Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23.170
1.
J Coll Physicians Surg Pak ; 34(6): 693-696, 2024 Jun.
Article En | MEDLINE | ID: mdl-38840353

OBJECTIVE: To evaluate the effect of Ziziphus honey on the healing of post-extraction alveolar sockets by estimating the levels of osteopontin (OPN) in humans. STUDY DESIGN: Randomised controlled trial. Place and Duration of the Study: Dental section of the Lahore General Hospital, Lahore, Pakistan, from March 2020 to February 2021. METHODOLOGY: A total of 30 patients were included in the study. The mean age was 35 ± 0.28 years. The participants were adults undergoing permanent molar extraction, randomly divided into two groups, a control group and an experimental group. After tooth extractions in both groups, 1ml of Ziziphus honey was administered into the extracted tooth socket of the experimental group while no intervention was done to the control group. Saliva samples were collected on day 0 before tooth extraction and on days 3 and 7 after tooth extractions. Enzyme-linked immunosorbent assay (ELISA) technique was used to measure the levels of OPN in the saliva sample. Radiographic evaluation was also done with the help of periapical radiographs using Image J® software. To find out the significance of the outcome in experimental and control groups, an unpaired t-test was applied. A p-value <0.05 was considered statistically significant. RESULTS: A total of 30 participants were selected for the study, of which 16 were females and 14 were males. The OPN levels between the control vs. experimental groups were (22.55 ± 2.45 vs. 23.31 ± 2.38; p = 0.4) on day 0, (30.95 ± 2.96 vs. 53.29 ± 4.69; p = 0.001) on day 3, and (55.33 ± 4.52 vs. 81.90 ± 4.49; p = 0.001) on day 7. CONCLUSION: Increased salivary levels of the OPN in the experimental group with the use of Ziziphus honey suggests better bone healing as compared to the control group. KEY WORDS: Extraction tooth, Honey, Osteopontin, Ziziphus, Bone healing.


Honey , Osteopontin , Saliva , Tooth Extraction , Tooth Socket , Wound Healing , Humans , Osteopontin/metabolism , Osteopontin/analysis , Male , Female , Adult , Saliva/chemistry , Saliva/metabolism , Wound Healing/physiology , Pakistan
2.
Skin Res Technol ; 30(6): e13778, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837478

BACKGROUND: Medical dressings are designed to promote wound healing and reduce infection. The aim of project is to investigate the effect of natural brown colored cotton dressings on the healing of infected wounds in E.coli animals. MATERIALS AND METHODS: In this study, degreased white cotton gauze was used as the control group, with degreased brown cotton gauze and degreased bleached brown cotton gauze as the experimental group 1 and experimental group 2, to investigate the effect on the repair of post-infectious wound damage in animals by establishing an infected wound model in rats with E.coli as the infecting organism. RESULTS: The ability to promote healing of infected wounds was investigated by analyzing the wound healing status, macroscopic wound healing rate, hematoxylin-eosin staining, Masson staining, secretion of inflammatory factors by Elisa assay. The result showed that at day 14 of wound healing, the macroscopic wound healing rate was greater than 98% for all three groups of dressings; the collagen content reached 49.85 ± 5.84% in the experimental group 1 and 53.48 ± 5.32% in the experimental group 2, which was higher than the control group; brown cotton gauze promotes skin wound healing by shortening the inflammatory period in both groups. The expression of three inflammatory factors THF-α, IL-2, and IL-8 and three cytokines MMP-3, MMP-8, and MMP-9 were lower than that of the control group. CONCLUSIONS: It was found that natural brown cotton gauze has better repairing and promoting healing effect on infected wounds. It opens up the application of natural brown cotton gauze in the treatment of infected wounds.


Bandages , Cotton Fiber , Wound Healing , Wound Infection , Animals , Wound Healing/physiology , Rats , Wound Infection/therapy , Wound Infection/pathology , Male , Rats, Sprague-Dawley , Disease Models, Animal , Escherichia coli , Skin/injuries , Skin/pathology , Collagen/metabolism
3.
Mol Pharm ; 21(6): 2637-2658, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38728585

To date, the widespread implementation of therapeutic strategies for the treatment of chronic wounds, including debridement, infection control, and the use of grafts and various dressings, has been time-consuming and accompanied by many challenges, with definite success not yet achieved. Extensive studies on mesenchymal stem cells (MSCs) have led to suggestions for their use in treating various diseases. Given the existing barriers to utilizing such cells and numerous pieces of evidence indicating the crucial role of the paracrine signaling system in treatments involving MSCs, extracellular vesicles (EVs) derived from these cells have garnered significant attention in treating chronic wounds in recent years. This review begins with a general overview of current methods for chronic wound treatment, followed by an exploration of EV structure, biogenesis, extraction methods, and characterization. Subsequently, utilizing databases such as Google Scholar, PubMed, and ScienceDirect, we have explored the latest findings regarding the role of EVs in the healing of chronic wounds, particularly diabetic and burn wounds. In this context, the role and mode of action of these nanoparticles in healing chronic wounds through mechanisms such as oxygen level elevation, oxidative stress damage reduction, angiogenesis promotion, macrophage polarization assistance, etc., as well as the use of EVs as carriers for engineered nucleic acids, have been investigated. The upcoming challenges in translating EV-based treatments for healing chronic wounds, along with possible approaches to address these challenges, are discussed. Additionally, clinical trial studies in this field are also covered.


Extracellular Vesicles , Mesenchymal Stem Cells , Wound Healing , Extracellular Vesicles/transplantation , Extracellular Vesicles/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Wound Healing/physiology , Animals , Mesenchymal Stem Cell Transplantation/methods , Chronic Disease , Clinical Trials as Topic , Burns/therapy
4.
J Craniofac Surg ; 35(4): 1298-1304, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38710066

Gold standard method for the treatment of critical-sized bone defects is the autogenous bone grafting procedure. A number of new and potentially useful adjuncts currently are being investigated to enhance the success of bone grafting. We propose to evaluate the effect of the most known and easily obtained 2 biological materials, fat graft and platelet-rich plasma (PRP), on bone graft healing. Twenty-seven New Zealand male rabbits were included in this randomized, controlled study. Two-sided 15-mm diameter bone defects were created in the parietal bones and the bones taken were replaced right-to-left and vice versa with 1 control group, 1 fat graft applied group, and the last one PRP applied group. Histologic evaluation and 3-dimensional maxillofacial computerized tomography were performed and bone density was calculated. In radiologic analysis, bone density was significantly different in the PRP group compared with the control and fat graft group in the 12th week ( P <0.05). In histologic scoring analysis, the PRP group had a better score than the control and fat graft group, while the fat graft group was worse than the control group in the 6th week ( P <0.05). The addition of PRP had a positive effect whereas fat graft had a negative effect on bone graft healing compared with the control group.


Adipose Tissue , Bone Transplantation , Platelet-Rich Plasma , Random Allocation , Animals , Rabbits , Bone Transplantation/methods , Male , Adipose Tissue/transplantation , Bone Density , Transplantation, Autologous , Wound Healing/physiology , Tomography, X-Ray Computed , Parietal Bone/surgery , Imaging, Three-Dimensional , Disease Models, Animal , Skull/surgery , Skull/diagnostic imaging
5.
J Plast Surg Hand Surg ; 59: 72-76, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769787

BACKGROUND: The purpose of this article is to introduce a method that combines limited debridement and ReCell® autologous cell regeneration techniques for the treatment of deep second-degree burn wounds. METHOD: A total of 20 patients suffered with deep second-degree burns less than 10% of total body surface area (TBSA) who were admitted to our department, from June 2019 to June 2021, participated in this study. These patients first underwent limited debridement with an electric/pneumatic dermatome, followed by the ReCell® technique for secondary wounds. Routine treatment was applied to prevent scarring after the wound healed. Clinical outcomes were scored using the Vancouver Scar Scale (VSS). RESULTS: All wounds of the patients healed completely. One patient developed an infection in the skin graft area and finally recovered by routine dressing changes. The average healing time was 12 days (range: 10-15 days). The new skin in the treated area was soft and matched the colour of the surrounding normal skin and the VSS score ranged from 3~5 for each patient. Of the 20 patients, 19 were very satisfied and 1 was satisfied. CONCLUSIONS: This article reports a useful treatment method that combines electric dermatome-dependent limited debridement and the ReCell® technique for the treatment of deep second-degree burn wounds. It is a feasible and effective strategy that is easy to implement and minimally invasive, and it is associated with a short healing time, mild scar formation and little damage to the donor skin area.


Burns , Debridement , Skin Transplantation , Humans , Burns/surgery , Burns/therapy , Debridement/methods , Male , Adult , Female , Skin Transplantation/methods , Middle Aged , Young Adult , Wound Healing/physiology , Cicatrix , Adolescent , Polyesters
6.
Ann Plast Surg ; 92(6): 647-652, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38717142

BACKGROUND: The repair of facial skin and soft tissue defects remains a clinical challenge. The author introduced a novel "table tennis racquet" random skin flap for wound repair after facial skin cancer excision and discussed its survival mechanisms. METHODS: A lateral mandibular neck skin flap shaped like a table tennis racquet with no well-known blood vessels at the narrow pedicle was designed in 31 cases to repair tissue defects. Among them, there were 8 cases of skin carcinoma in the frontotemporal area and 23 cases of skin carcinoma in the cheek. The flap area was 8.0 × 7.0 cm at maximum and 3.0 × 2.5 cm at minimum, with a pedicle width of 1.0-2.0 cm and a pedicle length of 2.0-6.0 cm. RESULTS: All 31 "table tennis racquet" random skin flaps survived, although there were 3 cases with delayed healing of distal flap bruising. All of them had an ideal local shape after repair with a concealed donor area and inconspicuous scars. CONCLUSIONS: This flap has a "table tennis racquet" shape with a pedicle without well-known blood vessels and has a length-to-width ratio that exceeds that of conventional random flaps, making it unconventional. Because of its long and narrow pedicle, it not only has a large rotation and coverage area but also can be designed away from the defect area, avoiding the defect of no donor tissue being localized near the defect. Overall, this approach is an ideal option for repairing tissue defects after enlarged excision of facial skin carcinoma.


Facial Neoplasms , Plastic Surgery Procedures , Skin Neoplasms , Surgical Flaps , Humans , Skin Neoplasms/surgery , Skin Neoplasms/pathology , Male , Female , Middle Aged , Facial Neoplasms/surgery , Aged , Plastic Surgery Procedures/methods , Surgical Flaps/blood supply , Treatment Outcome , Skin Transplantation/methods , Adult , Wound Healing/physiology , Aged, 80 and over , Graft Survival
7.
Medicina (Kaunas) ; 60(5)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38792906

Background and objectives: Diabetic foot stands out as one of the most consequential and devastating complications of diabetes. Many factors, including VIPS (Vascular management, Infection management, Pressure relief, and Source of healing), influence the prognosis and treatment of diabetic foot patients. There are many studies on VIPS, but relatively few studies on "sources of healing". Nutrients that affect wound healing are known, but objective data in diabetic foot patients are insufficient. We hypothesized that "sources of healing" would have many effects on wound healing. The purpose of this study is to know the affecting factors related to the source of healing for diabetic foot patients. Materials and Methods: A retrospective review identified 46 consecutive patients who were admitted for diabetic foot management from July 2019 to April 2021 at our department. Several laboratory tests were performed for influencing factor evaluation. We checked serum levels of total protein, albumin, vitamin B, iron, zinc, magnesium, copper, Hb, HbA1c, HDL cholesterol, and LDL cholesterol. These values of diabetic foot patients were compared with normal values. Patients were divided into two groups based on wound healing rate, age, length of hospital stay, and sex, and the test values between the groups were compared. Results: Levels of albumin (37%) and Hb (89%) were low in the diabetic foot patients. As for trace elements, levels of iron (97%) and zinc (95%) were low in the patients, but levels of magnesium and copper were usually normal or high. There were no differences in demographic characteristics based on wound healing rate. However, when compared to normal adult values, diabetic foot patients in our data exhibited significantly lower levels of hemoglobin, total protein, albumin, iron, zinc, copper, and HDL cholesterol. When compared based on age and length of hospital stay, hemoglobin levels were significantly lower in both the older age group and the group with longer hospital stays. Conclusions: Serum levels of albumin, Hb, iron, and zinc were very low in most diabetic foot patients. These low values may have a negative relationship with wound healing. Nutrient replacements are necessary for wound healing in diabetic foot patients.


Diabetic Foot , Wound Healing , Humans , Diabetic Foot/blood , Diabetic Foot/physiopathology , Male , Female , Retrospective Studies , Wound Healing/physiology , Middle Aged , Aged , Glycated Hemoglobin/analysis , Zinc/blood , Magnesium/blood , Trace Elements/blood , Aged, 80 and over , Iron/blood
8.
Arch Dermatol Res ; 316(6): 242, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795200

Contemporary trends reveal an escalating interest in regenerative medicine-based interventions for addressing refractory skin defects. Conventional wound healing treatments, characterized by high costs and limited efficacy, necessitate a more efficient therapeutic paradigm to alleviate the economic and psychological burdens associated with chronic wounds. Mesenchymal stem/stromal cells (MSCs) constitute cell-based therapies, whereas cell-free approaches predominantly involve the utilization of MSC-derived extracellular vesicles or exosomes, both purportedly safe and effective. Exploiting the impact of MSCs by paracrine signaling, exosomes have emerged as a novel avenue capable of positively impacting wound healing and skin regeneration. MSC-exosomes confer several advantages, including the facilitation of angiogenesis, augmentation of cell proliferation, elevation of collagen production, and enhancement of tissue regenerative capacity. Despite these merits, challenges persist in clinical applications due to issues such as poor targeting and facile removal of MSC-derived exosomes from skin wounds. Addressing these concerns, a three-dimensional (3D) platform has been implemented to emend exosomes, allowing for elevated levels, and constructing more stable granules possessing distinct therapeutic capabilities. Incorporating biomaterials to encapsulate MSC-exosomes emerges as a favorable approach, concentrating doses, achieving intended therapeutic effectiveness, and ensuring continual release. While the therapeutic potential of MSC-exosomes in skin repair is broadly recognized, their application with 3D biomaterial scenarios remains underexplored. This review synthesizes the therapeutic purposes of MSCs and exosomes in 3D for the skin restoration, underscoring their promising role in diverse dermatological conditions. Further research may establish MSCs and their exosomes in 3D as a viable therapeutic option for various skin conditions.


Exosomes , Mesenchymal Stem Cells , Regeneration , Skin , Wound Healing , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Wound Healing/physiology , Skin/metabolism , Skin/pathology , Regeneration/physiology , Regenerative Medicine/methods , Mesenchymal Stem Cell Transplantation/methods , Animals , Dermatology/methods
9.
Sensors (Basel) ; 24(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38793835

Diabetic foot ulcers (DFUs) significantly affect the lives of patients and increase the risk of hospital stays and amputation. We suggest a remote monitoring platform for better DFU care. This system uses digital health metrics (scaled from 0 to 10, where higher scores indicate a greater risk of slow healing) to provide a comprehensive overview through a visual interface. The platform features smart offloading devices that capture behavioral metrics such as offloading adherence, daily steps, and cadence. Coupled with remotely measurable frailty and phenotypic metrics, it offers an in-depth patient profile. Additional demographic data, characteristics of the wound, and clinical parameters, such as cognitive function, were integrated, contributing to a comprehensive risk factor profile. We evaluated the feasibility of this platform with 124 DFU patients over 12 weeks; 39% experienced unfavorable outcomes such as dropout, adverse events, or non-healing. Digital biomarkers were benchmarked (0-10); categorized as low, medium, and high risk for unfavorable outcomes; and visually represented using color-coded radar plots. The initial results of the case reports illustrate the value of this holistic visualization to pinpoint the underlying risk factors for unfavorable outcomes, including a high number of steps, poor adherence, and cognitive impairment. Although future studies are needed to validate the effectiveness of this visualization in personalizing care and improving wound outcomes, early results in identifying risk factors for unfavorable outcomes are promising.


Diabetic Foot , Humans , Male , Female , Middle Aged , Aged , Monitoring, Physiologic/methods , Risk Assessment/methods , Wound Healing/physiology , Risk Factors
10.
Clin Sports Med ; 43(3): 501-512, 2024 Jul.
Article En | MEDLINE | ID: mdl-38811124

Surgical intervention after anterior cruciate ligament (ACL) tears is typically required because of the limited healing capacity of the ACL. However, mechanical factors and the inflammatory response triggered by the injury and surgery can impact patient outcomes. This review explores key aspects of ACL injury and reconstruction biology, including the inflammatory response, limited spontaneous healing, secondary inflammation after reconstruction, and graft healing processes. Understanding these biologic mechanisms is crucial for developing new treatment strategies and enhancing patient well-being. By shedding light on these aspects, clinicians and researchers can work toward improving quality of life for individuals affected by ACL tears.


Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Wound Healing , Humans , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Injuries/physiopathology , Wound Healing/physiology , Inflammation , Quality of Life
11.
Transl Vis Sci Technol ; 13(5): 3, 2024 May 01.
Article En | MEDLINE | ID: mdl-38696180

Purpose: The biosynthetic Symatix membrane (SM) was developed to replace fresh human amniotic membrane (hAM) in ocular surgical applications. The purpose of this study was to test the biocompatibility of the SM with human limbus-derived epithelial cells with regard to their physical and biological properties. Methods: Different physical properties of SM were tested ex vivo by simulation on human corneas. In vitro, primary limbal epithelial cells from limbal explants were used to test biological properties such as cell migration, proliferation, metabolic activity, and limbal epithelial cell markers on the SM, hAM, and freeze-dried amniotic membrane (FDAM). Results: The surgical handleability of the SM was equivalent to that of the hAM. Ultrastructural and histological studies demonstrated that epithelial cells on the SM had the typical tightly apposed, polygonal, corneal epithelial cell morphology. The epithelial cells were well stratified on the SM, unlike on the hAM and FDAM. Rapid wound healing occurred on the SM within 3 days. Immunofluorescence studies showed positive expression of CK-19, Col-1, laminin, ZO-1, FN, and p-63 on the SM, plastic, and FDAM compared to positive expression of ZO-1, Col-1, laminin, FN, and p63 and negative expression of CK-19 in the hAM. Conclusions: These results indicate that the SM is a better substrate for limbal epithelial cell migration, proliferation, and tight junction formation. Altogether, the SM can provide a suitable alternative to the hAM for surgical application in sight-restoring operations. Translational Relevance: The hAM, currently widely used in ocular surface surgery, has numerous variations and limitations. The biocompatibility of corneal epithelial cells with the SM demonstrated in this study suggests that it can be a viable substitute for the hAM.


Amnion , Cell Movement , Cell Proliferation , Humans , Amnion/metabolism , Cells, Cultured , Limbus Corneae/metabolism , Limbus Corneae/cytology , Epithelium, Corneal/metabolism , Epithelium, Corneal/cytology , Wound Healing/physiology , Epithelial Cells/metabolism , Ophthalmologic Surgical Procedures/methods , Laminin/metabolism , Zonula Occludens-1 Protein/metabolism
12.
Invest Ophthalmol Vis Sci ; 65(5): 8, 2024 May 01.
Article En | MEDLINE | ID: mdl-38700874

Purpose: In the present study, we aim to elucidate the underlying molecular mechanism of endoplasmic reticulum (ER) stress induced delayed corneal epithelial wound healing and nerve regeneration. Methods: Human limbal epithelial cells (HLECs) were treated with thapsigargin to induce excessive ER stress and then RNA sequencing was performed. Immunofluorescence, qPCR, Western blot, and ELISA were used to detect the expression changes of SLIT3 and its receptors ROBO1-4. The role of recombinant SLIT3 protein in corneal epithelial proliferation and migration were assessed by CCK8 and cell scratch assay, respectively. Thapsigargin, exogenous SLIT3 protein, SLIT3-specific siRNA, and ROBO4-specific siRNA was injected subconjunctivally to evaluate the effects of different intervention on corneal epithelial and nerve regeneration. In addition, Ki67 staining was performed to evaluate the proliferation ability of epithelial cells. Results: Thapsigargin suppressed normal corneal epithelial and nerve regeneration significantly. RNA sequencing genes related to development and regeneration revealed that thapsigargin induced ER stress significantly upregulated the expression of SLIT3 and ROBO4 in corneal epithelial cells. Exogenous SLIT3 inhibited normal corneal epithelial injury repair and nerve regeneration, and significantly suppressed the proliferation and migration ability of cultured mouse corneal epithelial cells. SLIT3 siRNA inhibited ROBO4 expression and promoted epithelial wound healing under thapsigargin treatment. ROBO4 siRNA significantly attenuated the delayed corneal epithelial injury repair and nerve regeneration induced by SLIT3 treatment or thapsigargin treatment. Conclusions: ER stress inhibits corneal epithelial injury repair and nerve regeneration may be related with the upregulation of SLIT3-ROBO4 pathway.


Cell Proliferation , Endoplasmic Reticulum Stress , Epithelium, Corneal , Nerve Regeneration , Receptors, Immunologic , Roundabout Proteins , Signal Transduction , Wound Healing , Animals , Humans , Mice , Blotting, Western , Cell Movement/physiology , Cells, Cultured , Endoplasmic Reticulum Stress/physiology , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/metabolism , Limbus Corneae/cytology , Nerve Regeneration/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction/physiology , Wound Healing/physiology
13.
Clin Oral Investig ; 28(6): 303, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714559

OBJECTIVES: We aimed to establish a risk profile for intraoral wound healing disorders based on measurements of microcirculation in gingival tissues. MATERIALS AND METHODS: Oxygen saturation (SO2) and blood flow in gingival tissues were measured with tissue spectrometry and laser doppler spectroscopy in 37 patients before/after tooth extractions. Patients were assigned to four groups: anamnestically and periodontally healthy patients (n = 7), anamnestically healthy but suffering from periodontitis (n = 10), anamnestically healthy but smoking and suffering from periodontitis (n = 10) and suffering from diabetes and periodontitis (n = 10). Measurements were performed at three different time points: Baseline measurement (T0), one day post extractionem (p.e.) (T1) and seven days p.e. (T2). RESULTS: Baseline SO2 values were higher in control patients (p = .038). This effect was most evident in comparison to smokers suffering from periodontitis (p = .042), followed by diabetics suffering from periodontitis (p = .09). An opposite trend was seen for blood flow. Patients suffering from periodontitis demonstrated higher blood flow values (p = .012). Five patients, which belonged to the group of smokers suffering from periodontitis, showed clinically a delayed wound healing. CONCLUSION: Differences in SO2 and blood flow of gingival tissue could be detected in different groups of patients with existing periodontitis compared to control patients. CLINICAL RELEVANCE: Lower baseline SO2 values could be a warning signal for possible wound healing disorders after oral surgery.


Gingiva , Laser-Doppler Flowmetry , Microcirculation , Periodontitis , Tooth Extraction , Wound Healing , Humans , Wound Healing/physiology , Pilot Projects , Male , Female , Gingiva/blood supply , Middle Aged , Adult , Longitudinal Studies , Risk Factors , Oxygen Saturation , Smoking , Aged
14.
Wounds ; 36(4): 124-128, 2024 Apr.
Article En | MEDLINE | ID: mdl-38743858

BACKGROUND: Managing complex traumatic soft tissue wounds involving a large surface area while attempting to optimize healing, avoid infection, and promote favorable cosmetic outcomes is challenging. Regenerative materials such as ECMs are typically used in wound care to enhance the wound healing response and proliferative phase of tissue formation. CASE REPORT: The case reported herein is an example of the efficacious use of an SEFM in the surgical management of a large complex traumatic wound involving the left lower extremity and lower abdominal region. The wound bed was successfully prepared for skin grafting over an area of 1200 cm2, making this among the largest applications of the SEFM reported in the literature. CONCLUSION: This case report demonstrates the clinical versatility of the SEFM and a synergistic approach to complex traumatic wound care. The SEFM was successfully used to achieve tissue granulation for a successful skin graft across a large surface in an anatomic region with complex topography.


Degloving Injuries , Groin , Skin Transplantation , Thigh , Wound Healing , Humans , Wound Healing/physiology , Skin Transplantation/methods , Degloving Injuries/surgery , Male , Treatment Outcome , Soft Tissue Injuries/surgery , Adult
15.
Wounds ; 36(4): 129-136, 2024 Apr.
Article En | MEDLINE | ID: mdl-38743859

BACKGROUND: Recently, micronized adipose tissue (MAT) grafts have shown promising results in wound healing, including diabetic ulcers. OBJECTIVE: To assess the possibility of using 3D printed MAT niche grafts in the management of skin and soft tissue defects resulting from non-melanoma skin cancer (NMSC) resections. MATERIALS AND METHODS: A retrospective feasibility study was conducted on patients with skin and soft tissue defects resulting from NMSC resections. Twenty-one patients were treated using either artificial dermis (n = 11) or MAT niche (n = 10) grafting. Healing time and POSAS scores were compared. The Mann-Whitney U test and the Pearson chi-square test were used in statistical analysis to compare between and within groups based on preoperative and postoperative measurements. RESULTS: Wounds in the MAT niche group reepithelialized significantly faster than those in the artificial dermis group (mean [SD] 39.2 [11.4] days vs 63.7 [34.8] days; P = .04). In the 21 scar parameters evaluated, the MAT niche group demonstrated significantly superior outcomes in only 2 parameters based on operator assessment scores: relief (mean [SD] 1.6 [0.7] vs 2.2 [0.6]; P = .047) and scar contracture (mean [SD] 1.3 [0.5] vs 2.5 [1.0]; P = .011). CONCLUSION: This study proves the feasibility of exploring the effects of MAT niche grafting following NMSC excision on healing time and specific parameters of scarring, including scar relief and scar contracture.


Adipose Tissue , Feasibility Studies , Skin Neoplasms , Skin, Artificial , Wound Healing , Humans , Skin Neoplasms/surgery , Skin Neoplasms/pathology , Pilot Projects , Male , Wound Healing/physiology , Female , Retrospective Studies , Adipose Tissue/transplantation , Aged , Middle Aged , Treatment Outcome , Skin Transplantation/methods
16.
Sci Rep ; 14(1): 10854, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740788

Unlike adult mammalian wounds, early embryonic mouse skin wounds completely regenerate and heal without scars. Analysis of the underlying molecular mechanism will provide insights into scarless wound healing. Twist2 is an important regulator of hair follicle formation and biological patterning; however, it is unclear whether it plays a role in skin or skin appendage regeneration. Here, we aimed to elucidate Twist2 expression and its role in fetal wound healing. ICR mouse fetuses were surgically wounded on embryonic day 13 (E13), E15, and E17, and Twist2 expression in tissue samples from these fetuses was evaluated via in situ hybridization, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction. Twist2 expression was upregulated in the dermis of E13 wound margins but downregulated in E15 and E17 wounds. Twist2 knockdown on E13 left visible marks at the wound site, inhibited regeneration, and resulted in defective follicle formation. Twist2-knockdown dermal fibroblasts lacked the ability to undifferentiate. Furthermore, Twist2 hetero knockout mice (Twist + /-) formed visible scars, even on E13, when all skin structures should regenerate. Thus, Twist2 expression correlated with skin texture formation and hair follicle defects in late mouse embryos. These findings may help develop a therapeutic strategy to reduce scarring and promote hair follicle regeneration.


Fetus , Hair Follicle , Regeneration , Skin , Twist-Related Protein 2 , Wound Healing , Animals , Hair Follicle/metabolism , Mice , Wound Healing/genetics , Wound Healing/physiology , Fetus/metabolism , Skin/metabolism , Twist-Related Protein 2/metabolism , Twist-Related Protein 2/genetics , Mice, Knockout , Mice, Inbred ICR , Female , Fibroblasts/metabolism , Repressor Proteins , Twist-Related Protein 1
17.
Bull Exp Biol Med ; 176(5): 640-644, 2024 Mar.
Article En | MEDLINE | ID: mdl-38733481

Creating of a scar model in laboratory animals is the most acceptable option for the preclinical search of scar treatment. However, due to high skin regeneration rate in laboratory rodents, creating an optimal animal model of scar formation is a challenge. Here we describe five methods for modeling a scar tissue in rats that we have tested. These methods allowed achieving different histopathological features and different stages of skin scar formation.


Burns, Chemical , Cicatrix , Disease Models, Animal , Rats, Sprague-Dawley , Skin , Animals , Cicatrix/pathology , Cicatrix/physiopathology , Rats , Skin/pathology , Skin/injuries , Burns, Chemical/pathology , Male , Wound Healing/physiology
18.
Ann Med ; 56(1): 2337871, 2024 Dec.
Article En | MEDLINE | ID: mdl-38738394

Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.


Genetic Therapy , Tendon Injuries , Tissue Engineering , Wound Healing , Tendon Injuries/therapy , Tendon Injuries/physiopathology , Humans , Wound Healing/physiology , Animals , Tissue Engineering/methods , Genetic Therapy/methods , Platelet-Rich Plasma , Tendons , Stem Cell Transplantation/methods , Intercellular Signaling Peptides and Proteins/therapeutic use , Intercellular Signaling Peptides and Proteins/metabolism
19.
Swiss Dent J ; 134(1): 144-157, 2024 Apr 05.
Article De | MEDLINE | ID: mdl-38741457

The clinical impact of platelet-rich fibrin (PRF) and plasma rich in growth factors (PRGF®) respectively has been studied extensively in the field of regenerative dentistry during the last two decades. Literature supports evidence for additional benefits in regenerative periodontal therapy, alveolar ridge preservation, management of extraction sockets, implantology including guided bone regeneration as well as defect management in oral surgery. Regarding gingival wound healing and soft tissue regeneration, there is sufficient evidence for their positive effects which have been confirmed in several systematic reviews. The effects seem less clear in conjunction with osseous regenerative treatments, where the inter-study heterogenity in terms of different PRF-protocols, indications and application forms might hinder a systematic comparison. Nevertheless there is evidence that PRF might have beneficial effects on hard-tissue or its regeneration respectively.For being able to facilitate conclusions in systematic reviews, precise reporting of the used PRF-protocols is mandatory for future (clinical) research in the field of autologous platelet concentrates.


Platelet-Rich Fibrin , Platelet-Rich Plasma , Humans , Guided Tissue Regeneration, Periodontal/methods , Blood Platelets/physiology , Bone Regeneration/physiology , Bone Regeneration/drug effects , Wound Healing/physiology , Wound Healing/drug effects , Regenerative Medicine/methods
20.
Swiss Dent J ; 134(1): 130-143, 2024 Apr 05.
Article De | MEDLINE | ID: mdl-38741455

The use of autologous platelet concentrates (APC) such as platelet-rich fibrin (PRF) and/or plasma rich in growth factors (PRGF®) is considered an established treatment modality in re-generative dentistry. The possibility of delivering growth factors over aclinically relevant time of several days seems particularly interesting in the context of wound healing.The growing body of evidence in the field of APC requires a continuous and actual knowledge of the literature for being able to make evidence-based treatment recommendations with a realistic assessment of possible advantages of this technology.PR(G)F can be applied in solid or liquid form, pure or in combination with other biomaterials. Both appear to be reasonable, depending on the clinical indication and/or desired treatment outcomes. Because of the many different factors that can affect the PR(G)F products final characteristics, a basic understanding of these parameters is desirable for choosing the most suitable product and/or optimizing its clinical application. This review aims to provide an over-view of relevant theoretical, practical, legal and biologic aspects of APCs.


Platelet-Rich Fibrin , Humans , Platelet-Rich Plasma , Blood Platelets/physiology , Intercellular Signaling Peptides and Proteins/therapeutic use , Wound Healing/physiology
...