Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.727
Filter
1.
BMC Surg ; 24(1): 227, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123160

ABSTRACT

BACKGROUND: During surgical procedures, heat-generating devices are widely used producing surgical smoke (SS). Since the SS can transmit infectious viruses, this systematic review was designed to investigate the potential viruses transmitted through SS. METHODS: PubMed, Scopus, Web of Science, ProQuest, and Embase databases, along with Cochran Library, and Google Scholar search engine were searched systematically (by April 21, 2024). No language, place, and time restrictions were considered. All studies evaluating the SS and virus transmission, and whole investigations regarding the viral infections transmitted through SS were totally considered inclusion criteria. Besides, non-original, qualitative, case reports, case series, letters to the editor, editorial, and review studies were excluded from the analysis. This study was conducted in accordance with the PRISMA 2020 statement. RESULTS: Twenty-six eligible studies were selected and reviewed for data extraction. The results showed that the SS contains virus and associated components. Six types of viruses or viral components were identified in SS including papillomavirus (HPV, BPV), Human Immunodeficiency Virus (HIV), varicella zoster, Hepatitis B (HBV), SARS-CoV-2, and Oral poliovirus (OPV), which are spread to surgical team through smoke-producing devices. CONCLUSIONS: Since the studies confirm the presence of viruses, and viral components in SS, the potential risk to the healthcare workers, especially in operating room (OR), seems possible. Thus, the adoption of protective strategies against SS is critical. Despite the use of personal protective equipment (PPE), these viruses could affect OR personnel in surgical procedures.


Subject(s)
Operating Rooms , Smoke , Humans , Smoke/adverse effects , COVID-19/transmission , COVID-19/prevention & control , COVID-19/epidemiology , SARS-CoV-2 , Virus Diseases/transmission , Virus Diseases/prevention & control , Virus Diseases/etiology , Surgical Procedures, Operative , Infectious Disease Transmission, Patient-to-Professional/prevention & control
2.
BMC Infect Dis ; 24(1): 752, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080592

ABSTRACT

This study presents the clinical profile of a 74-year-old male patient admitted to the hospital due to a 20-day history of coughing, chest tightness, and dyspnea. Upon admission, the patient presented with fever, tachycardia, and tachypnea. Clinical examination revealed evidence of lung infection, sepsis, and multi-organ dysfunction, alongside abnormal blood gas analysis and elevated C-reactive protein (CRP) levels. Pathogen testing confirmed Chlamydia psittaci (C. psittaci), infection. Throughout the treatment course, the patient developed concurrent fungal and viral infections, necessitating a comprehensive approach involving combined antibiotic and antifungal therapy. Despite encountering treatment-related complications, the patient demonstrated clinical improvement with aggressive management. This case underscores the importance of recognizing immune suppression subsequent to Chlamydia infection, emphasizing the critical role of early diagnosis, intervention, and standardized treatment protocols in enhancing patient prognosis.


Subject(s)
Chlamydophila psittaci , Coinfection , Psittacosis , Aged , Humans , Male , Anti-Bacterial Agents/therapeutic use , Coinfection/microbiology , Coinfection/drug therapy , Psittacosis/complications , Psittacosis/drug therapy , Immune Tolerance , Mycoses/etiology , Virus Diseases/etiology
4.
Clin Lymphoma Myeloma Leuk ; 24(6): 340-347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38267354

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (AHSCT) is an important modality in the treatment of acute leukemia and other hematologic disorders. The post-transplant period is associated with prolonged periods of impaired immune function. Delayed T-cell immune reconstitution is correlated with increased risk of viral, bacterial, and fungal infections. This risk increases with high intensity inductions regimens often required for alternative donor sources. Current therapies for prophylaxis and treatment of these infections are limited by poor efficacy and significant toxicity. Adoptive cell therapy with cytotoxic T lymphocytes (CTL) has proven to be both efficacious and safe in the management of post-transplant viral infections. Recent advances have led to faster production of CTLs and broadened applications for their use. In particular, the generation of third party CTLs has helped ameliorate the problems related to donor availability and product generation time. In this review we aim to describe both the history of CTL use and current advances in the field.


Subject(s)
Hematopoietic Stem Cell Transplantation , T-Lymphocytes, Cytotoxic , Humans , T-Lymphocytes, Cytotoxic/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Infections/etiology , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Transplantation, Homologous/methods , Virus Diseases/etiology
5.
Am J Hematol ; 99(4): 662-678, 2024 04.
Article in English | MEDLINE | ID: mdl-38197307

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy, an innovative immunotherapeutic against relapsed/refractory B-cell lymphoma, faces challenges due to frequent viral infections. Despite this, a comprehensive review addressing risk assessment, surveillance, and treatment management is notably absent. This review elucidates immune response compromises during viral infections in CAR-T recipients, collates susceptibility risk factors, and deliberates on preventive strategies. In the post-pandemic era, marked by the Omicron variant, new and severe threats to CAR-T therapy emerge, necessitating exploration of preventive and treatment measures for COVID-19. Overall, the review provides recommendations for viral infection prophylaxis and management, enhancing CAR-T product safety and recipient survival.


Subject(s)
Lymphoma, B-Cell , Receptors, Chimeric Antigen , Virus Diseases , Humans , Receptors, Chimeric Antigen/therapeutic use , Immunotherapy, Adoptive/adverse effects , Lymphoma, B-Cell/therapy , Virus Diseases/etiology , Antigens, CD19 , Cell- and Tissue-Based Therapy
6.
Curr Opin Infect Dis ; 36(6): 529-536, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37729657

ABSTRACT

PURPOSE OF REVIEW: Seasonal respiratory virus infections (RVIs) often progress to severe diseases in hematopoietic cell transplant (HCT) recipients. This review summarizes the current evidence on risk factors for the severity of RVIs in this high-risk population and provides clinical management. RECENT FINDINGS: The likelihood of the respiratory viral disease progression depends on the immune status of the host and the type of virus. Conventional host factors, such as the immunodeficiency scoring index and the severe immunodeficiency criteria, have been utilized to estimate the risk of progression to severe disease, including mortality. Recent reports have suggested nonconventional risk factors, such as hyperglycemia, hypoalbuminemia, prior use of antibiotics with broad anaerobic activity, posttransplant cyclophosphamide, and pulmonary impairment after RVIs. Identifying novel and modifiable risk factors is important with the advances of novel therapeutic and preventive interventions for RVIs. SUMMARY: Validation of recently identified risk factors for severe RVIs in HCT recipients is required. The development of innovative interventions along with appropriate risk stratification is critical to improve outcomes in this vulnerable population.


Subject(s)
Hematopoietic Stem Cell Transplantation , Respiratory Tract Infections , Virus Diseases , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Transplant Recipients , Seasons , Risk Factors , Virus Diseases/epidemiology , Virus Diseases/etiology , Respiratory Tract Infections/epidemiology , Retrospective Studies
7.
Am Soc Clin Oncol Educ Book ; 43: e390778, 2023 May.
Article in English | MEDLINE | ID: mdl-37163714

ABSTRACT

COVID-19 and our armamentarium of strategies to combat it have evolved dramatically since the virus first emerged in late 2019. Vaccination remains the primary strategy to prevent severe illness, although the protective effect can vary in patients with hematologic malignancy. Strategies such as additional vaccine doses and now bivalent boosters can contribute to increased immune response, especially in the face of evolving viral variants. Because of these new variants, no approved monoclonal antibodies are available for pre-exposure or postexposure prophylaxis. Patients with symptomatic, mild-to-moderate COVID-19 and risk features for developing severe COVID-19, who present within 5-7 days of symptom onset, should be offered outpatient therapy with nirmatrelvir/ritonavir (NR) or in some cases with intravenous (IV) remdesivir. NR interacts with many blood cancer treatments, and reviewing drug interactions is essential. Patients with severe COVID-19 should be managed with IV remdesivir, tocilizumab (or an alternate interleukin-6 receptor blocker), or baricitinib, as indicated based on the severity of illness. Dexamethasone can be considered on an individual basis, weighing oxygen requirements and patients' underlying disease and their perceived ability to clear infection. Finally, as CD19-targeted and B-cell maturation (BCMA)-targeted chimeric antigen receptor (CAR) T-cell therapies become more heavily used for relapsed/refractory hematologic malignancies, viral infections including COVID-19 are increasingly recognized as common complications, but data on risk factors and prophylaxis in this patient population are scarce. We summarize the available evidence regarding viral infections after CAR T-cell therapy.


Subject(s)
COVID-19 , Hematologic Neoplasms , Virus Diseases , Humans , Neoplasm Recurrence, Local , Virus Diseases/etiology , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects
8.
Lancet Haematol ; 10(4): e284-e294, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36990623

ABSTRACT

Literature discussing endemic and regionally limited infections in recipients of haematopoietic stem-cell transplantation (HSCT) outside western Europe and North America is scarce. This Worldwide Network for Blood and Marrow Transplantation (WBMT) article is part one of two papers aiming to provide guidance to transplantation centres around the globe regarding infection prevention and treatment, and considerations for transplantation based on current evidence and expert opinion. These recommendations were initially formulated by a core writing team from the WBMT and subsequently underwent multiple revisions by infectious disease experts and HSCT experts. In this paper, we summarise the data and provide recommendations on several endemic and regionally limited viral and bacterial infections, many of which are listed by WHO as neglected tropical diseases, including Dengue, Zika, yellow fever, chikungunya, rabies, brucellosis, melioidosis, and leptospirosis.


Subject(s)
Bacterial Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Zika Virus Infection , Zika Virus , Humans , Bone Marrow , Hematopoietic Stem Cell Transplantation/adverse effects , Virus Diseases/epidemiology , Virus Diseases/etiology , Virus Diseases/prevention & control , Bacterial Infections/epidemiology , Bacterial Infections/etiology , Bacterial Infections/prevention & control , Europe
11.
Transplant Cell Ther ; 29(5): 305-310, 2023 05.
Article in English | MEDLINE | ID: mdl-36736781

ABSTRACT

Infections with double-stranded DNA viruses are a common complication after hematopoietic stem cell transplantation (HSCT) and cause significant morbidity and mortality in the post-transplantation period. Both donor-derived (DD) and third-party (TP) virus-specific T cells (VSTs) have shown efficacy and safety in viral management following HSCT in children and young adults. Owing to a greater degree of HLA matching between the recipient and stem cell donor, DD VSTs potentially persist longer in circulation compared to TP VSTs, because they are collected from a well-matched donor. However, TP VSTs are more easily accessible, particularly for smaller transplantation centers that do not have VST manufacturing capabilities, and more economical than creating a customized product for each transplant recipient. We conducted the present study to compare clinical efficacy and safety outcomes for DD VSTs and TP VSTs in a large cohort of pediatric and young adult HSCT recipients and to determine whether DD VSTs are associated with improved outcomes owing to potentially longer persistence in the recipient's circulation. This retrospective cohort study included 145 patients who received VSTs at Cincinnati Children's Hospital Medical Center (CCHMC) between 2017 and 2021 for the treatment of adenovirus, BK virus, cytomegalovirus, and/or Epstein-Barr virus. Viruses were detected using quantitative polymerase chain reaction. Patients received VSTs on a DD (NCT02048332) or TP (NCT02532452) protocol, and VST products for both protocols were manufactured in an identical fashion. The primary study outcome was clinical response to VSTs, evaluated 4 weeks after VST administration, defined as decrease in viral load to under the inclusion thresholds, or resolution of symptoms of invasive viral infection, without the need for additional conventional antiviral medication following VST administration. Secondary outcomes included graft-versus-host-disease, transplant-associated thrombotic microangiopathy, renal function, hospital length of stay, and overall survival at 30 days and 100 days after VST administration and 1 year after HSCT. Statistical analysis was performed using the Fisher exact test or chi-square test. An unpaired t test was used to compare continuous variables. The study group comprised 77 patients in the DD cohort and 68 patients in the TP cohort. Eighteen patients in the TP cohort underwent HSCT at CCHMC, and the other 50 underwent HSCT at other institutions and presented to CCHMC solely for VST administration. There was no statistically significant difference in clinical response rates between DD and TP cohorts (65.6% versus 62.7%; odds ratio [OR], 1.162; 95% confidence interval [CI], .619 to 2.164; P = .747). There were no significant differences in secondary outcomes between the 2 cohorts. The percentage of patients requiring multiple infusions for a clinical response did not differ significantly between the DD and TP cohorts (38.2% versus 32.5%; OR, .780; 95% CI, .345 to 1.805; P = .666). We found no significant difference in clinical response rate between DD VSTs and TP VSTs and a similar safety profile. Our data suggest that TP VSTs may be sufficient to control viral infection until immune reconstitution occurs despite the potential for more rapid VST clearance compared to DD VSTs. The lack of significant differences between DD VSTs and TP VSTs is an important finding, indicating that it is not necessary for every transplant center to manufacture customized DD VSTs, and that TP VSTs are a satisfactory substitute.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Child , Humans , Young Adult , Hematopoietic Stem Cell Transplantation/adverse effects , Herpesvirus 4, Human , Retrospective Studies , T-Lymphocytes , Transplantation, Homologous , Virus Diseases/etiology , Virus Diseases/therapy
12.
Haematologica ; 108(8): 2080-2090, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36794500

ABSTRACT

Therapy-resistant viral reactivations contribute significantly to mortality after hematopoietic stem cell transplantation. Adoptive cellular therapy with virus-specific T cells (VST) has shown efficacy in various single-center trials. However, the scalability of this therapy is hampered by laborious production methods. In this study we describe the in-house production of VST in a closed system (CliniMACS Prodigy® system, Miltenyi Biotec). In addition, we report the efficacy in 26 patients with viral disease following hematopoietic stem cell transplantation in a retrospective analysis (adenovirus, n=7; cytomegalovirus, n=8; Epstein-Barr virus, n=4; multi-viral, n=7). The production of VST was successful in 100% of cases. The safety profile of VST therapy was favorable (n=2 grade 3 and n=1 grade 4 adverse events; all three were reversible). A response was seen in 20 of 26 patients (77%). Responding patients had a significantly better overall survival than patients who did not respond (P<0.001). Virus-specific symptoms were reduced or resolved in 47% of patients. The overall survival of the whole cohort was 28% after 6 months. This study shows the feasibility of automated VST production and safety of application. The scalability of the CliniMACS Prodigy® device increases the accessibility of VST treatment.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , T-Lymphocytes , Epstein-Barr Virus Infections/therapy , Retrospective Studies , Herpesvirus 4, Human , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Virus Diseases/etiology , Virus Diseases/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Stem Cell Transplantation
13.
J Allergy Clin Immunol ; 151(6): 1634-1645, 2023 06.
Article in English | MEDLINE | ID: mdl-36638922

ABSTRACT

BACKGROUND: Allogenic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are potentially curative treatments for severe combined immunodeficiency (SCID). Late-onset posttreatment manifestations (such as persistent hepatitis) are not uncommon. OBJECTIVE: We sought to characterize the prevalence and pathophysiology of persistent hepatitis in transplanted SCID patients (SCIDH+) and to evaluate risk factors and treatments. METHODS: We used various techniques (including pathology assessments, metagenomics, single-cell transcriptomics, and cytometry by time of flight) to perform an in-depth study of different tissues from patients in the SCIDH+ group and corresponding asymptomatic similarly transplanted SCID patients without hepatitis (SCIDH-). RESULTS: Eleven patients developed persistent hepatitis (median of 6 years after HSCT or GT). This condition was associated with the chronic detection of enteric viruses (human Aichi virus, norovirus, and sapovirus) in liver and/or stools, which were not found in stools from the SCIDH- group (n = 12). Multiomics analysis identified an expansion of effector memory CD8+ T cells with high type I and II interferon signatures. Hepatitis was associated with absence of myeloablation during conditioning, split chimerism, and defective B-cell function, representing 25% of the 44 patients with SCID having these characteristics. Partially myeloablative retransplantation or GT of patients with this condition (which we have named as "enteric virus infection associated with hepatitis") led to the reconstitution of T- and B-cell immunity and remission of hepatitis in 5 patients, concomitantly with viral clearance. CONCLUSIONS: Enteric virus infection associated with hepatitis is related to chronic enteric viral infection and immune dysregulation and is an important risk for transplanted SCID patients with defective B-cell function.


Subject(s)
Enterovirus Infections , Hematopoietic Stem Cell Transplantation , Hepatitis , Severe Combined Immunodeficiency , Virus Diseases , Humans , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/etiology , CD8-Positive T-Lymphocytes , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Virus Diseases/etiology , Hepatitis/etiology
14.
Blood ; 141(8): 877-885, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36574622

ABSTRACT

Adoptively transferred virus-specific T cells (VSTs) have shown remarkable safety and efficacy for the treatment of virus-associated diseases and malignancies in hematopoietic stem cell transplant (HSCT) recipients, for whom VSTs are derived from the HSCT donor. Autologous VSTs have also shown promise for the treatment of virus-driven malignancies outside the HSCT setting. In both cases, VSTs are manufactured as patient-specific products, and the time required for procurement, manufacture, and release testing precludes their use in acutely ill patients. Further, Good Manufacturing Practices-compliant products are expensive, and failures are common in virus-naive HSCT donors and patient-derived VSTs that are rendered anergic by immunosuppressive tumors. Hence, highly characterized, banked VSTs (B-VSTs) that can be used for multiple unrelated recipients are highly desirable. The major challenges facing B-VSTs result from the inevitable mismatches in the highly polymorphic and immunogenic human leukocyte antigens (HLA) that present internally processed antigens to the T-cell receptor, leading to the requirement for partial HLA matching between the B-VST and recipient. HLA mismatches lead to rapid rejection of allogeneic T-cell products and graft-versus-host disease induced by alloreactive T cells in the infusion product. Here, we summarize the clinical outcomes to date of trials of B-VSTs used for the treatment of viral infections and malignancies and their potential as a platform for chimeric antigen receptors targeting nonviral tumors. We will highlight the properties of VSTs that make them attractive off-the-shelf cell therapies, as well as the challenges that must be overcome before they can become mainstream.


Subject(s)
Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , T-Lymphocytes , Cell- and Tissue-Based Therapy , Virus Diseases/etiology , Receptors, Antigen, T-Cell , HLA Antigens
15.
Blood ; 141(17): 2062-2074, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36493341

ABSTRACT

Preventing viral infections at an early stage is a key strategy for successfully improving transplant outcomes. Preemptive therapy and prophylaxis with antiviral agents have been successfully used to prevent clinically significant viral infections in hematopoietic cell transplant recipients. Major progress has been made over the past decades in preventing viral infections through a better understanding of the biology and risk factors, as well as the introduction of novel antiviral agents and advances in immunotherapy. High-quality evidence exists for the effective prevention of herpes simplex virus, varicella-zoster virus, and cytomegalovirus infection and disease. Few data are available on the effective prevention of human herpesvirus 6, Epstein-Barr virus, adenovirus, and BK virus infections. To highlight the spectrum of clinical practice, here we review high-risk situations that we handle with a high degree of uniformity and cases that feature differences in approaches, reflecting distinct hematopoietic cell transplant practices, such as ex vivo T-cell depletion.


Subject(s)
Epstein-Barr Virus Infections , Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/prevention & control , Herpesvirus 4, Human , Virus Diseases/prevention & control , Virus Diseases/etiology , Antiviral Agents/therapeutic use
16.
Blood Adv ; 7(10): 2105-2116, 2023 05 23.
Article in English | MEDLINE | ID: mdl-36516084

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) is being increasingly used as a curative approach for sickle cell disease (SCD). With the risk of graft-versus-host disease (GVHD), especially in the human leukocyte antigen-mismatched donors, intense immunosuppression is required leading to an increased risk of viral infection. Post-HSCT, adoptive transfer of virus-specific T-cell (VST) therapies have not been well-studied in patients with SCD. Here, we report the outcomes of patients with SCD at a single-center who received VSTs after transplant to prevent or treat viral infections. Thirteen patients who received HSCT from human leukocyte antigen-matched (n = 9) or -mismatched (n = 4) donors for SCD were treated with a total of 15 VST products for the treatment or prophylaxis of multiple viruses (cytomegalovirus, Epstein-Barr virus, adenovirus, BK virus, human herpes virus 6 +/- human parainfluenza virus 3). Of the patients evaluated, 46.2% (n = 6)) received VSTs as treatment for viral infection. Eighty percent of patients with active viremia (n = 4/5) achieved remission of at least 1 target virus. Seven additional patients (53.8%) received VSTs prophylactically and 6 of 7 (85.7%) remained virus-free after infusion. No immediate infusion-related toxicities occurred, and severe de novo acute GVHD occurred in only 2 (15.4%) patients. Given the good safety profile, high-rate of clinical responses and sustained remissions when administered with standard antiviral treatments, the routine use of VSTs after HSCT as prophylaxis or treatment may improve the overall safety of transplant for patients with SCD.


Subject(s)
Anemia, Sickle Cell , Epstein-Barr Virus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Virus Diseases , Humans , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Virus Diseases/etiology , Virus Diseases/therapy , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Anemia, Sickle Cell/complications
17.
BMC Infect Dis ; 22(1): 588, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35786346

ABSTRACT

BACKGROUND: The associations between viral etiology of acute respiratory infections (ARI) with meteorological factors and air pollutants among children is not fully understood. This study aimed to explore the viral etiology among children hospitalized for ARI and the association of meteorological factors and air pollutants with children hospitalization due to viral ARI. METHODS: Electronic health record data about children (aged between 1 month and 14 years) admitted for ARI at Kiang Wu Hospital in Macao between 2014 and 2017 was analyzed retrospectively. xMAP multiplex assays were used to detect viruses in the nasopharyngeal swab and distributed-lag nonlinear model (DLNM) was used to evaluate associations. RESULTS: Among the 4880 cases of children hospitalization due to ARI, 3767 (77.2%) were tested positive for at least one virus and 676 (18%) exhibited multiple infections. Enterovirus (EV)/rhinovirus (HRV), adenovirus (ADV), respiratory syncytial virus (RSV) and influenza virus (IFV) were the most common viral pathogens associated with ARI and human bocavirus (hBOV) exhibited the highest multiple infection rates. Meteorological factors and air pollutants (PM10, PM2.5 and NO2) were associated with the risk of viral ARI hospitalization. The relative risk of viral infection increased with daily mean temperature but plateaued when temperature exceeded 23 °C, and increased when the relative humidity was < 70% and peaked at 50%. The effect of solar radiation was insignificant. Air pollutants (including PM10, PM2.5, NO2 and O3) showed strong and immediate effect on the incidence of viral infection. CONCLUSIONS: The effects of mean temperature, relative humidity and air pollutants should be taken into account when considering management of ARI among children.


Subject(s)
Air Pollutants , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , Air Pollutants/adverse effects , Child , Hospitalization , Humans , Infant , Macau , Meteorological Concepts , Nitrogen Dioxide , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Retrospective Studies , Virus Diseases/epidemiology , Virus Diseases/etiology
18.
Cytotherapy ; 24(9): 884-891, 2022 09.
Article in English | MEDLINE | ID: mdl-35705447

ABSTRACT

Despite recent advances in the field of HSCT, viral infections remain a frequent causeof morbidity and mortality among HSCT recipients. Adoptive transfer of viral specific T cells has been successfully used both as prophylaxis and treatment of viral infections in immunocompromised HSCT recipients. Increasingly, precise risk stratification of HSCT recipients with infectious complications should incorporate not only pretransplant clinical criteria, but milestones of immune reconstitution as well. These factors can better identify those at highest risk of morbidity and mortality and identify a population of HSCT recipients in whom adoptive therapy with viral specific T cells should be considered for either prophylaxis or second line treatment early after inadequate response to first line antiviral therapy. Broadening these approaches to improve outcomes for transplant recipients in countries with limited resources is a major challenge. While the principles of risk stratification can be applied, early detection of viral reactivation as well as treatment is challenging in regions where commercial PCR assays and antiviral agents are not readily available.


Subject(s)
Hematopoietic Stem Cell Transplantation , Virus Diseases , Adoptive Transfer , Antiviral Agents/therapeutic use , Cell Engineering , Genetic Therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Virus Diseases/etiology , Virus Diseases/prevention & control
19.
Int J Mol Sci ; 23(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408912

ABSTRACT

Early post-transplant is the critical phase for the success of hematopoietic stem cell transplantation (HSCT). New viral infections and the reactivations associated with complete ablation of the recipient's T-cell immunity and inefficient reconstitution of the donor-derived system represent the main risks of HSCT. To date, the pharmacological treatments for post-HSCT viral infection-related complications have many limitations. Adoptive cell therapy (ACT) represents a new pharmacological strategy, allowing us to reconstitute the immune response to infectious agents in the post-HSC period. To demonstrate the potential advantage of this novel immunotherapy strategy, we report three cases of pediatric patients and the respective central nervous system complications after donor lymphocyte infusion.


Subject(s)
Communicable Diseases , Hematopoietic Stem Cell Transplantation , Neoplasms , Virus Diseases , Cell- and Tissue-Based Therapy/adverse effects , Child , Communicable Diseases/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunotherapy/adverse effects , Immunotherapy, Adoptive/adverse effects , Lymphocytes , Neoplasms/etiology , Virus Diseases/etiology , Virus Diseases/therapy
20.
Bone Marrow Transplant ; 57(5): 781-789, 2022 05.
Article in English | MEDLINE | ID: mdl-35236933

ABSTRACT

Viral infection is one of the lethal adverse events after cord blood transplantation (CBT). Human leukocyte antigen (HLA) and killer immunoglobulin-like receptor (KIR) ligand divergences can increase the risk of viral infection due to conflicting interactions between virus-infected cells and immune cells. However, the relationship between these disparities and the frequency of viral infection after CBT remains to be evaluated. Herein, we have conducted a retrospective multicenter study to assess the effect of HLA and KIR ligand mismatches on viral infections after CBT. The study included 429 patients, among which 126 viral infections occurred before day 100. Viral infection was significantly associated with poorer overall survival (OS; hazard ratio [HR] 1.74, p < 0.01). Patients harboring ≥3 mismatches in the HLA allele and inhibitory KIR ligand mismatches (HLA & KIR mismatches) had a significantly greater prevalence of viral infection (HR 1.66, p = 0.04). Thus, patients with HLA & KIR mismatches had poorer outcomes in terms of non-relapse mortality (HR 1.61, p = 0.05). Our study demonstrates the unfavorable impacts of HLA & KIR mismatches on viral infections and non-relapse mortality after CBT. Evaluating the viral infection risk and performance of an appropriate and early intervention in high-risk patients and optimizing the graft selection algorithm could improve the outcome of CBTs.


Subject(s)
Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Virus Diseases , Cord Blood Stem Cell Transplantation/adverse effects , HLA Antigens , Histocompatibility Antigens Class I , Humans , Ligands , Receptors, KIR/genetics , Risk Factors , Virus Diseases/etiology
SELECTION OF CITATIONS
SEARCH DETAIL