Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Viruses ; 15(7)2023 06 26.
Article in English | MEDLINE | ID: mdl-37515125

ABSTRACT

Dengue virus (DENV) is a pathogenic arbovirus that causes human disease. The most severe stage of the disease (severe dengue) is characterized by vascular leakage, hypovolemic shock, and organ failure. Endothelial dysfunction underlies these phenomena, but the causal mechanisms of endothelial dysfunction are poorly characterized. This study investigated the role of c-ABL kinase in DENV-induced endothelial dysfunction. Silencing c-ABL with artificial miRNA or targeting its catalytic activity with imatinib revealed that c-ABL is required for the early steps of DENV infection. DENV-2 infection and conditioned media from DENV-infected cells increased endothelial expression of c-ABL and CRKII phosphorylation, promoted expression of mesenchymal markers, e.g., vimentin and N-cadherin, and decreased the levels of endothelial-specific proteins, e.g., VE-cadherin and ZO-1. These effects were reverted by silencing or inhibiting c-ABL. As part of the acquisition of a mesenchymal phenotype, DENV infection and treatment with conditioned media from DENV-infected cells increased endothelial cell motility in a c-ABL-dependent manner. In conclusion, DENV infection promotes a c-ABL-dependent endothelial phenotypic change that leads to the loss of intercellular junctions and acquisition of motility.


Subject(s)
Dengue Virus , Dengue , Virus Diseases , Humans , Endothelial Cells , Dengue Virus/genetics , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Virus Diseases/metabolism
2.
Front Immunol ; 14: 1064101, 2023.
Article in English | MEDLINE | ID: mdl-36742317

ABSTRACT

Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.


Subject(s)
COVID-19 , Virus Diseases , Humans , RNA, Viral/metabolism , COVID-19/metabolism , SARS-CoV-2 , Killer Cells, Natural , Virus Diseases/metabolism
3.
Cytoskeleton (Hoboken) ; 79(6-8): 41-63, 2022 06.
Article in English | MEDLINE | ID: mdl-35842902

ABSTRACT

Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.


Subject(s)
Myosins , Virus Diseases , Animals , Humans , Myosins/metabolism , Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Kinesins , Virus Diseases/metabolism , Actins/metabolism , Mammals/metabolism
4.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215780

ABSTRACT

Viruses are obligate intracellular parasites that depend on the host's protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.


Subject(s)
Protein Biosynthesis , RNA, Messenger/genetics , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , Virus Diseases/metabolism , Viruses/genetics , Animals , Humans , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism , Ribosomes/virology , Virus Diseases/genetics , Virus Diseases/virology , Viruses/metabolism
5.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34360716

ABSTRACT

Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.


Subject(s)
Hypoxia-Inducible Factor 1/metabolism , Oxygen Consumption , Virus Diseases/metabolism , Virus Replication , Viruses/metabolism , Cell Hypoxia , Humans , Virus Diseases/pathology
6.
Cells ; 10(5)2021 05 11.
Article in English | MEDLINE | ID: mdl-34064728

ABSTRACT

Th17 cells are recognized as indispensable in inducing protective immunity against bacteria and fungi, as they promote the integrity of mucosal epithelial barriers. It is believed that Th17 cells also play a central role in the induction of autoimmune diseases. Recent advances have evaluated Th17 effector functions during viral infections, including their critical role in the production and induction of pro-inflammatory cytokines and in the recruitment and activation of other immune cells. Thus, Th17 is involved in the induction both of pathogenicity and immunoprotective mechanisms seen in the host's immune response against viruses. However, certain Th17 cells can also modulate immune responses, since they can secrete immunosuppressive factors, such as IL-10; these cells are called non-pathogenic Th17 cells. Here, we present a brief review of Th17 cells and highlight their involvement in some virus infections. We cover these notions by highlighting the role of Th17 cells in regulating the protective and pathogenic immune response in the context of viral infections. In addition, we will be describing myocarditis and multiple sclerosis as examples of immune diseases triggered by viral infections, in which we will discuss further the roles of Th17 cells in the induction of tissue damage.


Subject(s)
Myocarditis/immunology , Th17 Cells/metabolism , Virus Diseases/immunology , Adenoviridae , Animals , Autoimmune Diseases/immunology , Chikungunya virus , Cytokines/immunology , Dengue Virus , Humans , Immune System , Immunosuppressive Agents/pharmacology , Inflammation , Interleukin-10/biosynthesis , Lymphocytes/cytology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/virology , Myocarditis/metabolism , Myocarditis/virology , Orthomyxoviridae , SARS-CoV-2 , Simplexvirus , Th1 Cells/cytology , Th2 Cells/cytology , Virus Diseases/drug therapy , Virus Diseases/metabolism , Zika Virus
7.
Front Immunol ; 12: 624293, 2021.
Article in English | MEDLINE | ID: mdl-33746961

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which interacts with a wide range of organic molecules of endogenous and exogenous origin, including environmental pollutants, tryptophan metabolites, and microbial metabolites. The activation of AHR by these agonists drives its translocation into the nucleus where it controls the expression of a large number of target genes that include the AHR repressor (AHRR), detoxifying monooxygenases (CYP1A1 and CYP1B1), and cytokines. Recent advances reveal that AHR signaling modulates aspects of the intrinsic, innate and adaptive immune response to diverse microorganisms. This review will focus on the increasing evidence supporting a role for AHR as a modulator of the host response to viral infection.


Subject(s)
Adaptive Immunity , Immunity, Innate , Receptors, Aryl Hydrocarbon/metabolism , Virus Diseases/virology , Viruses/immunology , Active Transport, Cell Nucleus , Animals , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Ligands , Signal Transduction , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/metabolism , Viruses/genetics , Viruses/pathogenicity
8.
Front Cell Infect Microbiol ; 10: 593170, 2020.
Article in English | MEDLINE | ID: mdl-33335862

ABSTRACT

Extracellular vesicles are small membrane structures containing proteins and nucleic acids that are gaining a lot of attention lately. They are produced by most cells and can be detected in several body fluids, having a huge potential in therapeutic and diagnostic approaches. EVs produced by infected cells usually have a molecular signature that is very distinct from healthy cells. For intracellular pathogens like viruses, EVs can have an even more complex function, since the viral biogenesis pathway can overlap with EV pathways in several ways, generating a continuum of particles, like naked virions, EVs containing infective viral genomes and quasi-enveloped viruses, besides the classical complete viral particles that are secreted to the extracellular space. Those particles can act in recipient cells in different ways. Besides being directly infective, they also can prime neighbor cells rendering them more susceptible to infection, block antiviral responses and deliver isolated viral molecules. On the other hand, they can trigger antiviral responses and cytokine secretion even in uninfected cells near the infection site, helping to fight the infection and protect other cells from the virus. This protective response can also backfire, when a massive inflammation facilitated by those EVs can be responsible for bad clinical outcomes. EVs can help or harm the antiviral response, and sometimes both mechanisms are observed in infections by the same virus. Since those pathways are intrinsically interlinked, understand the role of EVs during viral infections is crucial to comprehend viral mechanisms and respond better to emerging viral diseases.


Subject(s)
Extracellular Vesicles , Virus Diseases , Viruses , Biological Transport , Cell Communication , Extracellular Vesicles/metabolism , Humans , Virus Diseases/metabolism
9.
Genes (Basel) ; 11(8)2020 08 05.
Article in English | MEDLINE | ID: mdl-32764347

ABSTRACT

Congenital abnormalities cause serious fetal consequences. The term TORCH is used to designate the most common perinatal infections, where: (T) refers to toxoplasmosis, (O) means "others" and includes syphilis, varicella-zoster, parvovirus B19, zika virus (ZIKV), and malaria among others, (R) refers to rubella, (C) relates to cytomegalovirus infection, and (H) to herpes simplex virus infections. Among the main abnormalities identified in neonates exposed to congenital infections are central nervous system (CNS) damage, microcephaly, hearing loss, and ophthalmological impairment, all requiring regular follow-up to monitor its progression. Protein changes such as mutations, post-translational modifications, abundance, structure, and function may indicate a pathological condition before the onset of the first symptoms, allowing early diagnosis and understanding of a particular disease or infection. The term "proteomics" is defined as the science that studies the proteome, which consists of the total protein content of a cell, tissue or organism in a given space and time, including post-translational modifications (PTMs) and interactions between proteins. Currently, quantitative bottom-up proteomic strategies allow rapid and high throughput characterization of complex biological mixtures. Investigating proteome modulation during host-pathogen interaction helps in elucidating the mechanisms of infection and in predicting disease progression. This "molecular battle" between host and pathogen is a key to identify drug targets and diagnostic markers. Here, we conducted a survey on proteomic techniques applied to congenital diseases classified in the terminology "TORCH", including toxoplasmosis, ZIKV, malaria, syphilis, human immunodeficiency virus (HIV), herpes simplex virus (HSV) and human cytomegalovirus (HCVM). We have highlighted proteins and/or protein complexes actively involved in the infection. Most of the proteomic studies reported have been performed in cell line models, and the evaluation of tissues (brain, muscle, and placenta) and biofluids (plasma, serum and urine) in animal models is still underexplored. Moreover, there are a plethora of studies focusing on the pathogen or the host without considering the triad mother-fetus-pathogen as a dynamic and interconnected system.


Subject(s)
Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/metabolism , Proteomics/methods , Female , Humans , Pregnancy , Syphilis/metabolism , Syphilis/transmission , Toxoplasmosis/metabolism , Toxoplasmosis/transmission , Virus Diseases/metabolism , Virus Diseases/transmission
11.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326627

ABSTRACT

There is a growing interest in unraveling gene expression mechanisms leading to viral host invasion and infection progression. Current findings reveal that long non-coding RNAs (lncRNAs) are implicated in the regulation of the immune system by influencing gene expression through a wide range of mechanisms. By mining whole-transcriptome shotgun sequencing (RNA-seq) data using machine learning approaches, we detected two lncRNAs (ENSG00000254680 and ENSG00000273149) that are downregulated in a wide range of viral infections and different cell types, including blood monocluclear cells, umbilical vein endothelial cells, and dermal fibroblasts. The efficiency of these two lncRNAs was positively validated in different viral phenotypic scenarios. These two lncRNAs showed a strong downregulation in virus-infected patients when compared to healthy control transcriptomes, indicating that these biomarkers are promising targets for infection diagnosis. To the best of our knowledge, this is the very first study using host lncRNAs biomarkers for the diagnosis of human viral infections.


Subject(s)
Endothelial Cells/metabolism , Fibroblasts/metabolism , Monocytes/metabolism , RNA, Long Noncoding/blood , Virus Diseases/metabolism , Adult , Asian People , Biomarkers/blood , Biomarkers/metabolism , Child, Preschool , Data Mining , Down-Regulation , Endothelial Cells/microbiology , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Fibroblasts/microbiology , Human Umbilical Vein Endothelial Cells , Humans , Influenza, Human/genetics , Influenza, Human/metabolism , Machine Learning , Mexico , Monocytes/microbiology , Monocytes/virology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Seq , Rotavirus Infections/genetics , Rotavirus Infections/metabolism , Varicella Zoster Virus Infection/genetics , Varicella Zoster Virus Infection/metabolism , Virus Diseases/genetics , White People
12.
Article in English | MEDLINE | ID: mdl-31681621

ABSTRACT

Regulation of RNA homeostasis or "RNAstasis" is a central step in eukaryotic gene expression. From transcription to decay, cellular messenger RNAs (mRNAs) associate with specific proteins in order to regulate their entire cycle, including mRNA localization, translation and degradation, among others. The best characterized of such RNA-protein complexes, today named membraneless organelles, are Stress Granules (SGs) and Processing Bodies (PBs) which are involved in RNA storage and RNA decay/storage, respectively. Given that SGs and PBs are generally associated with repression of gene expression, viruses have evolved different mechanisms to counteract their assembly or to use them in their favor to successfully replicate within the host environment. In this review we summarize the current knowledge about the viral regulation of SGs and PBs, which could be a potential novel target for the development of broad-spectrum antiviral therapies.


Subject(s)
Host-Pathogen Interactions , Organelles , Virus Diseases/metabolism , Virus Diseases/virology , Virus Physiological Phenomena , Animals , Cytoplasmic Granules , Gene Expression Regulation , Gene Expression Regulation, Viral , Host-Pathogen Interactions/genetics , Humans , Organelles/metabolism , Organelles/virology , Signal Transduction , Stress, Physiological , Virus Diseases/genetics , Virus Physiological Phenomena/drug effects , Virus Replication , Viruses/classification , Viruses/drug effects , Viruses/genetics
13.
Cells ; 8(6)2019 06 18.
Article in English | MEDLINE | ID: mdl-31216738

ABSTRACT

Extracellular vesicles (EVs) are released by various cells and recently have attracted attention because they constitute a refined system of cell-cell communication. EVs deliver a diverse array of biomolecules including messenger RNAs (mRNAs), microRNAs (miRNAs), proteins and lipids, and they can be used as potential biomarkers in normal and pathological conditions. The cargo of EVs is a snapshot of the donor cell profile; thus, in viral infections, EVs produced by infected cells could be a central player in disease pathogenesis. In this context, miRNAs incorporated into EVs can affect the immune recognition of viruses and promote or restrict their replication in target cells. In this review, we provide an updated overview of the roles played by EV-delivered miRNAs in viral infections and discuss the potential consequences for the host response. The full understanding of the functions of EVs and miRNAs can turn into useful biomarkers for infection detection and monitoring and/or uncover potential therapeutic targets.


Subject(s)
Extracellular Vesicles/metabolism , Virus Diseases/metabolism , Biomarkers/metabolism , Cell Communication/physiology , Exosomes/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/physiology , Humans , MicroRNAs/metabolism , MicroRNAs/therapeutic use , RNA, Messenger/metabolism
14.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30518643

ABSTRACT

Histidine-rich glycoprotein (HRG) is an abundant plasma protein with a multidomain structure, allowing its interaction with many ligands, including phospholipids, plasminogen, fibrinogen, IgG antibodies, and heparan sulfate. HRG has been shown to regulate different biological responses, such as angiogenesis, coagulation, and fibrinolysis. Here, we found that HRG almost completely abrogated the infection of Ghost cells, Jurkat cells, CD4+ T cells, and macrophages by HIV-1 at a low pH (range, 6.5 to 5.5) but not at a neutral pH. HRG was shown to interact with the heparan sulfate expressed by target cells, inhibiting an early postbinding step associated with HIV-1 infection. More importantly, by acting on the viral particle itself, HRG induced a deleterious effect, which reduces viral infectivity. Because cervicovaginal secretions in healthy women show low pH values, even after semen deposition, our observations suggest that HRG might represent a constitutive defense mechanism in the vaginal mucosa. Of note, low pH also enabled HRG to inhibit the infection of HEp-2 cells and Vero cells by respiratory syncytial virus (RSV) and herpes simplex virus 2 (HSV-2), respectively, suggesting that HRG might display broad antiviral activity under acidic conditions.IMPORTANCE Vaginal intercourse represents a high-risk route for HIV-1 transmission. The efficiency of male-to-female HIV-1 transmission has been estimated to be 1 in every 1,000 episodes of sexual intercourse, reflecting the high degree of protection conferred by the genital mucosa. However, the contribution of different host factors to the protection against HIV-1 at mucosal surfaces remains poorly defined. Here, we report for the first time that acidic values of pH enable the plasma protein histidine-rich glycoprotein (HRG) to strongly inhibit HIV-1 infection. Because cervicovaginal secretions usually show low pH values, our observations suggest that HRG might represent a constitutive antiviral mechanism in the vaginal mucosa. Interestingly, infection by other viruses, such as respiratory syncytial virus and herpes simplex virus 2, was also markedly inhibited by HRG at low pH values, suggesting that extracellular acidosis enables HRG to display broad antiviral activity.


Subject(s)
HIV Infections/metabolism , HIV Infections/prevention & control , Proteins/pharmacology , Animals , Antiviral Agents , Blood Proteins , Cell Line , Cervix Mucus/chemistry , Cervix Mucus/metabolism , Chlorocebus aethiops , Female , Glycoproteins/metabolism , Glycoproteins/pharmacology , HIV-1/metabolism , Heparitin Sulfate/metabolism , Herpesvirus 2, Human/metabolism , Histidine/metabolism , Humans , Hydrogen-Ion Concentration , Ligands , Proteins/metabolism , Respiratory Syncytial Viruses/metabolism , Vero Cells , Virus Diseases/metabolism , Virus Diseases/prevention & control
15.
Sci Rep ; 8(1): 13477, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194440

ABSTRACT

A retrospective immunohistochemical study was designed to investigate the frequency of concomitant traditional infectious disease pathogens in puppies that died suddenly and review the aspects of associated pathogenesis. Fifteen puppies were evaluated; the pathology reports and histopathologic slides of these animals were reviewed to determine the pattern of histopathologic lesions. The intralesional identification of antigens of canine (distemper) morbillivirus (CDV), canine adenovirus-1 and -2 (CAdV-1 and -2), canine parvovirus-2 (CPV-2), Toxoplasma gondii, and Neospora caninum was evaluated by IHC within the histopathologic patterns observed. All puppies contained CDV nucleic acid by molecular testing. The most frequent histopathologic patterns were intestinal crypt necrosis (n = 8), white matter cerebellar demyelination (n = 7), necrohaemorrhagic hepatitis (n = 7), interstitial pneumonia (n = 7), and gallbladder oedema (n = 5). All puppies contained intralesional antigens of CDV in multiple tissues resulting in singular (n = 3), and concomitant dual (n = 3), triple (n = 5) and quadruple (n = 4) infections by CAdV-1, and -2, CPV-2, and N. caninum; T. gondii was not identified. Concomitant infections by CDV was observed with N. caninum (100%; 1/1), CPV-2 (100%; 8/8), CAdV-1 (100%; 8/8), and CAdV-2 (100%; 8/8). Intralesional antigens of CDV and not CAdV-1 were identified in cases of gallbladder oedema. The "blue eye" phenomenon was histologically characterized by corneal oedema and degenerative lesions to the corneal epithelium, without inflammatory reactions.


Subject(s)
Adenoviruses, Canine/metabolism , Coccidiosis , Distemper Virus, Canine/metabolism , Dog Diseases , Neospora/metabolism , Parvovirus, Canine/metabolism , Virus Diseases , Animals , Coccidiosis/metabolism , Coccidiosis/pathology , Coccidiosis/veterinary , Dog Diseases/metabolism , Dog Diseases/pathology , Dogs , Female , Immunohistochemistry , Male , Retrospective Studies , Virus Diseases/metabolism , Virus Diseases/pathology , Virus Diseases/veterinary
16.
Rev Invest Clin ; 70(1): 18-28, 2018.
Article in English | MEDLINE | ID: mdl-29513298

ABSTRACT

Nucleotide-binding domain (NBD) leucine-rich repeat (LRR)-containing receptors or NLRs are a family of receptors that detect both, molecules associated to pathogens and alarmins, and are located mainly in the cytoplasm. NOD2 belongs to the NLR family and is a dynamic receptor capable of interacting with multiple proteins and modulate immune responses in a stimuli-dependent manner. The experimental evidence shows that interaction between NOD2 structural domains and the effector proteins shape the overall response against bacterial or viral infections. Other reports have focused on the importance of NOD2 not only in infection but also in maintaining tissue homeostasis. However, not only protein interactions relate to function but also certain polymorphisms in the gene that encodes NOD2 have been associated with inflammatory diseases, such as Crohn's disease. Here, we review the importance and general characteristics of NOD2, discussing its participation in infections caused by bacteria and viruses as well as its interaction with other pathogen recognition receptors or effectors to induce antibacterial and antiviral responses. Finally, the role of NOD2 in chronic inflammatory conditions and its potential to be targeted therapeutically are examined.


Subject(s)
Bacterial Infections/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Virus Diseases/metabolism , Animals , Bacterial Infections/genetics , Bacterial Infections/therapy , Humans , Nod2 Signaling Adaptor Protein/genetics , Polymorphism, Genetic , Virus Diseases/genetics , Virus Diseases/therapy
17.
J Cell Biochem ; 119(2): 1273-1284, 2018 02.
Article in English | MEDLINE | ID: mdl-28722178

ABSTRACT

Cyclin-Dependent Kinase 9 (CDK9) is part of a functional diverse group of enzymes responsible for cell cycle control and progression. It associates mainly with Cyclin T1 and forms the Positive Transcription Elongation Factor b (p-TEFb) complex responsible for regulation of transcription elongation and mRNA maturation. Recent studies have highlighted the importance of CDK9 in many relevant pathologic processes, like cancer, cardiovascular diseases, and viral replication. Herein we provide an overview of the different pathways in which CDK9 is directly and indirectly involved.


Subject(s)
Cardiovascular Diseases/metabolism , Cyclin-Dependent Kinase 9/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Virus Diseases/metabolism , Animals , Cardiovascular Diseases/genetics , Cyclin T/genetics , Cyclin T/metabolism , Cyclin-Dependent Kinase 9/genetics , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Transcription Elongation, Genetic , Virus Diseases/genetics
18.
Arch Virol ; 162(4): 907-917, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28039563

ABSTRACT

Reactive species are frequently formed after viral infections. Antioxidant defences, including enzymatic and non-enzymatic components, protect against reactive species, but sometimes these defences are not completely adequate. An imbalance in the production of reactive species and the body's inability to detoxify these reactive species is referred to as oxidative stress. The aim of this review is to analyse the role of oxidative stress in the pathogenesis of viral infections and highlight some major therapeutic approaches that have gained importance, with regards to controlling virus-induced oxidative injury. Attention will be focused on DNA viruses (papillomaviruses, hepadnaviruses), RNA viruses (flaviviruses, orthomyxoviruses, paramyxoviruses, togaviruses) and retroviruses (human immunodeficiency virus). In general, viruses cause an imbalance in the cellular redox environment, which depending on the virus and the cell can result in different responses, e.g. cell signaling, antioxidant defences, reactive species, and other processes. Therefore, the modulation of reactive species production and oxidative stress potentially represents a novel pharmacological approach for reducing the consequences of viral pathogenesis.


Subject(s)
Oxidative Stress , Virus Diseases/metabolism , Virus Physiological Phenomena , Animals , Humans , Reactive Oxygen Species/metabolism , Virus Diseases/virology , Viruses/genetics , Viruses/pathogenicity
19.
Genet Mol Res ; 15(2)2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27420936

ABSTRACT

The aim of the current study was to investigate Fas and FasL expression and myocardial cell apoptosis in viral myocarditis patients. Human heart specimens were selected from patients who were autopsied between February 2012 and February 2015; of these, 25 patients were diagnosed with viral myocarditis. Another 15 cases with no diagnosis of myocarditis were selected for the control group. All tissue specimens were divided into two parts, one for reverse transcription-polymerase chain reaction analysis and the other for immunohistochemical and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. In situ detection of apoptosis was performed by the TUNEL method, which revealed that myocardial cells from the viral myocarditis group exhibited significant apoptosis, whereas no apoptotic cells were observed in the control group. The number of cells staining positive for Fas and FasL protein in the viral myocarditis group was significantly higher than that in the control group (P < 0.05). There was also a correlation between Fas and FasL protein expression levels and scores (r = 0.92, P < 0.05). The mRNA expression of Fas and FasL was significantly higher in the viral myocarditis group than in the control group (P < 0.05). In conclusion, the Fas-FasL system may be involved in the pathogenesis of viral myocarditis. Furthermore, cytotoxic T lymphocytes may mediate cardiac muscle cells apoptosis via Fas-FasL signaling, and thus participate in the pathogenesis of viral myocarditis.


Subject(s)
Apoptosis , Fas Ligand Protein/metabolism , Myocarditis/metabolism , Myocytes, Cardiac/metabolism , Virus Diseases/metabolism , fas Receptor/metabolism , Adult , Case-Control Studies , Fas Ligand Protein/genetics , Female , Humans , Male , Middle Aged , Signal Transduction , T-Lymphocytes, Cytotoxic/metabolism , fas Receptor/genetics
20.
Genet Mol Res ; 14(4): 18334-43, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26782481

ABSTRACT

The objective of this study was to identify hub genes and pathways associated with acute respiratory infection (ARI) in infants based on gene expression profiles. Differentially expressed genes (DEGs) between ARI and normal (controls) infants were identified based on linear modeling of the microarray data using Limma package. A protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/proteins and clusters were obtained by employing the molecular complex detection algorithm. Topological centrality was applied to characterize the biological importance of genes in the network. Functional enrichment analysis of the genes was performed based on the expression analysis systematic explore test. In total, 116 DEGs between ARI and controls were identified. Of the 61 nodes and 189 edges in the PPI network generated with the DEGs, three clusters were mined. Six hub genes namely RPL6, RPL3, EEF1B2, RPL15, EEF1A1, and RPS2, which were identified based on the topological centrality measures, were evaluated further. Functional enrichment analysis revealed that DEGs were significantly enriched in terms of Gene Ontology translational elongation, structural constituent of ribosome, and cytosol. The most significant term of pathway analysis was "ribosome". In summary, this study suggests RPL6, RPL3, and RPL15 as hub genes and the ribosome pathway to be significantly associated with viral ARI in infants, which might also be used as potential markers for the viral etiology.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Signal Transduction , Virus Diseases/genetics , Virus Diseases/metabolism , Cluster Analysis , Computational Biology/methods , Humans , Protein Interaction Mapping , Protein Interaction Maps , Ribosomal Protein L3
SELECTION OF CITATIONS
SEARCH DETAIL