirus/isolation & purification , Cytomegalovirus/genetics , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/virology , DNA, Viral/genetics , DNA, Viral/isolation & purification , Reproducibility of Results , Gastrointestinal Tract/virology , Viral Load/methods , Respiratory System/virology , Bronchoalveolar Lavage Fluid/virology , Sensitivity and Specificity
11.
Diagn Microbiol Infect Dis ; 110(1): 116404, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896889

ABSTRACT

BACKGROUND: Common biologic samples used to diagnose COVID-19 include nasopharyngeal, nasal, or oropharyngeal swabs, and salivary samples. The performance characteristics of a sucked "lollipop" swab to detect SARS-CoV-2 virus is assessed in four small sub-studies. METHODS: In each sub-study, a flocked swab was sucked for 20 s and submitted for PCR detection of SARS-CoV-2 virus. RESULTS: Across all studies, 52 of 69 (75.4%) COVID-19 positive participants had positive "lollipop" swabs. Twelve of the 17 COVID-19 positive participants with negative "lollipop" swabs had known corresponding cycle threshold values of >37 from their nasal/nasopharyngeal swabs, an indication of low viral load at time of sampling. In a paired samples sub-study, the sensitivity and specificity of the "lollipop" swabs were 100% and 98%. CONCLUSIONS: "Lollipop" swabs performed satisfactorily especially in individuals with acute infection of COVID-19. "Lollipop" swabs are a simple method of sample collection for detecting SARS-CoV-2 virus and warrants additional consideration.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling , Humans , COVID-19/diagnosis , COVID-19/virology , Specimen Handling/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Nasopharynx/virology , Viral Load/methods , Male , Middle Aged , Female , Adult , COVID-19 Testing/methods , Oropharynx/virology , Aged , COVID-19 Nucleic Acid Testing/methods
12.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928410

ABSTRACT

Chikungunya virus (Togaviridae, Alphavirus; CHIKV) is a mosquito-borne global health threat. The main urban vector of CHIKV is the Aedes aegypti mosquito, which is found throughout Brazil. Therefore, it is important to carry out laboratory tests to assist in the virus's diagnosis and surveillance. Most molecular biology methodologies use nucleic acid extraction as the first step and require quality RNA for their execution. In this context, four RNA extraction protocols were evaluated in Ae. aegypti experimentally infected with CHIKV. Six pools were tested in triplicates (n = 18), each containing 1, 5, 10, 20, 30, or 40 mosquitoes per pool (72 tests). Four commercial kits were compared: QIAamp®, Maxwell®, PureLink®, and PureLink® with TRIzol®. The QIAamp® and PureLink® with TRIzol® kits had greater sensitivity. Two negative correlations were observed: as the number of mosquitoes per pool increases, the Ct value decreases, with a higher viral load. Significant differences were found when comparing the purity and concentration of RNA. The QIAamp® protocol performed better when it came to lower Ct values and higher RNA purity and concentration. These results may provide help in CHIKV entomovirological surveillance planning.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Mosquito Vectors , RNA, Viral , Chikungunya virus/isolation & purification , Chikungunya virus/genetics , Aedes/virology , Animals , RNA, Viral/isolation & purification , RNA, Viral/genetics , Mosquito Vectors/virology , Chikungunya Fever/virology , Chikungunya Fever/diagnosis , Viral Load/methods
13.
Viruses ; 16(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38932255

ABSTRACT

Quantification of Torquetenovirus (TTV) viremia is becoming important for evaluating the status of the immune system in solid organ transplant recipients, monitoring the appearance of post-transplant complications, and controlling the efficacy of maintenance immunosuppressive therapy. Thus, diagnostic approaches able to scale up TTV quantification are needed. Here, we report on the development and validation of a real-time PCR assay for TTV quantification on the Hologic Panther Fusion® System by utilizing its open-access channel. The manual real-time PCR previously developed in our laboratories was optimized to detect TTV DNA on the Hologic Panther Fusion® System. The assay was validated using clinical samples. The automated TTV assay has a limit of detection of 1.6 log copies per ml of serum. Using 112 samples previously tested via manual real-time PCR, the concordance in TTV detection was 93% between the assays. When the TTV levels were compared, the overall agreement between the methods, as assessed using Passing-Bablok linear regression and Bland-Altman analyses, was excellent. In summary, we validated a highly sensitive and accurate method for the diagnostic use of TTV quantification on a fully automated Hologic Panther Fusion® System. This will greatly improve the turnaround time for TTV testing and better support the laboratory diagnosis of this new viral biomarker.


Subject(s)
DNA Virus Infections , Real-Time Polymerase Chain Reaction , Viral Load , Viremia , Real-Time Polymerase Chain Reaction/methods , Viremia/diagnosis , Viremia/virology , Humans , Viral Load/methods , DNA Virus Infections/diagnosis , DNA Virus Infections/virology , Sensitivity and Specificity , Torque teno virus/genetics , Torque teno virus/isolation & purification , DNA, Viral/genetics , DNA, Viral/blood , Limit of Detection , Reproducibility of Results , Automation, Laboratory/methods
14.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793553

ABSTRACT

DNA assays for viral load (VL) monitoring are key tools in the management of immunocompromised patients with cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection. In this study, the analytical and clinical performances of the NeuMoDx™ CMV and EBV Quant Assays were compared with artus CMV and EBV QS-RGQ Kits in a primary hospital testing laboratory. Patient plasma samples previously tested using artus kits were randomly selected for testing by NeuMoDx assays. The NeuMoDx CMV Quant Assay and artus CMV QS-RGQ Kit limits of detection (LoDs) are 20.0 IU/mL and 69.7 IU/mL, respectively; 33/75 (44.0%) samples had CMV DNA levels above the LoD of both assays. The Pearson correlation coefficient was 0.9503; 20 samples (60.6%) had lower NeuMoDx CMV quantification values versus the artus kit. The LoD of the NeuMoDx EBV Quant Assay and artus EBV QS-RGQ Kit are 200 IU/mL and 22.29 IU/mL, respectively; 16/75 (21.3%) samples had EBV DNA levels above the LoD of both assays. The Pearson correlation coefficient was 0.8990. EBV quantification values with the NeuMoDx assay were higher versus the artus kit in 15 samples (93.8%). In conclusion, NeuMoDx CMV and EBV Quant Assays are sensitive and accurate tools for CMV and EBV DNA VL quantification.


Subject(s)
Cytomegalovirus , Herpesvirus 4, Human , Viral Load , Virology , Herpesvirus 4, Human/physiology , Cytomegalovirus/physiology , Viral Load/instrumentation , Viral Load/methods , Virology/instrumentation , Virology/methods , Limit of Detection , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/virology , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/virology , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Humans
15.
Virol J ; 21(1): 121, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816844

ABSTRACT

BACKGROUND: During the pandemic, whole genome sequencing was critical to characterize SARS-CoV-2 for surveillance, clinical and therapeutical purposes. However, low viral loads in specimens often led to suboptimal sequencing, making lineage assignment and phylogenetic analysis difficult. We propose an alternative approach to sequencing these specimens that involves sequencing in triplicate and concatenation of the reads obtained using bioinformatics. This proposal is based on the hypothesis that the uncovered regions in each replicate differ and that concatenation would compensate for these gaps and recover a larger percentage of the sequenced genome. RESULTS: Whole genome sequencing was performed in triplicate on 30 samples with Ct > 32 and the benefit of replicate read concatenation was assessed. After concatenation: i) 28% of samples reached the standard quality coverage threshold (> 90% genome covered > 30x); ii) 39% of samples did not reach the coverage quality thresholds but coverage improved by more than 40%; and iii) SARS-CoV-2 lineage assignment was possible in 68.7% of samples where it had been impaired. CONCLUSIONS: Concatenation of reads from replicate sequencing reactions provides a simple way to access hidden information in the large proportion of SARS-CoV-2-positive specimens eliminated from analysis in standard sequencing schemes. This approach will enhance our potential to rule out involvement in outbreaks, to characterize reinfections and to identify lineages of concern for surveillance or therapeutical purposes.


Subject(s)
COVID-19 , Genome, Viral , Phylogeny , SARS-CoV-2 , Viral Load , Whole Genome Sequencing , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Humans , COVID-19/virology , Viral Load/methods , Genome, Viral/genetics , Whole Genome Sequencing/methods , Computational Biology/methods , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing/methods
16.
Diagn Microbiol Infect Dis ; 109(4): 116357, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776663

ABSTRACT

We aimed to compare the NeuMoDx HBV Assay with the artus HBV Assay using residual plasma samples and to evaluate the discordant results. The study included 200 patient samples analyzed with the NMD assay and stored at -80 °C. Samples were analyzed by artus in 2023. Discordant results were evaluated by cobas 6800 HBV DNA Test. Excellent agreement was found between both tests. Of the 100 samples that were HBV DNA negative by NMD, 93 were negative and 7 were positive by artus. With the Cobas test, 5 samples were positive. Of the100 HBV DNA positive samples detected by NMD, 99 were positive with the artus assay. This sample was also HBV DNA negative by the Cobas test. The sensitivity and specificity of NeuMoDx were found 93 % and 99 %, respectively. There was excellent qualitative agreement and strong quantitative correlation between the NeuMoDx and artus assays for HBV DNA detection and quantitation.


Subject(s)
DNA, Viral , Hepatitis B virus , Hepatitis B , Sensitivity and Specificity , Humans , DNA, Viral/blood , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Hepatitis B/diagnosis , Hepatitis B/virology , Hepatitis B/blood , Viral Load/methods , Reagent Kits, Diagnostic/standards , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Plasma/virology
17.
J Clin Virol ; 173: 105680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38728796

ABSTRACT

BACKGROUND: Epstein-Barr Virus (EBV) viral loads in hematopoietic stem cell transplant (HSCT) recipients are typically monitored using quantitative molecular assays. The Cobas EBV test (Roche Molecular, Pleasanton, CA) has recently been FDA-cleared for the monitoring of EBV viral loads in plasma samples of transplant patients. In this study, we compared the viral loads obtained by a laboratory-developed test (EBV LDT) using Altona Analyte specific reagents (ASR) to those obtained on the Cobas EBV test. METHODS: The analytical performance of the assay was established using the EBV verification panel from Exact Diagnostics and the EBV ATCC strain B95-8. The clinical evaluation was performed using 343 plasma samples initially tested on the EBV LDT. RESULTS: The analytical sensitivity (<18.8 IU/mL), precision (SD < 0.17 log) and linear range (35.0 IU/mL to 1E + 08 IU/mL) of the Cobas EBV assay established by the manufacturers were confirmed. The strength of the qualitative agreement was substantial between the cobas EBV and the EBV LDT (85.6 %; κ = 0.71) and almost perfect when discordant results were resolved (96.4 %; κ = 0.93). The quantitative agreement was moderate (82.9 %; κ = 0.53) with the viral load obtained on the Cobas EBV test being lower across the linear range of the two tests (mean log difference of 1.0). While the absolute values of the viral loads were markedly different, the overall trends observed in patients with multiple consecutive results were similar between the two tests. CONCLUSIONS: The Cobas EBV test provides an accurate and valid, in vitro diagnostic (IVD) option for monitoring of EBV viral loads in transplant patients and should provide an opportunity for increased standardization and commutability of tests results across laboratories.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Sensitivity and Specificity , Tertiary Care Centers , Viral Load , Humans , Viral Load/methods , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/isolation & purification , Herpesvirus 4, Human/genetics , Middle Aged , Female , Adult , Male , Aged , Young Adult , Adolescent , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Hematopoietic Stem Cell Transplantation , Child , Child, Preschool , DNA, Viral/blood , Reagent Kits, Diagnostic/standards
18.
Microbiol Spectr ; 12(7): e0003024, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38771037

ABSTRACT

Quantitative monitoring of cytomegalovirus (CMV) DNAemia in venous blood is standard in solid organ transplant recipients (SOTr) but is limited by the need for phlebotomy facilities and personnel. The aim of the study was to evaluate the Tasso+ capillary blood (CB) self-collection device for quantitation of plasma CMV DNAemia. Thirty adult SOTr with suspected CMV DNAemia were enrolled to have a supervised Tasso+ CB sample collection within 24 h of a venous sample. CMV DNA was quantitated in paired samples by using the Abbott M2000 Real-Time qPCR instrument. The participants were provided with a study-specific survey that measured patient acceptability of the Tasso+ device compared with venipuncture. A Tasso + CB sample was successfully collected in 28/30 (93%) patients, and 44 paired samples were analyzed. Concordance for detection of CMV DNAemia above the limit of detection (LOD) was 91% (42/44), and the Tasso + CB sample was estimated to be 95% sensitive at a viral load (VL) of 308 IU/mL. Among samples with a quantifiable DNAemia result with both methods (N = 31), there was excellent correlation between methods (Spearman R2 = 0.99). The difference in CMV VL between venous and Tasso+ CB samples was not dependent on time (P > 0.1). Of 12 who completed the survey, 11 (92%) expressed a preference for Tasso+ CB collection over venipuncture. Collection of CB with the Tasso+ device is feasible, patient-acceptable, and yields generally comparable CMV DNAemia load to standard venous samples, but with lower sensitivity. Future studies to optimize and evaluate this methodology for patient self-collected samples are warranted. IMPORTANCE: We evaluate an FDA-cleared blood self-collection device (Tasso+) and demonstrate that it is patient-acceptable and yields a liquid blood sample with quantitative CMV DNAemia results comparable to those of standard venipuncture samples. This opens up possibilities for self-blood collection to monitor for CMV and potentially other viruses in transplant and other at-risk populations.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , DNA, Viral , Organ Transplantation , Transplant Recipients , Viral Load , Humans , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/blood , Cytomegalovirus Infections/virology , DNA, Viral/blood , Cytomegalovirus/isolation & purification , Cytomegalovirus/genetics , Middle Aged , Male , Female , Adult , Viral Load/methods , Aged , Blood Specimen Collection/methods , Blood Specimen Collection/instrumentation , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/instrumentation , Viremia/virology , Viremia/diagnosis
19.
Microbiol Spectr ; 12(7): e0001824, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757960

ABSTRACT

Monkeypox virus (MPXV) poses a global health threat. Droplet digital PCR (ddPCR) holds potential as an accurate diagnostic tool for clinical microbiology. However, there is limited literature on the applicability of ddPCR in clinical settings. In this study, the clinical features of patients with MPXV during the initial outbreak in China in June 2023 were reviewed, and an optimized ddPCR method with dilution and/or inhibitor removal was developed to enhance MPXV detection efficiency. Eighty-two MPXV samples were tested from nine different clinical specimen types, including feces, urine, pharyngeal swabs, anal swabs, saliva, herpes fluid, crust, and semen, and the viral load of each specimen was quantified. A comparative analysis was performed with qPCR to assess sensitivity and specificity and to investigate the characteristics of MPXV infection by analyzing viral loads in different clinical specimens. Consequently, common pharyngeal and gastrointestinal symptoms were observed in patients with MPXV. The optimized ddPCR method demonstrated relatively high sensitivity for MPXV quantification in the clinical materials, with a limit of detection of 0.1 copies/µL. This was particularly evident in low-concentration samples like whole blood, semen, and urine. The optimized ddPCR demonstrated greater detection accuracy compared with normal ddPCR and qPCR, with an area under the curve (AUC) of 0.939. Except for crust samples, viral loads in the specimens gradually decreased as the disease progressed. Virus levels in feces and anal swabs kept a high detection rate at each stage of post-symptom onset, and feces and anal swabs samples may be suitable for clinical diagnosis and continuous monitoring of MPXV. IMPORTANCE: The ddPCR technique proved to be a sensitive and valuable tool for accurately quantifying MPXV viral loads in various clinical specimen types. The findings provided valuable insights into the necessary pre-treatment protocols for MPXV diagnosis in ddPCR detection and the potentially suitable sample types for collection. Therefore, such results can aid in comprehending the potential characteristics of MPXV infection and the usage of ddPCR in clinical settings.


Subject(s)
Monkeypox virus , Sensitivity and Specificity , Viral Load , Humans , Viral Load/methods , Monkeypox virus/isolation & purification , Monkeypox virus/genetics , China , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/virology , Male , Feces/virology , Female , Polymerase Chain Reaction/methods , Disease Outbreaks , Adult , Real-Time Polymerase Chain Reaction/methods
20.
Clin Microbiol Infect ; 30(8): 1067-1073, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735369

ABSTRACT

OBJECTIVES: Widespread testing and treatment are essential to eliminate hepatitis B virus (HBV) infection as a public health concern. However, in resource-limited countries, access to HBV PCR is limited. In this study, we developed a quantitative HBV PCR assay on open molecular platforms and evaluate its performance in diagnosing clinically significant HBV DNA thresholds as defined by the WHO (2000 IU/mL, 20 000 IU/mL, and 200 000 IU/mL). METHODS: We implemented our HBV PCR test in seven African and Asian countries and France, using either an in-house laboratory method or a European conformity for in vitro diagnostic (CE-IVD) marked version of the PCR (Generic HBV Charge Virale, Biocentric). Results were compared with reference tests (Roche Cobas AmpliPrep/Cobas TaqMan and Abbott RealTime on Abbott m2000). RESULTS: There was a good agreement between the HBV DNA results of 1015 samples tested by the PCR on open polyvalent platforms and the results from reference tests (mean difference (bias ± standard deviation [SD]): -0.3 ± 0.7 log10 IU/mL and -0.2 ± 0.9 log10 IU/mL when compared with Roche and Abbott tests, respectively). Kappa-Cohen agreements between the HBV PCR on open polyvalent platforms and the Roche/Abbott assays appeared almost perfect for HBV DNA levels ranged from >20 000 to 200 000 IU/mL and >200 000 IU/mL, substantial and moderate for HBV DNA levels ranged from 2000 to 20 000 IU/mL when compared with Abbott and Roche, respectively. The assay's performance was consistent across genotypes A, B, C, D, and E. DISCUSSION: This field evaluation showed that our HBV PCR test is a valuable alternative to proprietary PCR systems. PCR assays on open platforms contribute to expanding clinical laboratory solutions for diagnosing individuals who meet the viral load criteria for antiviral therapy (>20 000 IU/mL) and mother-to-child prophylaxis (>200 000 IU/mL).


Subject(s)
DNA, Viral , Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , DNA, Viral/genetics , Africa , Hepatitis B/diagnosis , Hepatitis B/virology , Asia , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Female , Viral Load/methods , Male , Polymerase Chain Reaction/methods , Adult , Real-Time Polymerase Chain Reaction/methods , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL