Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.172
Filter
1.
Curr Biol ; 34(15): R734-R736, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39106831

ABSTRACT

Fluid dynamics modeling of an Ediacaran ecosystem illustrates an important positive feedback loop between early multicellular organisms and environmental water flow. Early communities thus helped to chemically shape new environments where oxygen-dependent organisms could thrive.


Subject(s)
Oceans and Seas , Ecosystem , Fossils , Animals , Paleontology , Water Movements
2.
Glob Chang Biol ; 30(8): e17457, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39162046

ABSTRACT

Climate change is increasing the proportion of river networks experiencing flow intermittence, which in turn reduces local diversity (i.e., α-diversity) but enhances variation in species composition among sites (i.e., ß-diversity), with potential consequences on ecosystem stability. Indeed, the multiscale theory of stability proposes that regional stability can be attained not only by local processes but also by spatial asynchrony among sites. However, it is still unknown whether and how scale-dependent changes in biodiversity associated with river flow intermittence influence stability across spatial scales. To elucidate this, we here focus on multiple metacommunities of French rivers experiencing contrasting levels of flow intermittence. We clearly show that the relative contribution of spatial asynchrony to regional stability was higher for metacommunities of intermittent than perennial rivers. Surprisingly, spatial asynchrony was mainly linked to asynchronous population dynamics among sites, but not to ß-diversity. This finding was robust for both truly aquatic macroinvertebrates and for taxa that disperse aerially during their adult stages, implying the need to conserve multiple sites across the landscape to attain regional stability in intermittent rivers. By contrast, metacommunities of truly aquatic macroinvertebrates inhabiting perennial rivers were mainly stabilized by local processes. Our study provides novel evidence that metacommunities of perennial and intermittent rivers are stabilized by contrasting processes operating at different spatial scales. We demonstrate that flow intermittence enhances spatial asynchrony among sites, thus resulting in a regional stabilizing effect on intermittent river networks. Considering that climate change is increasing the proportion of intermittent rivers worldwide, our results suggest that managers need to focus on the spatial dynamics of metacommunities more than on local-scale processes to monitor, restore, and conserve freshwater biodiversity.


Subject(s)
Biodiversity , Climate Change , Invertebrates , Rivers , Animals , Invertebrates/physiology , France , Population Dynamics , Water Movements , Uncertainty
3.
J Environ Manage ; 367: 122062, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096722

ABSTRACT

Reticular river networks, essential for ecosystems and hydrology, pose challenges in assessing longitudinal connectivity due to complex multi-path structures and variable flows, exacerbated by human-made infrastructures like sluices. Existing tools inadequately track water flow's spatiotemporal changes, highlighting the need for targeted methods to gauge connectivity within complex river network systems. The Hydraulic Capacity Connectivity Index (HCCI) was developed adopting complex network theory. This involves river networks mapping, nodes and edges construstion, weight factor definition, maximum flow and resistance distance calculation. The connectivity between nodes is represented by the product of the maximum flow and the inverse of the resistance distance. The mean connectivity of each node with all other nodes, denoted as the node connectivity capacity Ci, and the HCCI of the whole river network is defined as the mean of the Ci for all nodes. The HCCI was firstly applied to a symmetrical virtual river network to investigate the factors influencing the HCCI. The results revealed that Ci showed a radial decreasing pattern from the obstructed river reach outwards, and the boundary rivers play the most significant role in regulating the flow dynamics. Subsequently, the HCCI was applied to a real river network in the Yandu district, followed by spatiotemporal statistical analysis comparing with 1D hydraulic model's simulated river discharge. Results showed a high correlation (Pearson coefficient of 0.89) between the HCCI and monthly average river discharge at the global scale. At the local scale, the geographically weighted regression model demonstrated the strong explanatory power of Ci in predicting the distribution of river reach discharge. This suggests that the HCCI addresses multi-path connectivity assessment challenge in reticular river networks, precisely characterizing spatiotemporal flow dynamics. Furthermore, since HCCI is based on a complex network model that can calculate the connectivity between all river node pairs, it is theoretically applicable to other types of river networks, such as dendritic river networks. By identifying low-connectivity areas, HCCI can guide managers in developing scientifically sound and effective strategies for restoring river network hydrodynamics. This can help prevent water stagnation and degradation of water quality, which is beneficial for environmental protection and water resource management.


Subject(s)
Hydrology , Rivers , Ecosystem , Water Movements , Models, Theoretical
4.
PLoS One ; 19(8): e0308357, 2024.
Article in English | MEDLINE | ID: mdl-39133707

ABSTRACT

Computing Lagrangian trajectories with ocean circulation models is a powerful way to infer larval dispersal pathways and connectivity. Defining release areas and timing of particles to represent larval habitat realistically is critical to obtaining representative dispersal pathways. However, it is challenging due to spatial and temporal variability in larval density. Forward-tracking particle experiments were conducted to study larval connectivity of four species (neritic or mesopelagic) in the Gulf of Mexico's (GoM) deep-water region. A seasonal climatology coupled with predicted potential larval habitat models based on generalized additive models was used to delimit the particle dispersal origin. Two contrasting mesoscale circulation patterns were examined: (1) high Loop Current (LC) intrusion, absence of recently detached LC anticyclonic eddies (LC-ACE), and no interaction between LC-ACEs and the semi-permanent cyclonic eddy (CE) in the Bay of Campeche (BoC), and (2) limited LC intrusion, a recently detached LC-ACE, and interaction between LC-ACEs and the BoC's CE. To simulate larval transport, virtual larvae were randomly released in the potential habitats and advected for 30 days with the velocity fields of the HYbrid Coordinate Ocean Model with hourly-resolution assimilation. Potential habitat location and size played a major role in dispersal and connectivity. A greater percentage of particles were retained in potential habitats restricted to the southern BoC, suggesting lower connectivity with other GoM regions than those encompassing most of the BoC or the central Gulf. Mesoscale feature interactions in the western GoM and BoC led to greater dispersion along the western basin. By contrast, the absence of ACE-CE interaction in the BoC led to greater retention and less connectivity between the southern and northern GoM. Under high LC intrusion, particles seeded north of the Yucatan Shelf were advected through the Florida Straits and dispersed within the GoM. Coupling potential habitat models with particle experiments can help characterize the dispersal and connectivity of fish larvae in oceanic systems.


Subject(s)
Ecosystem , Fishes , Larva , Animals , Larva/physiology , Fishes/physiology , Gulf of Mexico , Animal Distribution/physiology , Models, Biological , Models, Theoretical , Water Movements
5.
PLoS One ; 19(8): e0305425, 2024.
Article in English | MEDLINE | ID: mdl-39110749

ABSTRACT

The presence of lenses such as tailings slurry, frozen soil, and saturated zones disrupts the continuity of tailings dams and their normal seepage patterns, elevating the seepage line of the dam body and significantly impacting local stability. This study, to investigate how lenses affect the stability and failure mechanisms of tailings dams, employs numerical simulation and physical models and constructs a model of the tailings dam, incorporating tailings clay lens and void lens, to investigate variations in hydraulic gradients, seepage velocities, seepage flow, pore water pressure, and the patterns of seepage failure. This research reveals that the tailings clay lens within the dam body increases the hydraulic gradient in its vicinity due to its low permeability and raises the phreatic line. As the tailings clay lens approaches the dam body, the phreatic line tends to escape along the upper part of the lens towards the dam surface. In addition, the void lens could lead to a more pronounced seepage gradient along its path on the dam surface, with a liquefaction beneath it. As the void lens nears the toe of the slope, the dam failure mode transitions from a step-like progressive failure to an arch-shaped settlement failure along the void lens.


Subject(s)
Models, Theoretical , Water Movements
6.
Mar Pollut Bull ; 206: 116758, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098135

ABSTRACT

The nearshore zone turns out to be the area with the higher concentration of plastic debris and, for this reason, it is important to know the processes that affect the transport and the fate of this type of litter. This study focuses on investigating the dynamics of various plastic types under several hydrodynamic conditions primarily induced by waves. 2D tests were carried out at the Hydraulic Laboratory of the University of Messina reproducing the main phenomena that occurred during the wave propagation on a planar beach. More than 200 different conditions were tested changing the wave characteristics, the water depth, the plastic debris characteristics (density and shape), and the roughness of the fixed bottom. In general, it can be observed that the reduction in particle displacement occurs due to: i) a decrease in wave steepness; ii) an increase in depth; iii) an increase in particle size; iv) an increase in plastic density. However, the experimental investigation shows that some plastic characteristics and bed roughness, even when hydraulically smooth, can alter these results. The experimental data analysis identified a criterion for predicting the short-term fate of plastic debris under wave action. This criterion to determine equilibrium conditions, based on an empirical relationship, takes into account the wave characteristics, the bed roughness and slope, and the weight of the debris.


Subject(s)
Environmental Monitoring , Plastics , Water Movements , Environmental Monitoring/methods , Particle Size , Waste Products/analysis , Hydrodynamics , Water Pollutants, Chemical/analysis
7.
Water Res ; 263: 122142, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39094201

ABSTRACT

Physics-based models are computationally time-consuming and infeasible for real-time scenarios of urban drainage networks, and a surrogate model is needed to accelerate the online predictive modelling. Fully-connected neural networks (NNs) are potential surrogate models, but may suffer from low interpretability and efficiency in fitting complex targets. Owing to the state-of-the-art modelling power of graph neural networks (GNNs) and their match with urban drainage networks in the graph structure, this work proposes a GNN-based surrogate of the flow routing model for the hydraulic prediction problem of drainage networks, which regards recent hydraulic states as initial conditions, and future runoff and control policy as boundary conditions. To incorporate hydraulic constraints and physical relationships into drainage modelling, physics-guided mechanisms are designed on top of the surrogate model to restrict the prediction variables with flow balance and flooding occurrence constraints. According to case results in a stormwater network, the GNN-based model is more cost-effective with better hydraulic prediction accuracy than the NN-based model after equal training epochs, and the designed mechanisms further limit prediction errors with interpretable domain knowledge. As the model structure adheres to the flow routing mechanisms and hydraulic constraints in urban drainage networks, it provides an interpretable and effective solution for data-driven surrogate modelling. Simultaneously, the surrogate model accelerates the predictive modelling of urban drainage networks for real-time use compared with the physics-based model.


Subject(s)
Models, Theoretical , Neural Networks, Computer , Cities , Water Movements
8.
Environ Monit Assess ; 196(9): 832, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177841

ABSTRACT

This research aims to understand the extent of microplastic contamination in Pekalongan waters, Central Java, and its potential impact on fishing grounds, aligning with Indonesia's National Action Plan for Handling Marine Debris 2018-2025. The study employs a 2D hydrodynamics modelling approach with Mike 21 Software to map the spatial distribution of microplastic movement concerning fishing areas during the west and east monsoon seasons. The results showed that microplastic particles follow tidal currents in Pekalongan waters, with their movement influenced by factors such as current, wind, and tidal conditions. The trajectory of microplastics entering fishing ground areas poses potential contamination risk for fish caught by fishermen, threatening the health of marine ecosystems and the stability of their structure and function.


Subject(s)
Environmental Monitoring , Hydrodynamics , Microplastics , Water Pollutants, Chemical , Indonesia , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Microplastics/analysis , Water Movements
9.
An Acad Bras Cienc ; 96(3): e20230570, 2024.
Article in English | MEDLINE | ID: mdl-39140519

ABSTRACT

The inverse problem method can be applied to determine the properties of hydrological phenomena and estimate the parameters, which cannot be measured directly. This type of inverse focus can facilitate the implementation of the kinematic wave model (direct model-DM), to fill gaps for lateral inflow rate and runoff depth in watersheds. Thus, the goal of the study was the application of the inverse problem method (IP). The lateral inflow rate was generally obtained as a Fourier transform to represent any watersheds. The study was developed using a small catchment in the Amazon where intense rainfall events occur, producing runoff and sediments, which affect rural populations. Lateral inflow rate and runoff depth were derived using precipitation data and parameters estimated through the KINEROS2 (K2)/direct model (DM) model and the ensuing solution methods with MCMC (Markov chains Monte Carlo)/Fourier transform. The developed method was applied to four rainfall-runoff events, leading to a good fit between the observed and predicted data (Nash-Sutcliffe coefficients between 0.76 and 0.85 and RMSE values between 1.80 mm and 6.72 mm).


Subject(s)
Models, Theoretical , Rain , Water Movements , Brazil , Environmental Monitoring/methods , Rivers , Hydrology/methods
10.
Water Sci Technol ; 90(1): 124-141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007310

ABSTRACT

With the increasing frequency of extreme weather events and a deepening understanding of disasters, resilience has received widespread attention in urban drainage systems. The studies on the resilience assessment of urban drainage systems are mostly indirect assessments that did not simulate human behavior affected by rainfall or semi-quantitative assessments that did not build simulation models, but few research characterizes the processes between people and infrastructure to assess resilience directly. Our study developed a dynamic model that integrates urban mobility, flood inundation, and sewer hydrodynamics processes. The model can simulate the impact of rainfall on people's mobility behavior and the full process including runoff generation, runoff entering pipes, node overflow, flood migration, urban mobility, and residential water usage. Then, we assessed the resilience of the urban drainage system under rainfall events from the perspectives of property loss and urban mobility. The study found that the average percentage increase in commuting time under different return periods of rainfall ranged from 6.4 to 203.9%. Calculating the annual expectation of property loss and traffic obstruction, the study found that the annual expectation loss in urban mobility is 9.1% of the annual expectation of property loss if the rainfall is near the morning commuting peak.


Subject(s)
Floods , Hydrodynamics , Models, Theoretical , Cities , Drainage, Sanitary , Rain , Water Movements , Sewage
11.
Water Sci Technol ; 90(1): 190-212, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007314

ABSTRACT

Numerous countries and regions have embraced implementing a separate sewer system, segregating sanitary and storm sewers into distinct systems. However, the functionality of these systems often needs to improve due to irregular interconnections, resulting in a mixed and malfunctioning system. Sewage collection is crucial for residential sanitation, but untreated collection significantly contributes to environmental degradation. Analyzing the simultaneous operation of both systems becomes vital for effective management. Using mathematical tools for precise and unified diagnosis and prognosis becomes imperative. However, municipal professionals and companies need more tools specifically designed to evaluate these systems in a unified way, mapping all the hydraulic connections observed in practice. This study proposes a unified simulation method for stormwater and sanitary sewer urban systems, addressing real-world scenarios and potential interferences. The primary goal is to develop a simulation method for both systems, considering system interconnections and urban layouts, involving hydrodynamic and water quality simulations. The practical application of this method, the Multilayer Hydrodynamic Simulation Method (MODCEL-MHUS), successfully identifies issues in urban water networks and suggests solutions, making it a valuable tool for urban water management and environmental engineering professionals.


Subject(s)
Hydrodynamics , Rain , Sewage , Drainage, Sanitary , Cities , Models, Theoretical , Waste Disposal, Fluid/methods , Computer Simulation , Water Movements
12.
Water Sci Technol ; 90(1): 344-362, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007323

ABSTRACT

Hydrodynamic separators are commonly used to control the total suspended solid concentration in stormwater before being discharged to natural water bodies. The separator studied in this paper, featuring a swirling flow generated by tangential inlet and outlet connections, was analyzed for its sediment removal efficiency in relation to sediment and flow rates. For the separator studied in this paper, the numerical model showed that the flow field was favorable for the sediments to gather at the center and settle. A higher flow rate or a smaller sediment diameter corresponded to a lower removal rate and vice versa. The dimension improvement for increasing the sediment removal rate was also studied. It was found that increasing the diameter of the separator showed a higher sediment removal rate compared with corresponding increase in the height of the separator. A dimensionless parameter J was proposed to assess the sediment removal rate of a separator, which may be used for designing and optimizing such a device. The removal rate is positively correlated with the J value. When the J value reaches 0.5 or above, the sediment removal rate exceeds 80%, which is a good initial target value for designing this type of separator.


Subject(s)
Geologic Sediments , Hydrodynamics , Models, Theoretical , Water Movements , Waste Disposal, Fluid/methods , Waste Disposal, Fluid/instrumentation
13.
An Acad Bras Cienc ; 96(suppl 2): e20230744, 2024.
Article in English | MEDLINE | ID: mdl-39016362

ABSTRACT

The Brazil-Malvinas Confluence (BMC) is a significant biological frontier where distinct currents meet, fostering optimal conditions for phytoplankton development. In this study we tested the hypothesis that eddys promote an increase in phytoplankton biomass at the Brazil-Malvinas Confluence (BMC), altering species diversity. Phytoplankton were collected with Niskin bottles and nutrient concentrations assessed at two depths (Surface and Deep Chlorophyll Maximum Layer - DCML) in areas outside and under the influence of Cold-Core (CCE) and Warm-Core (WCE) Eddies. Environmental variables were determined in situ using a CTD profiler. Four regions were separated based on environmental variables and phytoplankton species, namely, the Brazil Current (BC), Malvinas Current (MC), CCE, and WCE. Species diversity was higher in the eddies. The conditions of the WCE were different from those of the CCE, with low temperature and salinity and high cell density values in the latter. The phylum Bacillariophyta was predominant in terms of species richness in all regions and was responsible for the higher cell density in the MC, while dinoflagellates were dominant in the BC and eddies. Therefore, eddy activity alters the structure, diversity and biomass of the phytoplankton community in the BMC.


Subject(s)
Biodiversity , Biomass , Phytoplankton , Phytoplankton/classification , Phytoplankton/growth & development , Brazil , Seasons , Chlorophyll/analysis , Water Movements , Temperature
14.
Isotopes Environ Health Stud ; 60(3): 309-330, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946354

ABSTRACT

The Lower Quang Tri River Group, situated in central Vietnam, faces a myriad of challenges, notably the decline in groundwater levels and the salinisation of both groundwater and surface water, significantly impacting water availability for domestic, agricultural, and industrial purposes. To address these pressing concerns, this study adopts a comprehensive methodology integrating hydrogeological measurements, isotopic techniques, and chemical analyses of various water sources, including local precipitation, surface water bodies, reservoirs, and groundwater samples. Utilising the deuterium and oxygen-18 signatures (δ2H and δ18O) in water molecules as environmental tracers for the assessment of base flow and water sources enables a nuanced understanding of the intricate interaction between surface water and groundwater. Research findings elucidate that during the dry season, groundwater recharge primarily stems from water in the reservoirs over approximately seven months. Base flow contributes between 80 and 85 % of streamflow during the rainy season, escalating to 100 % during the dry season. The mean travelling time of the base flow is estimated at 120 ± 10 days using the sine curve model developed by Rodgers et al. The insights gleaned from this study are poised to play a pivotal role in guiding the local water resources managers in licensing for the exploitation of a right quantities of groundwater as sustainable management strategies in the region.


Subject(s)
Deuterium , Environmental Monitoring , Groundwater , Hydrology , Oxygen Isotopes , Rivers , Vietnam , Groundwater/chemistry , Groundwater/analysis , Oxygen Isotopes/analysis , Deuterium/analysis , Environmental Monitoring/methods , Rivers/chemistry , Water Movements , Seasons
15.
Nat Commun ; 15(1): 6238, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043692

ABSTRACT

Upwelling along oceanic eastern boundaries has attracted significant attention due to its profound effects on ocean productivity and associated biological and socioeconomic implications. However, uncertainty persists regarding the evolution of coastal upwelling with climate change, particularly its impact on future biological production. Here, using a series of state-of-the-art climate models, we identify a significant seasonal advancement and prolonged duration of upwelling in major upwelling systems. Nevertheless, the upwelling intensity (total volume of upwelled water) exhibits complex changes in the future. In the North Pacific, the upwelling is expected to attenuate, albeit with a minor magnitude. Conversely, in other basins, coastal upwelling diminishes significantly in equatorward regions but displays a slight decline or even an enhancement at higher latitudes. The climate simulations also reveal a robust connection between changes in upwelling intensity and net primary production, highlighting the crucial impact of future coastal upwelling alterations on marine ecosystems.


Subject(s)
Climate Change , Ecosystem , Seawater/chemistry , Oceans and Seas , Seasons , Climate Models , Pacific Ocean , Water Movements
16.
J Environ Manage ; 366: 121756, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39033621

ABSTRACT

Raised awareness of environmental constraints in recent decades has led stormwater management to incorporate quality components and focus on the treatment of urban runoff water at pollutant source areas. This study evaluated the impact of a developed type of sediment trap, installed into stormwater inlets, on the total suspended solids (TSS) load in an urban city center catchment in Finland. The objective was to outline a modelling approach to assess efficiency of the traps to treat TSS originating from different land uses (green areas, pavement, parking, roof, street, and other areas not belonging to the main land uses). A Storm Water Management Model (SWMM) parametrization of a 5.87 ha catchment in the Lahti city center, Finland was utilized as the computation engine. The model had separate subcatchments for each land use, allowing the use of literature-based Event Mean Concentrations (EMC) to estimate the TSS pollutant washoff for the land uses. A method to assess the individual stormwater inlet pollutant loads and potential removal effect of the sediment traps was introduced. The hydrological and TSS load simulations covered a period of 6 months. The stormwater network inlets installed with sediment traps were ranked according to their potential removal of TSS. One out of five EMC sets was selected to be representative of the urban land uses in the study site (green areas 75 mg/l, pavement 46 mg/l, parking 44 mg/l, roof 20 mg/l, street 64 mg/l, other 46 mg/l). The simulation results showed the influence of land uses on the pollutant load and revealed the optimal set of locations for the sediment traps. Additionally, the effect of regular maintenance intervals on the pollutant load, given a maximum storage capacity of the traps, was explored. The results showed a large variation in TSS removal depending on the inlets chosen for the sediment traps, with removal rates ranging from about 0 % to 10 % of catchment TSS load. The maximum TSS removal was 63 %, which was the reported efficiency of the traps. These results highlighted the need for an informed decision when selecting trap locations. Streets and parking lots were the largest TSS contributors, with stormwater inlets on streets being the desired sediment trap locations. While the absolute level of simulated TSS load was found to be dependent on the EMCs, the ranking of sediment trap locations was similar for the simulations with different EMC data sets.


Subject(s)
Geologic Sediments , Rain , Water Movements , Models, Theoretical , Finland , Cities , Environmental Monitoring/methods
17.
J Environ Manage ; 366: 121594, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971061

ABSTRACT

In the management of urban drainage networks, great interest has been generated in the removal of sediments from sewer systems. The unsteady three-dimensional (3D) flow and turbulent coherent structures surrounding sediment reduction plates in a sewer system are investigated by means of the detached-eddy simulation (DES). Particular emphasis is given to detailing the instantaneous velocity and vorticity fields within the grooves, along with an examination of the three-dimensional, long-term, average flow structure at a Reynolds number of approximately 105. Velocity vectors demonstrate continuous flapping of the flow on the groove wall, periodically interacting with ejections of positive and negative vorticity originating from the grooves. The interaction between the three-dimensional groove flow and the shear flow leads to the downstream transport of patches of positive and negative vorticity, which significantly influence sediment transport. The high-velocity shear flows and strong vortices generated in undulating topography, as identified by the Q-criteria, are the key factors contributing to the efficient sediment reduction capabilities of the sediment reduction plates. The sediment reduction plates with partially enclosed structures exhibit low sedimentation rates in grooves on the plate, a broader acceleration region, and a lesser impact on the flow capacity. The results improve the understanding of the hydrodynamics and turbulent coherent structures surrounding the sediment reduction plates while elucidating the driving factors behind the enhancement of sediment scouring and suspension capacities. These results indicate that the redesign of the plates as partially enclosed structures contributes to further improving their sediment reduction performance.


Subject(s)
Hydrodynamics , Sewage , Geologic Sediments , Drainage, Sanitary , Models, Theoretical , Waste Disposal, Fluid/methods , Water Movements
18.
Water Res ; 261: 122012, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38968737

ABSTRACT

The complex hydrological conditions caused by the backwater effect at the confluence inevitably modify the geochemical processes of elements. However, there is still a lack of comprehensive understanding regarding the precise transformation mechanisms of nutrients in large river systems. This study aimed to investigate the hydrodynamic characteristics and their impact on phosphorus transfer in the lower Han River, which is influenced by backwater from the Yangtze River (the largest river in China). By establishing a hydrodynamic-water quality model, we have determined that the discharge ratio (the ratio of flow between the Han River discharge and the Yangtze River discharge) can be utilized as a representative indicator of the backwater effect from the Yangtze River on the Han River. Three distinct patterns were identified in this study: mixing, backwater, and intrusion. The corresponding discharge ratio values were categorized as >0.08, 0.01∼0.08, and <0.01 respectively. Additionally, the extent of the backwater zone was determined, revealing that the length of the backwater zone increased from 50 km (XG) to 100 km (FS) as the discharge ratio decreased from 0.08 to 0.01. Furthermore, it was observed that the water level at the confluence rose from 2.52 m to 6.83 m in accordance with these changes in discharge ratio values. The migration pattern of phosphorus primarily involved the settling and retention of particulate phosphorus, particularly the labile particulate organic phosphorus (LOP) and dissolved organic phosphorus (DOP). When the confluent patterns became the intrusion pattern, the backwater zone expanded to 150 m (XT), causing a 10.40 m increase in water level at the confluence. An intrusion zone formed, and its phosphorus concentrations were same as Yangtze River's. Above the intrusion area, a backwater region formed and its concentrations of LOP and DOP decreased, while the concentration of PO43- increased due to the release from resuspended particles. This release was induced by higher velocity of bottom water brought about by the water exchange of two rivers. The discharge ratio of 0.01-0.08 resulted in the sedimentation of LOP and DOP, causing the lower Han River to act as a "sink" for phosphorus, potentially exacerbating phosphorus pollution. Higher discharge ratios in spring led to phosphorus release from sediment, increasing dissolved phosphorus concentrations and raising the risk of algal blooms in the lower Han River. These findings have significant implications for larger rivers worldwide and provide insights into strategies for ecological management and prevention of algal blooms.


Subject(s)
Phosphorus , Rivers , Phosphorus/analysis , Rivers/chemistry , China , Water Movements , Environmental Monitoring , Water Pollutants, Chemical/analysis , Hydrodynamics , Water Quality
19.
Water Res ; 261: 122044, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38972237

ABSTRACT

Mercury (Hg) in runoff water poses significant ecological risks to aquatic ecosystems that can affect organisms. However, accurately identifying the sources and transformation processes of Hg in runoff water is challenging due to complex natural conditions. This study provides a comprehensive investigation of Hg dynamics in water from rainfall to runoff. The Hg isotope fractionation in water was characterized, which allows accurate quantification of Hg sources, transport, and transformations in rainfall-runoff processes. Δ200Hg and corrected Δ199Hg values can serve as reliable tracers for identifying Hg sources in the runoff water and the variation of δ202Hg can be explained by Hg transformation processes. During runoff migration processes, Hg from rainfall is rapidly absorbed on the land surface, while terrestrial Hg entering the water by the dissolution process becomes the primary component of dissolved mercury (DHg). Besides the dissolution and adsorption, microbial Hg(II) reduction and demethylation of MeHg were dominant processes for DHg in the runoff water that flows through the rice paddies, while photochemical Hg(II) reduction was the dominant process for DHg in the runoff water with low water exchange rates. Particulate Hg (PHg) in runoff water is dominantly originated by the terrestrial material and derived from the dissolution and adsorption process. Tracking sources and transformations of Hg in runoff water during the rainfall-runoff process provides a basis for studying Hg pollution in larger water bodies under complex environmental factors.


Subject(s)
Environmental Monitoring , Mercury Isotopes , Mercury , Rain , Water Pollutants, Chemical , Mercury/analysis , Rain/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Movements
20.
Sci Total Environ ; 948: 174902, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39053551

ABSTRACT

Understanding local hydraulic conditions is imperative to coastal harmful algal bloom (HAB) monitoring. The research summarized herein describes how the locations and tidal phases selected for coastal hazard sampling can influence measurement results used to guide management decisions for HABs. Our study was conducted in Frenchman Bay, Maine, known for its complex deglaciated coastline, strong tidal influence, and shellfishing activities that are susceptible to problematic HABs such as those produced by some species (spp.) of the diatom genus Pseudo-nitzschia. In-situ measurements of current velocity, density, and turbulence collected over a semidiurnal tidal cycle and a companion numerical model simulation of the study area provide concurrent evidence of two adjacent counter-rotating sub-mesoscale eddies (2-4 km diameter) that persist in the depth-averaged residual circulation. The eddies are generated in the wake of several islands in an area with abrupt bathymetric gradients, both legacy conditions partly derived from deglaciation ∼15 kya. Increased concentrations of Pseudo-nitzschia spp. measured during the semidiurnal survey follow a trend of elevated turbulent dissipation rates near the water surface, indicating that surface sampling alone might not adequately indicate species abundance. Additional measurements of Pseudo-nitzschia spp. from two years of weekly sampling in the region show that algal cell abundance is highest where residual eddies form. These findings provide incentive to examine current practices of HAB monitoring and management by linking coastal geomorphology to hydraulic conditions influencing HAB sampling outcomes, coastal morphometric features to material accumulation hotspots, and millennial time scales to modern hydraulic conditions.


Subject(s)
Diatoms , Environmental Monitoring , Estuaries , Harmful Algal Bloom , Hydrodynamics , Diatoms/physiology , Environmental Monitoring/methods , Maine , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL