Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Braz J Infect Dis ; 28(2): 103742, 2024.
Article in English | MEDLINE | ID: mdl-38670166

ABSTRACT

A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.


Subject(s)
Immunocompromised Host , Organ Transplantation , Transplant Recipients , Humans , Organ Transplantation/adverse effects , Animals , Virus Diseases/transmission , Virus Diseases/virology , Disease Susceptibility , Zoonoses/transmission , Zoonoses/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Risk Factors
2.
N Engl J Med ; 386(24): 2283-2294, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35704480

ABSTRACT

BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).


Subject(s)
Arenaviruses, New World , Hemorrhagic Fever, American , RNA, Viral , Rodentia , Animals , Arenaviruses, New World/genetics , Arenaviruses, New World/isolation & purification , Bolivia/epidemiology , Cross Infection/transmission , Cross Infection/virology , Disease Transmission, Infectious , Hemorrhagic Fever, American/complications , Hemorrhagic Fever, American/genetics , Hemorrhagic Fever, American/transmission , Hemorrhagic Fever, American/virology , Hemorrhagic Fevers, Viral/genetics , Hemorrhagic Fevers, Viral/transmission , Hemorrhagic Fevers, Viral/virology , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction , RNA, Viral/genetics , RNA, Viral/isolation & purification , Rats/virology , Rodentia/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology
3.
Viruses ; 13(10)2021 09 25.
Article in English | MEDLINE | ID: mdl-34696363

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), is responsible for the worst pandemic of the 21st century. Like all human coronaviruses, SARS-CoV-2 originated in a wildlife reservoir, most likely from bats. As SARS-CoV-2 has spread across the globe in humans, it has spilled over to infect a variety of non-human animal species in domestic, farm, and zoo settings. Additionally, a broad range of species, including one neotropical monkey, have proven to be susceptible to experimental infection with SARS-CoV-2. Together, these findings raise the specter of establishment of novel enzootic cycles of SARS-CoV-2. To assess the potential exposure of free-living non-human primates to SARS-CoV-2, we sampled 60 neotropical monkeys living in proximity to Manaus and São José do Rio Preto, two hotspots for COVID-19 in Brazil. Our molecular and serological tests detected no evidence of SAR-CoV-2 infection among these populations. While this result is reassuring, sustained surveillance efforts of wildlife living in close association with human populations is warranted, given the stochastic nature of spillover events and the enormous implications of SARS-CoV-2 spillover for human health.


Subject(s)
COVID-19/epidemiology , Epidemiological Monitoring/veterinary , Primates/virology , Alouatta/virology , Animals , Animals, Wild/virology , Brazil/epidemiology , COVID-19/veterinary , Callicebus/virology , Callithrix/virology , Pandemics , SARS-CoV-2/pathogenicity , Viral Zoonoses/transmission
4.
Viruses ; 13(4)2021 03 24.
Article in English | MEDLINE | ID: mdl-33804942

ABSTRACT

Viruses play a primary role as etiological agents of pandemics worldwide. Although there has been progress in identifying the molecular features of both viruses and hosts, the extent of the impact these and other factors have that contribute to interspecies transmission and their relationship with the emergence of diseases are poorly understood. The objective of this review was to analyze the factors related to the characteristics inherent to RNA viruses accountable for pandemics in the last 20 years which facilitate infection, promote interspecies jump, and assist in the generation of zoonotic infections with pandemic potential. The search resulted in 48 research articles that met the inclusion criteria. Changes adopted by RNA viruses are influenced by environmental and host-related factors, which define their ability to adapt. Population density, host distribution, migration patterns, and the loss of natural habitats, among others, have been associated as factors in the virus-host interaction. This review also included a critical analysis of the Latin American context, considering its diverse and unique social, cultural, and biodiversity characteristics. The scarcity of scientific information is striking, thus, a call to local institutions and governments to invest more resources and efforts to the study of these factors in the region is key.


Subject(s)
Host-Pathogen Interactions , Pandemics/statistics & numerical data , RNA Virus Infections/transmission , RNA Viruses/pathogenicity , Viral Zoonoses/transmission , Animals , Genome, Viral , Humans , Latin America/epidemiology , Pandemics/prevention & control , RNA Virus Infections/epidemiology , RNA Viruses/genetics
5.
Virus Res ; 297: 198382, 2021 05.
Article in English | MEDLINE | ID: mdl-33705799

ABSTRACT

Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.


Subject(s)
Coronavirus Infections , Coronavirus , Host Specificity , Viral Zoonoses , Animals , Coronavirus/chemistry , Coronavirus/genetics , Coronavirus/physiology , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Genome, Viral , Humans , Open Reading Frames , RNA, Viral , Viral Proteins , Viral Structures , Viral Transcription , Viral Zoonoses/transmission , Viral Zoonoses/virology , Virus Assembly , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL