Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.495
Filter
1.
Biomed Res Int ; 2024: 4066641, 2024.
Article in English | MEDLINE | ID: mdl-38962403

ABSTRACT

The zoonotic viruses pose significant threats to public health. Nipah virus (NiV) is an emerging virus transmitted from bats to humans. The NiV causes severe encephalitis and acute respiratory distress syndrome, leading to high mortality rates, with fatality rates ranging from 40% to 75%. The first emergence of the disease was found in Malaysia in 1998-1999 and later in Bangladesh, Cambodia, Timor-Leste, Indonesia, Singapore, Papua New Guinea, Vietnam, Thailand, India, and other South and Southeast Asian nations. Currently, no specific vaccines or antiviral drugs are available. The potential advantages of epitope-based vaccines include their ability to elicit specific immune responses while minimizing potential side effects. The epitopes have been identified from the conserved region of viral proteins obtained from the UniProt database. The selection of conserved epitopes involves analyzing the genetic sequences of various viral strains. The present study identified two B cell epitopes, seven cytotoxic T lymphocyte (CTL) epitopes, and seven helper T lymphocyte (HTL) epitope interactions from the NiV proteomic inventory. The antigenic and physiological properties of retrieved protein were analyzed using online servers ToxinPred, VaxiJen v2.0, and AllerTOP. The final vaccine candidate has a total combined coverage range of 80.53%. The tertiary structure of the constructed vaccine was optimized, and its stability was confirmed with the help of molecular simulation. Molecular docking was performed to check the binding affinity and binding energy of the constructed vaccine with TLR-3 and TLR-5. Codon optimization was performed in the constructed vaccine within the Escherichia coli K12 strain, to eliminate the danger of codon bias. However, these findings must require further validation to assess their effectiveness and safety. The development of vaccines and therapeutic approaches for virus infection is an ongoing area of research, and it may take time before effective interventions are available for clinical use.


Subject(s)
Computer Simulation , Henipavirus Infections , Nipah Virus , Nipah Virus/immunology , Humans , Henipavirus Infections/immunology , Henipavirus Infections/prevention & control , Viral Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Computational Biology/methods , Epitopes, T-Lymphocyte/immunology , Vaccination , Molecular Docking Simulation , Viral Proteins/immunology , Viral Proteins/chemistry , Viral Proteins/genetics , Animals
2.
Microb Biotechnol ; 17(7): e14513, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962879

ABSTRACT

The phage lysin field has done nothing but grow in the last decades. As a result, many different research groups around the world are contributing to the field, often with certain methodological differences that pose a challenge to the interpretation and comparison of results. In this work, we present the case study of three Acinetobacter baumannii-targeting phage lysins (wild-type endolysin LysMK34 plus engineered lysins eLysMK34 and 1D10) plus one lysin with broad activity against Gram-positive bacteria (PlySs2) to provide exemplary evidence on the risks of generalization when using one of the most common lysin evaluation assays: the killing assay with resting cells. To that end, we performed killing assays with the aforementioned lysins using hypo-, iso- and hypertonic buffers plus human serum either as the reaction or the dilution medium in a systematic manner. Our findings stress the perils of creating hypotonic conditions or a hypotonic shock during a killing assay, suggesting that hypotonic buffers should be avoided as a test environment or as diluents before plating to avoid overestimation of the killing effect in the assayed conditions. As a conclusion, we suggest that the nature of both the incubation and the dilution buffers should be always clearly identified when reporting killing activity data, and that for experimental consistency the same incubation buffer should be used as a diluent for posterior serial dilution and plating unless explicitly required by the experimental design. In addition, the most appropriate buffer mimicking the final application must be chosen to obtain relevant results.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Bacteriophages/chemistry , Bacteriophages/physiology , Bacteriophages/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/virology , Osmolar Concentration , Microbial Viability/drug effects , Buffers , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Endopeptidases/metabolism , Endopeptidases/chemistry
3.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38959049

ABSTRACT

Phasmaviridae is a family for negative-sense RNA viruses with genomes of about 9.7-15.8 kb. These viruses are maintained in and/or transmitted by insects. Phasmavirids produce enveloped virions containing three single-stranded RNA segments that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phasmaviridae, which is available at ictv.global/report/phasmaviridae.


Subject(s)
Genome, Viral , RNA, Viral , Animals , RNA, Viral/genetics , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , Virion/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Insecta/virology , Phylogeny , Virus Replication
4.
Front Cell Infect Microbiol ; 14: 1433661, 2024.
Article in English | MEDLINE | ID: mdl-38979510

ABSTRACT

In recent years, the avian influenza virus has emerged as a significant threat to both human and public health. This study focuses on a patient infected with the H10N3 subtype of avian influenza virus, admitted to the Third People's Hospital of Kunming City on March 6, 2024. Metagenomic RNA sequencing and polymerase chain reaction (PCR) analysis were conducted on the patient's sputum, confirming the H10N3 infection. The patient presented severe pneumonia symptoms such as fever, expectoration, chest tightness, shortness of breath, and cough. Phylogenetic analysis of the Haemagglutinin (HA) and neuraminidase (NA) genes of the virus showed that the virus was most closely related to a case of human infection with the H10N3 subtype of avian influenza virus found in Zhejiang Province, China. Analysis of amino acid mutation sites identified four mutations potentially hazardous to human health. Consequently, this underscores the importance of continuous and vigilant monitoring of the dynamics surrounding the H10N3 subtype of avian influenza virus, utilizing advanced genomic surveillance techniques.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Neuraminidase , Phylogeny , Humans , China/epidemiology , Influenza, Human/virology , Neuraminidase/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Mutation , DNA Mutational Analysis , Animals , Influenza in Birds/virology , Viral Proteins/genetics , Sputum/virology , Birds/virology , Male , RNA, Viral/genetics
5.
Arch Virol ; 169(8): 160, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981875

ABSTRACT

A novel monopartite dsRNA virus, tentatively named "sponge gourd amalgavirus 1" (SGAV1), was discovered by high-throughput sequencing in sponge gourd (Luffa cylindrica) displaying mosaic symptoms in Jiashan County, Zhejiang Province, China. The genome of SGAV1 is 3,447 nucleotides in length and contains partially overlapping open reading frames (ORFs) encoding a putative replication factory matrix-like protein and a fusion protein, respectively. The fusion protein of SGAV1 shares 57.07% identity with the homologous protein of salvia miltiorrhiza amalgavirus 1 (accession no. DAZ91057.1). Phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) protein suggests that SGAV1 belongs to the genus Amalgavirus of the family Amalgaviridae. Moreover, analysis of SGAV1-derived small interfering RNAs indicated that SGAV1 was actively replicating in the host plant. Semi-quantitative RT-PCR showed higher levels of SGAV1 expression in leaves than in flowers and fruits. This is the first report of a novel amalgavirus found in sponge gourd in China.


Subject(s)
Genome, Viral , Luffa , Open Reading Frames , Phylogeny , Genome, Viral/genetics , Luffa/virology , Animals , China , Double Stranded RNA Viruses/genetics , Double Stranded RNA Viruses/classification , Double Stranded RNA Viruses/isolation & purification , Whole Genome Sequencing , Viral Proteins/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics
6.
Arch Virol ; 169(8): 161, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981885

ABSTRACT

Here, we report a novel ourmia-like mycovirus, named "Phomopsis asparagi magoulivirus 1" (PaMV1), derived from the phytopathogenic fungus Phomopsis asparagi. The genome of PaMV1 consists of a positive-sense single-stranded RNA (+ ssRNA) that is 2,639 nucleotides in length, with a GC content of 57.13%. It contains a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) consisting of 686 amino acids with a molecular mass of 78.57 kDa. Phylogenetic analysis based on RdRp sequences revealed that PaMV1 grouped together with Diaporthe gulyae magoulivirus 1 (DgMV1) in a distinct clade. Sequence comparisons and phylogenetic analysis suggest that PaMV1 is a novel member of the genus Magoulivirus, family Botourmiaviridae.


Subject(s)
Fungal Viruses , Genome, Viral , Open Reading Frames , Phomopsis , Phylogeny , RNA, Viral , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Phomopsis/virology , RNA, Viral/genetics , Whole Genome Sequencing , RNA-Dependent RNA Polymerase/genetics , Base Composition , Plant Diseases/microbiology , Plant Diseases/virology , Viral Proteins/genetics , Base Sequence , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification
7.
Front Cell Infect Microbiol ; 14: 1418168, 2024.
Article in English | MEDLINE | ID: mdl-38988816

ABSTRACT

Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Exosomes , Host-Pathogen Interactions , MicroRNAs , Virus Diseases , Exosomes/metabolism , Humans , Endosomal Sorting Complexes Required for Transport/metabolism , Virus Diseases/metabolism , Virus Diseases/virology , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Viruses/pathogenicity , Viruses/metabolism , Virus Release , Viral Proteins/metabolism , Viral Proteins/genetics
8.
Cell Host Microbe ; 32(7): 1039-1041, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991498

ABSTRACT

Bacteria have evolved anti-viral defenses, but the mechanisms of sensing and stopping infection are still under investigation. In this issue of Cell Host & Microbe, Mets, Kurata, Ernits et al. describe how direct sensing of a phage protein by a bacterial toxin-antitoxin-associated chaperone unleashes toxin activity to prevent infection.


Subject(s)
Bacteriophages , Molecular Chaperones , Molecular Chaperones/metabolism , Bacteriophages/physiology , Toxin-Antitoxin Systems , Bacterial Toxins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Bacteria/virology , Bacteria/metabolism , Bacteria/genetics
9.
Vet Res ; 55(1): 86, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970119

ABSTRACT

H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.


Subject(s)
Influenza A Virus, H7N9 Subtype , Mutation , Orthomyxoviridae Infections , Viral Proteins , Animals , Mice , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/physiology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Virulence , Female , Viral Proteins/genetics , Viral Proteins/metabolism , Mice, Inbred BALB C , Virus Replication
10.
Arch Virol ; 169(8): 166, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995418

ABSTRACT

The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.


Subject(s)
Cordyceps , Genome, Viral , Phylogeny , RNA, Viral , Cordyceps/genetics , RNA, Viral/genetics , Fungal Viruses/classification , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Viral Proteins/genetics , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , RNA-Dependent RNA Polymerase/genetics , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , Amino Acid Sequence , Open Reading Frames
11.
J Med Virol ; 96(7): e29752, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949191

ABSTRACT

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Subject(s)
COVID-19 , Mitochondria , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Mitochondria/metabolism , COVID-19/metabolism , COVID-19/virology , COVID-19/pathology , A549 Cells , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , Transcriptome , Open Reading Frames , Viral Proteins/genetics , Viral Proteins/metabolism , Viroporin Proteins
12.
Subcell Biochem ; 104: 181-205, 2024.
Article in English | MEDLINE | ID: mdl-38963488

ABSTRACT

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Subject(s)
DNA, Viral , Viral Proteins , DNA, Viral/genetics , DNA, Viral/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Viral Genome Packaging/physiology , DNA Packaging , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/metabolism , Genome, Viral
13.
Arch Virol ; 169(8): 159, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972922

ABSTRACT

In this study, we identified a novel partitivirus, named "Cordyceps militaris partitivirus 1" (CmPV1), in Cordyceps militaris strain RCEF7506. The complete genome of CmPV1 comprises two segments, dsRNA1 and dsRNA2, each encoding a single protein. dsRNA1 (2,206 bp) encodes an RNA-dependent RNA polymerase (RdRp), and dsRNA2 (2,256 bp) encodes a coat protein (CP). Sequence analysis revealed that dsRNA1 has the highest similarity to that of Bipolaris maydis partitivirus 2 (BmPV2), whereas dsRNA2 shows the highest similarity to human blood-associated partitivirus (HuBPV). Phylogenetic analysis based on RdRp sequences suggests that CmPV1 is a new member of the genus Betapartitivirus of the family Partitiviridae. This is the first documentation of a betapartitivirus infecting the entomopathogenic fungus C. militaris.


Subject(s)
Cordyceps , Fungal Viruses , Genome, Viral , Phylogeny , RNA Viruses , Cordyceps/genetics , Cordyceps/virology , Cordyceps/isolation & purification , Genome, Viral/genetics , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Viral Proteins/genetics , Capsid Proteins/genetics
14.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990253

ABSTRACT

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Subject(s)
Ascomycota , Fungal Viruses , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Ascomycota/virology , Ascomycota/genetics , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Plant Diseases/microbiology , Plant Diseases/virology , RNA, Viral/genetics , Viral Proteins/genetics , Whole Genome Sequencing , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Amino Acid Sequence
15.
Science ; 385(6704): 105-112, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963841

ABSTRACT

Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.


Subject(s)
Endonucleases , Introns , Pseudomonas Phages , Pseudomonas aeruginosa , Viral Interference , Viral Proteins , Endonucleases/metabolism , Endonucleases/genetics , Viral Interference/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly , Virus Replication , Pseudomonas Phages/enzymology , Pseudomonas Phages/genetics , Pseudomonas aeruginosa/virology
16.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000098

ABSTRACT

Potato mop-top virus (PMTV) is an emerging viral pathogen that causes tuber necrosis in potatoes. PMTV is composed of three single-stranded RNA segments: RNA1 encodes RNA-dependent RNA polymerase, RNA2 contains the coat protein (CP), and RNA3 harbors a triple gene block (TGB 1, TGB2, and TGB3). CP plays a role in viral transmission, while TGB is known to facilitate cell-to-cell and long-distance systemic movement. The role of CP in symptom development, specifically in the presence of TGB genes, was investigated using potato virus X (PVX) as a delivery vehicle to express PMTV genes in the model plant Nicotiana benthamiana. Plants expressing individual genes showed mild symptoms that included leaf curling and crumpling. Interestingly, symptom severity varied among plants infected with three different combinations: CP with TGB1, CP with TGB2, and CP with TGB3. Notably, the combination of CP and TGB3 induced a hypersensitive response, accompanied by stunted growth and downward curling and crumpling. These results suggest the potential role of TGB co-expressed with CP in symptom development during PMTV infection. Additionally, this study demonstrates the use of the PVX-based expression system as a valuable platform for assessing the role of unknown genes in viral pathogenicity.


Subject(s)
Capsid Proteins , Nicotiana , Plant Diseases , Potexvirus , Solanum tuberosum , Capsid Proteins/genetics , Capsid Proteins/metabolism , Nicotiana/genetics , Nicotiana/virology , Nicotiana/metabolism , Potexvirus/genetics , Potexvirus/pathogenicity , Plant Diseases/virology , Plant Diseases/genetics , Solanum tuberosum/virology , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
17.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000573

ABSTRACT

Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.


Subject(s)
DNA-Binding Proteins , Mycobacteriophages , Mycobacterium smegmatis , Viral Proteins , Mycobacteriophages/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mycobacterium smegmatis/virology , Mycobacterium smegmatis/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/chemistry , Lysogeny/genetics , Genome, Viral , DNA, Viral/genetics
18.
J Biomed Sci ; 31(1): 70, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003473

ABSTRACT

Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.


Subject(s)
Apoptosis , SARS-CoV-2 , Humans , SARS-CoV-2/physiology , Viral Proteins/metabolism , Viral Proteins/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Severe acute respiratory syndrome-related coronavirus/physiology , COVID-19/virology
19.
Nat Commun ; 15(1): 5593, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961067

ABSTRACT

Human cases of avian influenza virus (AIV) infections are associated with an age-specific disease burden. As the influenza virus N2 neuraminidase (NA) gene was introduced from avian sources during the 1957 pandemic, we investigate the reactivity of N2 antibodies against A(H9N2) AIVs. Serosurvey of healthy individuals reveal the highest rates of AIV N2 antibodies in individuals aged ≥65 years. Exposure to the 1968 pandemic N2, but not recent N2, protected against A(H9N2) AIV challenge in female mice. In some older adults, infection with contemporary A(H3N2) virus could recall cross-reactive AIV NA antibodies, showing discernable human- or avian-NA type reactivity. Individuals born before 1957 have higher anti-AIV N2 titers compared to those born between 1957 and 1968. The anti-AIV N2 antibodies titers correlate with antibody titers to the 1957 N2, suggesting that exposure to the A(H2N2) virus contribute to this reactivity. These findings underscore the critical role of neuraminidase immunity in zoonotic and pandemic influenza risk assessment.


Subject(s)
Antibodies, Viral , Cross Reactions , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Pandemics , Neuraminidase/immunology , Neuraminidase/genetics , Animals , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza A Virus, H3N2 Subtype/immunology , Female , Cross Reactions/immunology , Mice , Influenza, Human/immunology , Influenza, Human/epidemiology , Influenza, Human/virology , Aged , Influenza A Virus, H2N2 Subtype/immunology , Influenza A Virus, H2N2 Subtype/genetics , Male , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Birds/virology , Middle Aged , Influenza in Birds/epidemiology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza A Virus, H9N2 Subtype/immunology , Adult , Viral Proteins/immunology , Viral Proteins/genetics
20.
PLoS Biol ; 22(7): e3002709, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012844

ABSTRACT

RNA viruses have notoriously high mutation rates due to error-prone replication by their RNA polymerase. However, natural selection concentrates variability in a few key viral proteins. To test whether this stems from different mutation tolerance profiles among viral proteins, we measured the effect of >40,000 non-synonymous mutations across the full proteome of coxsackievirus B3 as well as >97% of all possible codon deletions in the nonstructural proteins. We find significant variation in mutational tolerance within and between individual viral proteins, which correlated with both general and protein-specific structural and functional attributes. Furthermore, mutational fitness effects remained stable across cell lines, suggesting selection pressures are mostly conserved across environments. In addition to providing a rich dataset for understanding virus biology and evolution, our results illustrate that incorporation of mutational tolerance data into druggable pocket discovery can aid in selecting targets with high barriers to drug resistance.


Subject(s)
Enterovirus B, Human , Mutation , Proteome , Enterovirus B, Human/genetics , Proteome/metabolism , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Genetic Fitness , Virus Replication/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...