Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.631
Filter
1.
Commun Biol ; 7(1): 925, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090373

ABSTRACT

Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.


Subject(s)
Membrane Fluidity , Metformin , Mitochondria , Oocytes , Metformin/pharmacology , Animals , Membrane Fluidity/drug effects , Oocytes/drug effects , Oocytes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Swine , Female , Cryopreservation , Vitrification/drug effects
2.
Cell Mol Life Sci ; 81(1): 306, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023560

ABSTRACT

Recent advances in stem cell research have led to the creation of organoids, miniature replicas of human organs, offering innovative avenues for studying diseases. Kidney organoids, with their ability to replicate complex renal structures, provide a novel platform for investigating kidney diseases and assessing drug efficacy, albeit hindered by labor-intensive generation and batch variations, highlighting the need for tailored cryopreservation methods to enable widespread utilization. Here, we evaluated cryopreservation strategies for kidney organoids by contrasting slow-freezing and vitrification methods. 118 kidney organoids were categorized into five conditions. Control organoids followed standard culture, while two slow-freezing groups used 10% DMSO (SF1) or commercial freezing media (SF2). Vitrification involved V1 (20% DMSO, 20% Ethylene Glycol with sucrose) and V2 (15% DMSO, 15% Ethylene Glycol). Assessment of viability, functionality, and structural integrity post-thawing revealed notable differences. Vitrification, particularly V1, exhibited superior viability (91% for V1, 26% for V2, 79% for SF1, and 83% for SF2 compared to 99.4% in controls). 3D imaging highlighted distinct nephron segments among groups, emphasizing V1's efficacy in preserving both podocytes and tubules in kidney organoids. Cisplatin-induced injury revealed a significant reduction in regenerative capacities in organoids cryopreserved by flow-freezing methods, while the V1 method did not show statistical significance compared to the unfrozen controls. This study underscores vitrification, especially with high concentrations of cryoprotectants, as an effective approach for maintaining kidney organoid viability and structure during cryopreservation, offering practical approaches for kidney organoid research.


Subject(s)
Cryopreservation , Cryoprotective Agents , Kidney , Organoids , Cryopreservation/methods , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Humans , Kidney/cytology , Cryoprotective Agents/pharmacology , Vitrification , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Freezing , Cell Survival/drug effects
3.
PLoS One ; 19(7): e0306617, 2024.
Article in English | MEDLINE | ID: mdl-38980864

ABSTRACT

Microinjection of CRISPR/Cas9 requires the availability of zygotes that implies animal breeding, superovulation schemes, and embryo collection. Vitrification of zygotes may allow having ready-to-use embryos and to temporally dissociate the workload of embryo production from microinjection. In this study, fresh (F group) or vitrified (V group) zygotes were microinjected with CRISPR/Cas9 system to test the hypothesis that vitrified zygotes could be a suitable source of embryos for microinjection. In Experiment 1 (in vitro evaluation), B6D2F1/J zygotes were microinjected and cultured until blastocyst stage. Embryo survival and cleavage rates after microinjection were similar between groups (~50% and ~80% respectively; P = NS). Development rate was significantly higher for F than V group (55.0% vs. 32.6%, respectively; P<0.05). Mutation rate did not show statistical differences among groups (P = NS). In Experiment 2 (in vivo evaluation), C57BL/6J zygotes were microinjected and transferred to recipient females. Embryo survival was significantly lower in fresh than in vitrified zygotes (49.2% vs. 62.7%, respectively; P<0.05). Cleavage rate did not show statistical differences (~70%; P = NS). Pregnancy rate (70.0% vs. 58.3%) and birth rate (11.9% vs. 11.2%) were not different between groups (F vs. V group; P = NS). Offspring mutation rate was higher for F than V group, in both heterodimer analysis (73.7% vs. 33.3%, respectively; P = 0.015) and Sanger sequencing (89.5% vs. 41.7%, respectively; P = 0.006). In conclusion, vitrified-warmed zygotes present a viable alternative source for CRISPR/Cas9 microinjection when the production of fresh embryos is impeded by limited technical support. The possibility of zygote cryobanking to perform microinjection sessions on demand seems to be a suitable alternative to avoid the breeding and maintenance of animals all over the year, enhancing the implementation of CRISPR technology.


Subject(s)
CRISPR-Cas Systems , Microinjections , Zygote , Animals , Zygote/metabolism , Female , Mice , Cryopreservation/methods , Pregnancy , Mice, Inbred C57BL , Embryo Transfer/methods , Male , Vitrification , Embryonic Development/genetics
4.
Methods Mol Biol ; 2824: 221-239, 2024.
Article in English | MEDLINE | ID: mdl-39039416

ABSTRACT

Cellular electron cryo-tomography (cryoET) produces high-resolution three-dimensional images of subcellular structures in a near-native frozen-hydrated state. These three-dimensional images are obtained by recording a series of two-dimensional tilt images on a transmission electron cryo-microscope that are subsequently back-projected to form a tomogram. Key to a successful experiment is however a high-quality sample. This chapter outlines a basic workflow for the preparation of cellular cryoET samples. It covers the preparation of infected cells on electron cryo-microscopy grids and the vitrification by plunge-freezing and clipping of grids into AutoGrid rims. It also provides a general overview of the workflow for thinning the vitrified cells by focused ion beam (FIB) milling. Although this book is dedicated to Rift Valley fever virus research, the present protocol may also be applied to any other research subject where high-resolution structural insight into intracellular processes is desired.


Subject(s)
Cryoelectron Microscopy , Electron Microscope Tomography , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Animals , Imaging, Three-Dimensional/methods , Rift Valley fever virus/ultrastructure , Humans , Vitrification
5.
Nature ; 630(8016): 368-374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867128

ABSTRACT

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Subject(s)
Adhesives , Glass , Oligopeptides , Adhesives/chemistry , Glass/chemistry , Temperature , Vitrification , Water/chemistry , Oligopeptides/chemistry , Tyrosine/chemistry , Light , Infrared Rays
6.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892259

ABSTRACT

Differences in structural and functional properties between oocytes and cumulus cells (CCs) may cause low vitrification efficiency for cumulus-oocyte complexes (COCs). We have suggested that the disconnection of CCs and oocytes in order to further cryopreservation in various ways will positively affect the viability after thawing, while further co-culture in vitro will contribute to the restoration of lost intercellular gap junctions. This study aimed to determine the optimal method of cryopreservation of the suspension of CCs to mature GV oocytes in vitro and to determine the level of mRNA expression of the genes (GJA1, GJA4; BCL2, BAX) and gene-specific epigenetic marks (DNMT3A) after cryopreservation and in vitro maturation (IVM) in various culture systems. We have shown that the slow freezing of CCs in microstraws preserved the largest number of viable cells with intact DNA compared with the methods of vitrification and slow freezing in microdroplets. Cryopreservation caused the upregulation of the genes Cx37 and Cx43 in the oocytes to restore gap junctions between cells. In conclusion, the presence of CCs in the co-culture system during IVM of oocytes played an important role in the regulation of the expression of the intercellular proteins Cx37 and Cx43, apoptotic changes, and oocyte methylation. Slow freezing in microstraws was considered to be an optimal method for cryopreservation of CCs.


Subject(s)
Cryopreservation , Cumulus Cells , Gap Junctions , Oocytes , Animals , Oocytes/metabolism , Oocytes/cytology , Cryopreservation/methods , Gap Junctions/metabolism , Cumulus Cells/metabolism , Cumulus Cells/cytology , Cattle , Female , Connexin 43/metabolism , Connexin 43/genetics , Connexins/metabolism , Connexins/genetics , Vitrification , Coculture Techniques/methods , Cell Survival , In Vitro Oocyte Maturation Techniques/methods
7.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829044

ABSTRACT

Mature oocyte vitrification is the standard of care to preserve fertility in women at risk of infertility. However, ovarian tissue cryopreservation (OTC) is still the only option to preserve fertility in women who need to start gonadotoxic treatment urgently or in prepubertal children. During ovarian cortex preparation for cryopreservation, medullar tissue is removed. Growing antral follicles reside at the border of the cortex-medullar interface of the ovary and are broken during this process, releasing their cumulus-oocyte complex (COC). By thoroughly inspecting the medium and fragmented medullar tissue, these immature cumulus-oocyte complexes can be identified without interfering with the OTC procedure. The ovarian tissue-derived immature oocytes can be successfully matured in vitro, creating an additional source of gametes for fertility preservation. If OTC is performed within or near a medical assisted reproduction laboratory, all necessary in vitro maturation (IVM) and oocyte vitrification tools can be at hand. Furthermore, upon remission and child wish, the patient has multiple options for fertility restoration: ovarian tissue transplantation or embryo transfer after the insemination of vitrified/warmed oocytes. Hence, ovarian tissue oocyte-in vitro maturation (OTO-IVM) can be a valuable adjunct fertility preservation technique.


Subject(s)
Cryopreservation , Fertility Preservation , In Vitro Oocyte Maturation Techniques , Oocytes , Ovary , Female , Fertility Preservation/methods , Humans , Ovary/physiology , Cryopreservation/methods , In Vitro Oocyte Maturation Techniques/methods , Vitrification
8.
Waste Manag ; 186: 46-54, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38852376

ABSTRACT

Medical waste incineration ash (MWIA) has significant concentrations of heavy metals, dioxins, and chlorine that, if handled incorrectly, might cause permanent damage to the environment and humans. The low content of calcium (Ca), silicon (Si), and aluminum (Al) is a brand-new challenge for the melting technique of MWIA. This work added coal fly ash (CFA) to explore the effect of melting on the detoxication treatment of MWIA. It was found that the produced vitrification product has a high vitreous content (98.61%) and a low potential ecological risk, with an initial ash solidification rate of 67.38%. By quantitatively assessing the morphological distribution features of heavy metals in ashes before melting and molten products, the stabilization and solidification rules of heavy metals during the melting process were investigated. This work ascertained the feasibility of co-vitrification of MWIA and CFA. In addition, the high-temperature melting and vitrification accelerated the detoxification of MWIA and the solidification of heavy metals.


Subject(s)
Coal Ash , Incineration , Metals, Heavy , Vitrification , Coal Ash/chemistry , Incineration/methods , Metals, Heavy/analysis , Medical Waste/analysis , Medical Waste Disposal/methods
9.
Theriogenology ; 226: 243-252, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38943899

ABSTRACT

This study examined how the vitrification of pig blastocysts using either the superfine open pulled straw (SOPS) or Cryotop method affects the expression profile of embryonic microRNA (miRNA) transcriptomes, as well as its relation to changes in the expression of target genes (TGs). Surgically collected pig blastocysts were vitrified using either the SOPS method (n = 60; 4-6 embryos/device) or the Cryotop system (n = 60; 20 embryos/device). Embryos were cultured in vitro for 24 h after warming. Fresh blastocysts (n = 60) cultured for 24 h served as controls. After in vitro culture, five pools of eight viable blastocysts from each group were prepared for miRNA expression analysis based on a microarray approach. Then, biological interpretation of miRNAs profiles and integrative analysis of miRNA and mRNA transcriptome data were performed. Survival after 24 h of in vitro culture was similar (>96 %) for both the vitrification systems and the control group (100 %). Compared with the controls, the SOPS-vitrified blastocysts had 94 (one upregulated and 93 downregulated) differentially expressed (DE) miRNAs, and the Cryotop-vitrified blastocysts had 174 DE miRNAs (one upregulated and 173 downregulated). One DE miRNA (miR-503) in the SOPS group and three DE miRNAs (miR-7139-3p, miR-214 and miR-885-3p) in the Cryotop group were annotated for Sus scrofa. The integrative analysis showed that 27 and 61 DE TGs were regulated by the DE miRNAs in blastocysts vitrified with the SOPS and Cryotop systems, respectively. The TGs enriched one pathway (the TGF-ß signaling pathway) for the SOPS system and four pathways (HIF-1, Notch, ascorbate and aldarate metabolism and glycosphingolipid biosynthesis-ganglio series) for the Cryotop system. In summary, vitrification via the SOPS and Cryotop systems dysregulates miRNAs, with slight differences between methods. The altered miRNAs identified in this study were related mainly to cell proliferation, apoptosis, and the response to cell stress. Further studies are needed to clarify the consequences of dysregulation of miRNAs involved in the TGF-ß (SOPS-vitrified blastocyst) and Notch (Cryotop-vitrified blastocyst) signaling pathways, particularly if they can affect embryonic development.


Subject(s)
Cryopreservation , MicroRNAs , Transcriptome , Vitrification , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Swine/embryology , Cryopreservation/veterinary , Embryo Culture Techniques/veterinary , Gene Expression Regulation, Developmental , Blastocyst/metabolism , Embryo, Mammalian/metabolism
10.
Ann Acad Med Singap ; 53(1): 34-42, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38920213

ABSTRACT

Introduction: Female fecundity decreases significantly after the age of 32, and rapidly so after age 37. There is no treatment to prevent this decline. Furthermore, globally, women are getting married later and the age at which they have their first child is increasing. As of July 2023, elective egg freezing (EEF) or oocyte cryopreservation (OC) for age-related fertility decline, commenced in Singapore. With medical advancements in OC, EEF is no longer considered experimental. The aim of this review is to examine the existing literature around EEF with regard to reproductive outcomes and its safety, to better guide clinicians in counselling young single women. Method: Published studies were examined to increase understanding on optimal age for EEF, ideal number of oocytes for a live birth, recommended OC protocols, cryopreservation techniques affecting thaw survival or fertilisation, oocyte storage and pregnancy risks. Results: Models predict that EEF should be performed at age <37 years and to achieve a 70% chance of live birth, women would need 14, 15 and 26 mature oocytes at ages 30-34, 35-37 and >38 years, respec-tively. An antagonist stimulation protocol with an agonist trigger would minimise ovarian hyper-stimulation syndrome and duration of stimulation without affecting outcomes. Oocyte vitrification in comparison to slow freezing increases thaw survival, fertilisation and clinical pregnancy rates. No increased risks exist for the woman, future pregnancy or child when compared with conventional IVF. Conclusion: EEF is a viable option for single women desiring fertility preservation. Financial costs are significant, but returns are worthwhile if oocytes are utilised.


Subject(s)
Cryopreservation , Fertility Preservation , Oocytes , Humans , Cryopreservation/methods , Female , Pregnancy , Fertility Preservation/methods , Adult , Pregnancy Rate , Singapore , Vitrification , Live Birth , Ovulation Induction/methods , Age Factors
11.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1469-1485, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783809

ABSTRACT

Ovarian tissue cryopreservation (OTC) is currently the exclusive choice for preserving fertility in both young girls before reaching puberty and young women who require immediate chemotherapy. Ovarian tissue transplantation has proven to be effective in restoring hormonal cycles and fertility. However, in certain cancer cases, there is a potential risk of inadvertently reintroducing malignant cells when transplanting cryopreserved ovarian tissue. Therefore, the use of an artificial ovary as an innovative and complementary approach allows for the development of isolated follicles, facilitates oocyte maturation and ovulation, and can partially restore endocrine function. This paper presents a comprehensive overview of techniques used to preserve fertility in natural ovarian tissues, including slow freezing, vitrification and hydrogel encapsulation methods. Additionally, it reviews fertility preservation techniques for artificial ovarian tissues, such as strategies involving hydrogel-encapsulated follicle, scaffolding for constructing ovarian microtissues, and 3D printing engineering. Lastly, this article explores current challenges and difficulties encountered in preserving ovarian tissue fertility, while also anticipating future trends in development, making it a valuable reference for the implementation of ovarian tissue fertility preservation.


Subject(s)
Cryopreservation , Fertility Preservation , Ovary , Female , Fertility Preservation/methods , Humans , Cryopreservation/methods , Hydrogels , Vitrification , Artificial Organs , Ovarian Follicle , Oocytes , Printing, Three-Dimensional
12.
Reprod Biomed Online ; 49(1): 103976, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733676

ABSTRACT

RESEARCH QUESTION: Can immature oocytes vitrified and warmed using a short protocol survive and resume meiosis? DESIGN: This study examined modifications of oocyte vitrification and warming protocols that reduce the length of exposure to vitrification and warming solutions. In total, 561 germinal vesicles and 218 metaphase I oocytes that were immature at oocyte retrieval were vitrified at room temperature for 2 min. Warming was performed at 37°C for 2 min. Resumption of meiotic activity was evaluated after 24 and 48 h of culture. Two different commercially available vitrification and warming kits were used for comparison. RESULTS: Ninety-five percent of germinal vesicles survived, with no difference observed between the kits. The survival of metaphase I oocytes was, on average, 95.4% and did not differ significantly between the kits. Of the 533 germinal vesicles that survived, 491 converted to metaphase I oocytes (92.1%). After culture for 48 h, 54.4% converted to metaphase II oocytes. In addition, of the 208 metaphase I oocytes that survived warming, 84.1% converted to metaphase II oocytes after 24 h of culture. These maturation rates were similar to those of non-vitrified oocytes. CONCLUSIONS: Vitrification and warming of oocytes at different nuclear maturation stages can be performed with 2 min of exposure to hypertonic solution and 2 min of exposure to hypotonic solution, respectively. This approach reduces exposure of the oocytes to room temperature during dehydration and rehydration. Warming in 0.5M sucrose helps to maintain and support the potential of oocytes to resume nuclear meiotic activity, and conversion from germinal vesicles to metaphase I and metaphase II oocytes.


Subject(s)
Cryopreservation , Meiosis , Oocytes , Vitrification , Oocytes/cytology , Oocytes/physiology , Humans , Meiosis/physiology , Female , Cryopreservation/methods , Cell Survival , In Vitro Oocyte Maturation Techniques/methods , Adult
13.
Reprod Biomed Online ; 49(1): 103890, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744027

ABSTRACT

RESEARCH QUESTION: Can the developed clinical prediction model offer an accurate estimate of the likelihood of live birth, involving blastocyst morphology and vitrification day after single vitrified-warmed blastocyst transfer (SVBT), and therefore assist clinicians and patients? STUDY DESIGN: Retrospective cohort study conducted at a Spanish university-based reproductive medicine unit (2017-2021) including consecutive vitrified-warmed blastocysts from IVF cycles. A multivariable logistic regression incorporated key live birth predictors: vitrification day, embryo score, embryo ploidy status and clinically relevant variables, i.e. maternal age. RESULTS: The training set involved 1653 SVBT cycles carried out between 2017 and 2020; 592 SVBT cycles from 2021 constituted the external validation dataset. The model revealed that female age and embryo characteristics, including overall quality and blastulation day, is linked to live birth rate in SVBT cycles. Stratification by vitrification day and quality (from day-5A to day-6 C blastocysts) applied to genetically tested and untested embryos. The model's area under the curve was 0.66 (95% CI 0.64 to 0.69) during development and 0.65 (95% CI 0.61 to 0.70) in validation, denoting moderate discrimination. Calibration plots showed strong agreement between predicted and observed probabilities. CONCLUSION: By incorporating essential predictors such as vitrification day, embryo morphology grade, age and preimplantation genetic testing for aneuploidy usage, this predictive model offers valuable guidance to clinicians and patients, enabling accurate forecasts of live birth rates for any given vitrified blastocyst within SVBT cycles. Additionally, it serves as a potentially indispensable laboratory tool, aiding in selecting the most promising blastocysts for optimal outcomes.


Subject(s)
Cryopreservation , Embryo Transfer , Live Birth , Vitrification , Humans , Female , Adult , Retrospective Studies , Pregnancy , Embryo Transfer/methods , Blastocyst , Pregnancy Rate , Fertilization in Vitro/methods , Birth Rate
14.
Reprod Biomed Online ; 49(1): 103940, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744030

ABSTRACT

RESEARCH QUESTION: Cryopreservation of ovarian tissue is one feasible option to preserve female fertility prior to cancer treatment. The slow freezing protocol represents the current standard approach, while vitrification has been suggested as a promising alternative. This paper reports the follow-up and first successful delivery after retransplantation of vitrified, rapid warmed ovarian tissue in Europe. DESIGN: After the patient received a diagnosis of breast cancer, ovarian tissue was removed laparoscopically and sent via overnight transportation to University Hospital Bonn for vitrification on site. The patient was treated with chemotherapy, leading to ovarian failure. After 2 years, retransplantation of the vitrified, rapid warmed tissue was conducted on site. RESULTS: Two months after grafting, the patient reported regular menstrual cycles. After 1 further month a clinical pregnancy occurred, which ended in a spontaneous abortion at the 8th week of pregnancy. Six months after grafting, another naturally conceived pregnancy was determined, resulting in the birth of a healthy boy 14 months after retransplantation of the ovarian tissue. CONCLUSIONS: Complementing the successful deliveries reported by the groups of Suzuki (Japan) and Silber (USA) regarding vitrified tissue, the current results confirm the high potential of this cryopreservation method in a clinical routine setting as an alternative approach to the widespread slow freezing method.


Subject(s)
Cryopreservation , Fertility Preservation , Ovary , Vitrification , Humans , Female , Pregnancy , Ovary/surgery , Ovary/transplantation , Adult , Fertility Preservation/methods , Europe , Breast Neoplasms/surgery , Reoperation , Male
15.
Eur J Obstet Gynecol Reprod Biol ; 298: 35-40, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718702

ABSTRACT

OBJECTIVES: To study the effect of double trophectoderm biopsy on clinical outcomes following single euploid blastocyst transfer. STUDY DESIGN: Retrospective cohort study of 2046 single euploid frozen-thawed blastocyst transfers from January 2015 to June 2022 in a single centre. All patients undergoing a frozen-thawed embryo transfer (FTET) cycle with euploid blastocysts, biopsied for any indication, were included. The outcomes were compared for blastocysts which were biopsied and vitrified once (Group 1, n = 1684), biopsied once but vitrified twice (Group 2, n = 312) and biopsied and vitrified twice (Group 3n = 50). We adjusted for confounders and performed subgroup analysis for PGT-A, PGT-M and PGT-SR cycles. The primary outcome was live birth rate. Secondary outcomes included pregnancy, clinical pregnancy, birthweight and sex ratio. RESULTS: After adjusting for confounders (previous failed euploid implantations, embryo quality and day of biopsy), embryos which were biopsied twice had lower OR for clinical pregnancy (0.48, CI 0.26-0.88, p = 0.019) and for live birth (0.50 CI 0.27-0.92, p = 0.025) compared to controls. Embryos which were biopsied once but vitrified twice had no different ORs for all reproductive outcomes compared to controls. No significant difference was observed for neonatal birthweight or sex ratio amongst the three groups. This is a retrospective single centre study with inherent bias and results may not be transferable to all settings. CONCLUSION: This study is the largest to date assessing the outcomes of FTET cycles following double trophectoderm biopsy. The results are in keeping with the existing literature and can be incorporated into patient counselling. Whilst double biopsy seems to adversely impact LBR, it is only one of the many factors that can affect success rates. The subfertility background and embryo characteristics should not be overlooked. This study provides reassuring evidence since double biopsied embryos still result in live births with no difference in sex ratio or birthweight. However, long term follow up of the off-springs is lacking and should be reported in future studies.


Subject(s)
Embryo Transfer , Preimplantation Diagnosis , Humans , Female , Retrospective Studies , Pregnancy , Adult , Biopsy , Embryo Transfer/methods , Blastocyst/pathology , Pregnancy Rate , Live Birth , Vitrification , Pregnancy Outcome
16.
Front Endocrinol (Lausanne) ; 15: 1366360, 2024.
Article in English | MEDLINE | ID: mdl-38745950

ABSTRACT

Introduction: This study aimed to explore the effect of cryopreservation duration after blastocyst vitrification on the singleton birth-weight of newborns to assess the safety of long-term preservation of frozen-thawed blastocyst transfer (FBT) cycles. Methods: This was a retrospective observational study conducted at the Gynecological Endocrinology and Assisted Reproduction Center of the Peking Union Medical College Hospital. Patients who gave birth to singletons between January 2006 and December 2021 after undergoing FBT cycles were included. Five groups were formed according to the duration of cryopreservation of embryos at FBT: Group I included 274 patients with a storage time < 3 months. Group II included 607 patients with a storage time of 3-6 months. Group III included 322 patients with a storage time of 6-12 months. Group IV included 190 patients with a storage time of 12-24 months. Group V included 118 patients with a storage time of > 24 months. Neonatal outcomes were compared among the groups. Multivariate linear regression analysis was performed to evaluate birth-weights and other birth-related outcomes. Results: A total of 1,511 patients were included in the analysis. The longest cryopreservation period was 12 years. The birth-weights of neonates in the five groups were 3344.1 ± 529.3, 3326.1 ± 565.7, 3260.3 ± 584.1, 3349.9 ± 582.7, and 3296.7 ± 491.9 g, respectively (P > 0.05). The incidences of preterm birth, very preterm birth, low birth-weight, and very low birth-weight were similar in all groups (P > 0.05). The large-for-gestational-age and small-for-gestational-age rates did not differ significantly among the groups (P > 0.05). After adjusting for confounding factors that may affect neonatal outcomes, a trend for an increased risk of low birth-weight with prolonged cryopreservation was observed. However, cryopreservation duration and neonatal birth-weight were not significantly correlated (P > 0.05). Conclusion: The duration of cryopreservation after blastocyst vitrification with an open device for more than 2 years had no significant effect on the birth-weight of FBT singletons; however, attention should be paid to a possible increase in the risk of low birth-weight.


Subject(s)
Birth Weight , Cryopreservation , Embryo Transfer , Vitrification , Humans , Cryopreservation/methods , Female , Retrospective Studies , Embryo Transfer/methods , Adult , Pregnancy , Birth Weight/physiology , Infant, Newborn , Blastocyst , Time Factors , Fertilization in Vitro/methods , Male , Pregnancy Outcome/epidemiology
17.
BMC Pregnancy Childbirth ; 24(1): 343, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704546

ABSTRACT

BACKGROUND: Vitrification procedures decrease intracytoplasmic lipid content and impair developmental competence. Adding fatty acids (FAs) to the warming solution has been shown to recover the lipid content of the cytoplasm and improve developmental competence and pregnancy outcomes. However, the influence of the FA supplementation on live birth rates after embryo transfers and perinatal outcomes remains unknown. In the present study, we examined the influence of FA-supplemented warming solutions on live birth rates, pregnancy complications, and neonatal outcomes after single vitrified-warmed cleavage-stage embryo transfers (SVCTs). METHODS: The clinical records of 701 treatment cycles in 701 women who underwent SVCTs were retrospectively analyzed. Vitrified embryos were warmed using solutions (from April 2022 to June 2022, control group) or FA-supplemented solutions (from July 2022 to September 2022, FA group). The live birth rate, pregnancy complications, and perinatal outcomes were compared between the control and FA groups. RESULTS: The live birth rate per transfer was significantly higher in the FA group than in the control group. Multivariate logistic regression analysis further demonstrated a higher probability of live births in the FA group than in the control group. Miscarriage rates, the incidence and types of pregnancy complications, the cesarean section rate, gestational age, incidence of preterm delivery, birth length and weight, incidence of low birth weight, infant sex, and incidence of birth defects were all comparable between the control and FA groups. Multivariate logistic regression analysis further demonstrated no adverse effects of FA-supplemented warming solutions. CONCLUSIONS: FA-supplemented warming solutions improved live birth rates after SVCTs without exerting any adverse effects on maternal and obstetric outcomes. Therefore, FA-supplemented solutions can be considered safe and effective for improving clinical outcomes and reducing patient burden.


Subject(s)
Embryo Transfer , Fatty Acids , Pregnancy Outcome , Humans , Female , Pregnancy , Adult , Retrospective Studies , Fatty Acids/administration & dosage , Embryo Transfer/methods , Vitrification , Live Birth/epidemiology , Pregnancy Complications/prevention & control , Infant, Newborn , Fertilization in Vitro/methods , Birth Rate
18.
Commun Biol ; 7(1): 588, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755264

ABSTRACT

Although a low temperature limit for life has not been established, it is thought that there exists a physical limit imposed by the onset of intracellular vitrification, typically occurring at ~-20 °C for unicellular organisms. Here, we show, through differential scanning calorimetry, that molar concentrations of magnesium perchlorate can depress the intracellular vitrification point of Bacillus subtilis cells to temperatures much lower than those previously reported. At 2.5 M Mg(ClO4)2, the peak vitrification temperature was lowered to -83 °C. Our results show that inorganic eutectic salts can in principle maintain liquid water in cells at much lower temperatures than those previously claimed as a lower limit to life, raising the prospects of active biochemical processes in low temperature natural settings. Our results may have implications for the habitability of Mars, where perchlorate salts are pervasive and potentially other terrestrial and extraterrestrial, cryosphere environments.


Subject(s)
Bacillus subtilis , Perchlorates , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Bacillus subtilis/physiology , Perchlorates/chemistry , Cold Temperature , Vitrification , Calorimetry, Differential Scanning
19.
Mol Biol Rep ; 51(1): 692, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796562

ABSTRACT

BACKGROUND: Resveratrol, a potent antioxidant, is known to induce the up-regulation of the internal antioxidant system. Therefore, it holds promise as a method to mitigate cryopreservation-induced injuries in bovine oocytes and embryos. This study aimed to (i) assess the enhancement in the quality of in vitro produced bovine embryos following resveratrol supplementation and (ii) monitor changes in the expression of genes associated with oxidative stress (GPX4, SOD, CPT2, NFE2L2), mitochondrial function (ATP5ME), endoplasmic reticulum function (ATF6), and embryo quality (OCT4, DNMT1, CASP3, ELOVL5). METHODS AND RESULTS: Three groups of in vitro bovine embryos were cultured with varying concentrations of resveratrol (0.01, 0.001, and 0.0001 µM), with a fourth group serving as a control. Following the vitrification process, embryos were categorized as either good or poor quality. Blastocysts were then preserved at - 80 °C for RNA isolation, followed by qRT-PCR analysis of selected genes. The low concentrations of resveratrol (0.001 µM, P < 0.05 and 0.0001 µM, P < 0.01) significantly improved the blastocyst rate compared to the control group. Moreover, the proportion of good quality vitrified embryos increased significantly (P < 0.05) in the groups treated with 0.001 and 0.0001 µM resveratrol compared to the control group. Analysis of gene expression showed a significant increase in OCT4 and DNMT1 transcripts in both good and poor-quality embryos treated with resveratrol compared to untreated embryos. Additionally, CASP3 expression was decreased in treated good embryos compared to control embryos. Furthermore, ELOVL5 and ATF6 transcripts were down-regulated in treated good embryos compared to the control group. Regarding antioxidant-related genes, GPX4, SOD, and CPT2 transcripts increased in the treated embryos, while NFE2L2 mRNA decreased in treated good embryos compared to the control group. CONCLUSIONS: Resveratrol supplementation at low concentrations effectively mitigated oxidative stress and enhanced the cryotolerance of embryos by modulating the expression of genes involved in oxidative stress response.


Subject(s)
Antioxidants , Blastocyst , Cryopreservation , Oxidative Stress , Resveratrol , Vitrification , Animals , Cattle , Resveratrol/pharmacology , Vitrification/drug effects , Oxidative Stress/drug effects , Oxidative Stress/genetics , Cryopreservation/methods , Antioxidants/pharmacology , Antioxidants/metabolism , Blastocyst/drug effects , Blastocyst/metabolism , Gene Expression Regulation, Developmental/drug effects , Fertilization in Vitro/veterinary , Fertilization in Vitro/methods , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Embryo Culture Techniques/methods , Embryonic Development/drug effects , Embryonic Development/genetics , Oocytes/drug effects , Oocytes/metabolism , Female
20.
Theriogenology ; 224: 163-173, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38776704

ABSTRACT

Global contraction of biodiversity pushed most members of Felidae into threatened or endangered list except the domestic cat (Felis catus) thence preferred as the best model for conservation studies. One of the emerging conservation strategies is vitrification of ovarian tissue which is field-friendly but not yet standardized. Thus, our main goal was to establish a suitable vitrification protocol for feline ovarian tissue in field condition. Feline ovarian tissue fragments were punched with biopsy punch (1.5 mm diameter) and divided into 4 groups. Group 1 was fresh control (Fr), while the other three were exposed to 3 vitrification protocols (VIT_CT, VIT_RT1 and VIT_RT2). VIT_CT involved two step equilibrations in solutions containing dimethyl sulfoxide (DMSO) and ethylene glycol (EG) for 10 min each at 4 °C. VIT_RT1 involved three step equilibration in solutions containing DMSO, EG, polyvinylpyrrolidone and sucrose for 14 min in total at room temperature, while in VIT_RT2 all conditions remained the same as in VIT_RT1 except equilibration timing which was reduced by half. After vitrification and warming, fragments were morphologically evaluated and then cultured for six days. Subsequently, follicular morphology, cellular proliferation (expression of Ki-67, MCM-7) and apoptosis (expression of caspase-3) were evaluated, and data obtained were analysed using generalised linear mixed model and chi square tests. Proportions of intact follicles were higher in Fr (P = 0.0001) and VIT_RT2 (P = 0.0383) in comparison to the other protocols both post warming and after the six-day culture. Generally, most follicles remained at primordial state which was confirmed by the low expression of Ki-67, MCM-7 markers. In conclusion, VIT_RT2 protocol, which has lower equilibration time at room temperature has proven superior thus recommended for vitrification of feline ovarian tissue.


Subject(s)
Cryopreservation , Ovary , Vitrification , Animals , Cats , Female , Cryopreservation/veterinary , Cryopreservation/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL