Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.532
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 459, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230729

ABSTRACT

The recombinant adeno-associated virus (rAAV) vector is among the most promising viral vectors in gene therapy. However, the limited manufacturing capacity in human embryonic kidney (HEK) cells is a barrier to rAAV commercialization. We investigated the impact of endoplasmic reticulum (ER) protein processing and apoptotic genes on transient rAAV production in HEK293 cells. We selected four candidate genes based on prior transcriptomic studies: XBP1, GADD34 / PPP1R15A, HSPA6, and BCL2. These genes were stably integrated into HEK293 host cells. Traditional triple-plasmid transient transfection was used to assess the vector production capability and the quality of both the overexpressed stable pools and the parental cells. We show that the overexpression of XBP1, HSPA6, and GADD34 increases rAAV productivity by up to 100% and increases specific rAAV productivity by up to 78% in HEK293T cells. Additionally, more prominent improvement associated with ER protein processing gene overexpression was observed when parental cell productivity was high, but no substantial variation was detected under low-producing conditions. We also confirmed genome titer improvement across different serotypes (AAV2 and AAV8) and different cell lines (HEK293T and HEK293); however, the extent of improvement may vary. This study unveiled the importance of ER protein processing pathways in viral particle synthesis, capsid assembly, and vector production. KEY POINTS: • Upregulation of endoplasmic reticulum (ER) protein processing (XBP1, HSPA6, and GADD34) leads to a maximum 100% increase in rAAV productivity and a maximum 78% boost in specific rAAV productivity in HEK293T cells • The enhancement in productivity can be validated across different HEK293 cell lines and can be used for the production of various AAV serotypes, although the extent of the enhancement might vary slightly • The more pronounced improvements linked to overexpressing ER protein processing genes were observed when parental cell productivity was high, with minimal variation noted under low-producing conditions.


Subject(s)
Dependovirus , Endoplasmic Reticulum , Genetic Vectors , X-Box Binding Protein 1 , Humans , HEK293 Cells , Dependovirus/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Endoplasmic Reticulum/metabolism , Genetic Vectors/genetics , Gene Expression , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Capsid/metabolism
2.
Cells ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273011

ABSTRACT

Microcystin-LR (MC-LR), a cyanobacterial toxin, is a potent carcinogen implicated in colorectal cancer (CRC) progression. However, its impact on the tumor microenvironment (TME) during CRC development remains poorly understood. This study investigates the interaction between tumor cells and macrophages mediated by MC-LR within the TME and its influence on CRC progression. CRC mice exposed to MC-LR demonstrated a significant transformation from adenoma to adenocarcinoma. The infiltration of macrophages increased, and the IRE1α/XBP1 pathway was activated in CRC cells after MC-LR exposure, influencing macrophage M2 polarization under co-culture conditions. Additionally, hexokinase 2 (HK2), a downstream target of the IRE1α/XBP1 pathway, was identified, regulating glycolysis and lactate production. The MC-LR-induced IRE1α/XBP1/HK2 axis enhanced lactate production in CRC cells, promoting M2 macrophage polarization. Furthermore, co-culturing MC-LR-exposed CRC cells with macrophages, along with the IRE1α/XBP1 pathway inhibitor 4µ8C and the hexokinase inhibitor 2-DG, suppressed M2 macrophage-induced CRC cell migration, clonogenicity, and M2 macrophage polarization. This study elucidates the mechanism by which MC-LR-mediated interactions through the IRE1α/XBP1 pathway promote CRC progression, highlighting potential therapeutic targets.


Subject(s)
Colorectal Neoplasms , Endoribonucleases , Macrophages , Microcystins , Signal Transduction , Animals , Humans , Mice , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Disease Progression , Endoribonucleases/metabolism , Hexokinase/metabolism , Macrophages/metabolism , Macrophages/drug effects , Marine Toxins , Microcystins/pharmacology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , X-Box Binding Protein 1/metabolism
3.
Phytomedicine ; 134: 156017, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39265443

ABSTRACT

BACKGROUND: Currently, there is a lack of validated pharmacological interventions for non-alcoholic fatty liver disease (NAFLD), which is characterized by the accumulation of hepatic triglyceride. Zhimu-Huangbai (ZH) herb-pair is a traditional Chinese medicine that regulates glucose and lipid metabolism disorders. However, the precise mechanisms underlying the preventive effects of hepatic triglyceride induced by high-fat diet (HFD) remain elusive. PURPOSE: The study aimed to examine the impact of ZH herb-pair on NAFLD in mice and explore the underlying mechanisms, particularly its effects on endoplasmic reticulum (ER) stress and lipid metabolism. METHODS: NAFLD was induced in mice using HFD, and the treated mice were orally administered ZH, metformin (Glucophage) or lovastatin. The lipid metabolism factors, ER stress markers, and the unfolded protein response (UPR) branch factors were measured using immunohistochemistry, western blotting or qRT-PCR. Co-Immunoprecipitation (CoIP) was performed to reveal the connection between SCAP and SREBP-1c. Tunicamycin (TM) and plasmid delivery were used to induce acute ER stress or crease XBP1 gain function models. The main compounds in ZH binding to IRE1α protein were studied by molecular docking and cellular thermal shift assay (CETSA). RESULTS: Treatment with ZH significantly ameliorated hepatic steatosis and reduced lipid synthesis process mainly inhibiting the expression of mature active form of SREBP-1c through relieving ER stress. The expression of IRE1α and XBP1s was inhibited after treatment with ZH. In addition, ZH improved the fatty liver phenotype caused by XBP1 overexpression via decreasing srebp1c transcription. In vitro experimental results suggested that the main compounds in ZH decreased cellular TG contents. Mechanistically, ZH targeted IRE1α and inhibited XBP1s mRNA expression to relieve ER stress and inhibit SREBP-1c production. CONCLUSIONS: ZH herb-pair can protect against NAFLD by reducing the expression of SREBP-1c, in part, via regulating IRE1α/XBP1s pathway.


Subject(s)
Drugs, Chinese Herbal , Endoplasmic Reticulum Stress , Endoribonucleases , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Protein Serine-Threonine Kinases , Sterol Regulatory Element Binding Protein 1 , X-Box Binding Protein 1 , Animals , Sterol Regulatory Element Binding Protein 1/metabolism , Protein Serine-Threonine Kinases/metabolism , X-Box Binding Protein 1/metabolism , Drugs, Chinese Herbal/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Endoplasmic Reticulum Stress/drug effects , Male , Endoribonucleases/metabolism , Diet, High-Fat/adverse effects , Lipid Metabolism/drug effects , Mice , Humans , Liver/drug effects , Liver/metabolism , Triglycerides/metabolism , Lovastatin/pharmacology , Unfolded Protein Response/drug effects , Metformin/pharmacology , Signal Transduction/drug effects
4.
Aging (Albany NY) ; 16(16): 12063-12072, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39189933

ABSTRACT

OBJECTIVE: To explore the related research of PD-L1 in IRE1α/XBP-1 signaling pathway on non-small cell lung cancer. METHODS: The tumor model of mice was established and divided into four groups; after successful modeling, the tumor tissue of mice was removed for subsequent experiments; the bought THP-1 cells were grouped into four different groups, a control group, nivolumab intervention group, IRE1α inhibition group, and nivolumab intervention + IRE1α inhibition group; after co-culture of the four groups of THP-1 cells with A549, THP-1 cell protein levels in the four groups were analyzed using Western blot; A549 cell migration, invasion and proliferation were assessed using the scratch assay, Transwell method, monoclonal experiment and CCK-8 method. RESULTS: In vivo studies indicated that the stimulation of nivolumab could strongly check the progress of NSCLC (non-small cell lung); two groups treated with 4 µ8c showed obvious effects on check point of NSCLC; In vitro experiments including Western-blot experiment, Scratch experiment, Transwell method, Monoclonal experiment and CCK-8 experiment suggest that nivolumab could inhibit migration, invasion and proliferation of NSCLC tumor cells and it. CONCLUSION: PD-L1 is capable of controlling metastatic and proliferative potential of NSCLC by the way of the modification of IRE1α/XBP-1 signaling in tumor-associated macrophages.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Endoribonucleases , Lung Neoplasms , Protein Serine-Threonine Kinases , Signal Transduction , Tumor-Associated Macrophages , X-Box Binding Protein 1 , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Humans , Endoribonucleases/metabolism , Endoribonucleases/genetics , Cell Proliferation/drug effects , Mice , Tumor-Associated Macrophages/metabolism , Cell Movement/drug effects , A549 Cells , THP-1 Cells
5.
Front Immunol ; 15: 1358462, 2024.
Article in English | MEDLINE | ID: mdl-39100663

ABSTRACT

The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-ß expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-ß induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-ß, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-ß mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-ß via mitochondrial dsDNA release.


Subject(s)
Cytosol , Endoplasmic Reticulum Stress , Interferon-beta , Membrane Proteins , Nucleotidyltransferases , Unfolded Protein Response , Humans , Animals , Mice , Nucleotidyltransferases/metabolism , Cytosol/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Interferon-beta/metabolism , DNA/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , eIF-2 Kinase/metabolism , Endoribonucleases/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Thapsigargin/pharmacology , Reactive Oxygen Species/metabolism , Transcriptional Activation , DNA, Mitochondrial/metabolism
6.
Nutrients ; 16(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125345

ABSTRACT

In this study, we undertook an extensive investigation to determine how CypB PPIase activity affects preadipocyte differentiation and lipid metabolism. Our findings revealed that inhibition of CypB's PPIase activity suppressed the expression of crucial proteins involved in adipocyte differentiation and induced changes in proteins regulating the cell cycle. Furthermore, we clarified the impact of CypB's PPIase activity on lipid metabolism via the AKT/mTOR signaling pathway. Additionally, we demonstrated the involvement of CypB's PPIase activity in lipid metabolism through the XBP1s pathway. These discoveries offer invaluable insights for devising innovative therapeutic strategies aimed at treating and averting obesity and its related health complications. Targeting CypB's PPIase activity may emerge as a promising avenue for addressing obesity-related conditions. Furthermore, our research opens up opportunities for creating new therapeutic strategies by enhancing our comprehension of the processes involved in cellular endoplasmic reticulum stress.


Subject(s)
3T3-L1 Cells , Adipocytes , Cell Differentiation , Lipid Metabolism , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , X-Box Binding Protein 1 , X-Box Binding Protein 1/metabolism , Animals , Mice , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Adipocytes/metabolism , Adipogenesis , Endoplasmic Reticulum Stress/physiology
7.
Dev Cell ; 59(16): 2035-2052.e10, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39094564

ABSTRACT

Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1's phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.


Subject(s)
Endoplasmic Reticulum , Mechanistic Target of Rapamycin Complex 1 , Protein Folding , X-Box Binding Protein 1 , Animals , Endoplasmic Reticulum/metabolism , Humans , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Signal Transduction , Membrane Proteins/metabolism , Membrane Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Lysosomes/metabolism , Endoplasmic Reticulum Stress , Sestrins/metabolism , Sestrins/genetics , Phosphorylation , Proteostasis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
8.
Int J Biol Sci ; 20(10): 3823-3841, 2024.
Article in English | MEDLINE | ID: mdl-39113706

ABSTRACT

Macrophages show high plasticity and play a vital role in the progression of metabolic dysfunction-associated steatohepatitis (MASH). X-box binding protein 1 (XBP1), a key sensor of the unfolded protein response, can modulate macrophage-mediated pro-inflammatory responses in the pathogenesis of MASH. However, how XBP1 influences macrophage plasticity and promotes MASH progression remains unclear. Herein, we formulated an Xbp1 siRNA delivery system based on folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles (FT@XBP1) to explore the precise role of macrophage-specific Xbp1 deficiency in the progression of MASH. FT@XBP1 was specifically internalized into hepatic macrophages and subsequently inhibited the expression of spliced XBP1 both in vitro and in vivo. It promoted M1-phenotype macrophage repolarization to M2 macrophages, reduced the release of pro-inflammatory factors, and alleviated hepatic steatosis, liver injury, and fibrosis in mice with fat-, fructose- and cholesterol-rich diet-induced MASH. Mechanistically, FT@XBP1 promoted macrophage polarization toward the M2 phenotype and enhanced the release of exosomes that could inhibit the activation of hepatic stellate cells. A promising macrophage-targeted siRNA delivery system was revealed to pave a promising strategy in the treatment of MASH.


Subject(s)
Folic Acid , Macrophages , RNA, Small Interfering , X-Box Binding Protein 1 , Animals , Male , Mice , Endoplasmic Reticulum Stress/drug effects , Fatty Liver/metabolism , Folic Acid/chemistry , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Nanoparticles/chemistry , X-Box Binding Protein 1/metabolism
9.
Cells ; 13(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39120278

ABSTRACT

Sex differences may play a role in the etiopathogenesis and severity of metabolic dysfunction-associated steatotic liver disease (MASLD), a disorder characterized by excessive fat accumulation associated with increased inflammation and oxidative stress. We previously observed the development of steatosis specifically in female rats fed a high-fat diet enriched with liquid fructose (HFHFr) for 12 weeks. The aim of this study was to better characterize the observed sex differences by focusing on the antioxidant and cytoprotective pathways related to the KEAP1/NRF2 axis. The KEAP1/NRF2 signaling pathway, autophagy process (LC3B and LAMP2), and endoplasmic reticulum stress response (XBP1) were analyzed in liver homogenates in male and female rats that were fed a 12-week HFHFr diet. In females, the HFHFr diet resulted in the initial activation of the KEAP1/NRF2 pathway, which was not followed by the modulation of downstream molecular targets; this was possibly due to the increase in KEAP1 levels preventing the nuclear translocation of NRF2 despite its cytosolic increase. Interestingly, while in both sexes the HFHFr diet resulted in an increase in the levels of LC3BII/LC3BI, a marker of autophagosome formation, only males showed a significant upregulation of LAMP2 and XBP1s; this did not occur in females, suggesting impaired autophagic flux in this sex. Overall, our results suggest that males are characterized by a greater ability to cope with an HFHFr metabolic stimulus mainly through an autophagic-mediated proteostatic process while in females, this is impaired. This might depend at least in part upon the fine modulation of the cytoprotective and antioxidant KEAP1/NRF2 pathway resulting in sex differences in the occurrence and severity of MASLD. These results should be considered to design effective therapeutics for MASLD.


Subject(s)
Diet, High-Fat , Fructose , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Sex Characteristics , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Female , Male , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Rats , Kelch-Like ECH-Associated Protein 1/metabolism , Autophagy/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Liver/drug effects , Endoplasmic Reticulum Stress/drug effects , Rats, Wistar , Oxidative Stress/drug effects , Microtubule-Associated Proteins
10.
Arch Biochem Biophys ; 759: 110104, 2024 09.
Article in English | MEDLINE | ID: mdl-39059599

ABSTRACT

BACKGROUND: Endoplasmic reticulum stress and synthesis of serine are essential for tumor growth, but the mechanism of their interaction is not clarified yet. The overarching goal of this work was to investigate the impact of ERN1 (endoplasmic reticulum to nucleus signaling 1) inhibition on the expression of serine synthesis genes in U87MG glioblastoma cells concerning the suppression of cell proliferation. METHODS: Wild type U87MG glioblastoma cells and their clones with overexpression of transgenes dnERN1 (without cytoplasmic domain of ERN1) and dnrERN1 (with mutation in endoribonuclease of ERN1), and empty vector (as control) were used. The silencing of ERN1 and XBP1 was also used to inhibition of ERN1 and its function. Gene expression was measured by qPCR. RESULTS: We show that the expression of PSAT1 and several other related to serine synthesis genes is suppressed in cells with ERN1 inhibition by dissimilar mechanisms: PHGDH gene through ERN1 protein kinase, because its expression was resistant to inhibition of ERN1 endoribonuclease, but ATF4 gene via endoribonuclease of ERN1. However, in the control of PSAT1 and PSPH genes both enzymatic activities of ERN1 signaling protein are involved. At the same time, ERN1 knockdown strongly increased SHMT1 expression, which controls serine metabolism and enhances the proliferation and invasiveness of glioma cells. The level of microRNAs, which have binding sites in PSAT1, SHMT1, and PSPH mRNAs, was also changed in cells harboring dnERN1 transgene. Inhibition of ERN1 suppressed cell proliferation and enzymatic activity of PHGDH, a rate-limiting enzyme for serine synthesis. CONCLUSION: Changes in the expression of phosphoserine aminotransferase 1 and other genes related to serine synthesis are mediated by diverse ERN1-dependent mechanisms and contributed to suppressed proliferation and enhanced invasiveness of ERN1 knockdown glioblastoma cell.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma , Protein Serine-Threonine Kinases , Transaminases , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Transaminases/genetics , Transaminases/metabolism , Endoribonucleases/metabolism , Endoribonucleases/genetics , Gene Knockdown Techniques , Serine/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
11.
Immun Inflamm Dis ; 12(7): e1301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967361

ABSTRACT

OBJECTIVE: Acute pancreatitis (AP) stands as a frequent cause for clinical emergency hospital admissions. The X-box binding protein 1 (XBP1) was found to be implicated in pancreatic acinar cell apoptosis. The objective is to unveil the potential mechanisms governed by XBP1 and SIRT6 in the context of AP. METHODS: Caerulein-treated human pancreatic duct epithelial (HPDE) cells to establish an in vitro research model. The levels and regulatory role of SIRT6 in the treated cells were evaluated, including its effects on inflammatory responses, oxidative stress, apoptosis, and endoplasmic reticulum stress. The relationship between XBP1 and SIRT6 was explored by luciferase and ChIP experiments. Furthermore, the effect of XBP1 overexpression on the regulatory function of SIRT6 on cells was evaluated. RESULTS: Caerulein promoted the decrease of SIRT6 and the increase of XBP1 in HPDE cells. Overexpression of SIRT6 slowed down the secretion of inflammatory factors, oxidative stress, apoptosis level, and endoplasmic reticulum stress in HPDE cells. However, XBP1 negatively regulated SIRT6, and XBP1 overexpression partially reversed the regulation of SIRT6 on the above aspects. CONCLUSION: Our study illuminates the role of XBP1 in downregulating SIRT6 in HPDE cells, thereby promoting cellular injury. Inhibiting XBP1 or augmenting SIRT6 levels holds promise in preserving cell function and represents a potential therapeutic avenue in the management of AP.


Subject(s)
Apoptosis , Down-Regulation , Epithelial Cells , Pancreatic Ducts , Pancreatitis , Sirtuins , X-Box Binding Protein 1 , Humans , Sirtuins/metabolism , Sirtuins/genetics , Epithelial Cells/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Endoplasmic Reticulum Stress , Oxidative Stress , Cell Line , Ceruletide/toxicity
12.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062922

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder which affects dopaminergic neurons of the midbrain. Accumulation of α-synuclein or exposure to neurotoxins like 6-hydroxydopamine (6-OHDA) induces endoplasmic reticulum (ER) stress along with the unfolded protein response (UPR), which executes apoptosis via activation of PERK/CHOP or IRE1/JNK signaling. The present study aimed to determine which of these pathways is a major contributor to neurodegeneration in an 6-OHDA-induced in vitro model of PD. For this purpose, we have applied pharmacological PERK and JNK inhibitors (AMG44 and JNK V) in differentiated SH-SY5Y cells exposed to 6-OHDA. Inhibition of PERK and JNK significantly decreased genotoxicity and improved mitochondrial respiration, but only JNK inhibition significantly increased cell viability. Gene expression analysis revealed that the effect of JNK inhibition was dependent on a decrease in MAPK10 and XBP1 mRNA levels, whereas inhibition of either PERK or JNK significantly reduced the expression of DDIT3 mRNA. Western blot has shown that JNK inhibition strongly induced the XBP1s protein, and inhibition of each pathway attenuated the phosphorylation of eIF2α and JNK, as well as the expression of CHOP. Collectively, our data suggests that targeting the IRE1/JNK pathway of the UPR is a more effective option for PD treatment as it simultaneously affects more than one pro-apoptotic pathway.


Subject(s)
Endoplasmic Reticulum Stress , Endoribonucleases , Oxidopamine , Protein Serine-Threonine Kinases , Transcription Factor CHOP , Unfolded Protein Response , eIF-2 Kinase , Humans , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , eIF-2 Kinase/metabolism , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 10/genetics , Oxidopamine/pharmacology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Unfolded Protein Response/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
13.
Int J Chron Obstruct Pulmon Dis ; 19: 1635-1647, 2024.
Article in English | MEDLINE | ID: mdl-39045541

ABSTRACT

Background: Chronic obstructive pulmonary disease (COPD) is caused by exposure to noxious external particles, air pollution, and the inhalation of cigarette smoke. Airway mucus hypersecretion particularly mucin5AC (MUC5AC), is a crucial pathological feature of COPD and is associated with its initiation and progression. In this study, we aimed to investigate the effects of cigarette smoke extract (CSE) on MUC5AC expression, particularly the mechanisms by which reactive oxygen species (ROS) induce MUC5AC expression. Methods: The effects of CSE on the expression of MUC5AC and mucin5B (MUC5B) were investigated in vitro in Calu-3 cells. MUC5AC and MUC5B expression levels were measured using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA). Total cellular levels of ROS and Ca2+ were determined using DCFH-DA and Fluo-4 AM. Subsequently, the expression levels of IP3R, IRE1α, p-IRE1α and XBP1s were measured by Western blotting. Gene silencing was achieved by using small-interfering RNAs. Results: Our findings revealed that exposure to CSE increased MUC5AC levels and upregulated ROS, IP3R/Ca2+ and unfolded protein response (UPR)-associated factors. In addition, knockdown of IP3R using siRNA decreased CSE-induced Ca2+ production, UPR-associated factors, and MUC5AC expression. Furthermore, 10 mM N-acetyl-l-cysteine (NAC) treatment suppressed the effects of CSE, including ROS generation, IP3R/ Ca2+, UPR activation, and MUC5AC overexpression. Conclusion: Our results suggest that ROS regulates CSE-induced UPR and MUC5AC overexpression through IP3R/ Ca2+ signaling. Additionally, we identified NAC as a promising therapeutic agent for mitigating CSE-induced MUC5AC overexpression.


Subject(s)
Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors , Mucin 5AC , Mucin-5B , Reactive Oxygen Species , Smoke , Mucin 5AC/metabolism , Mucin 5AC/genetics , Humans , Reactive Oxygen Species/metabolism , Smoke/adverse effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mucin-5B/metabolism , Mucin-5B/genetics , Calcium Signaling/drug effects , Up-Regulation , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Line, Tumor , Nicotiana/adverse effects , RNA Interference , Endoplasmic Reticulum Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Acetylcysteine/pharmacology , Cigarette Smoking/adverse effects , Calcium/metabolism , X-Box Binding Protein 1 , Endoribonucleases
14.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949019

ABSTRACT

Type 3 innate lymphoid cells (ILC3s) are key regulators of intestinal homeostasis and epithelial barrier integrity. In this issue of the JCI, Cao and colleagues found that a sensor of endoplasmic reticulum (ER) stress, the inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1) pathway, fine-tuned the functions of ILC3s. Activation of IRE1α and XBP1 in ILC3s limited intestinal inflammation in mice and correlated with the efficacy of ustekinumab, an IL-12/IL-23 blocker, in patients with Crohn's disease. These results advance our understanding in the use of ILCs as biomarkers not only to predict disease outcomes but also to indicate the response to biologicals in patients with inflammatory bowel disease.


Subject(s)
Endoplasmic Reticulum Stress , Endoribonucleases , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/immunology , Animals , Endoribonucleases/metabolism , Endoribonucleases/genetics , Endoribonucleases/immunology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Humans , Mice , Endoplasmic Reticulum Stress/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Signal Transduction/immunology , Crohn Disease/immunology , Crohn Disease/pathology , Crohn Disease/metabolism , Immunity, Innate , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology
15.
Sci Total Environ ; 949: 175040, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39079638

ABSTRACT

Trichloromethane (TCM), a commonly recognized disinfection by-product formed during the chlorination of water, has been associated with the onset of colorectal cancer (CRC) in humans. Despite this, the impact of TCM on the progression of CRC remains uncertain. In this investigation, it was observed that exposure to TCM could augment the migratory capabilities of CRC cells and facilitate the advancement of colorectal tumors. To delve deeper into the mechanism responsible for TCM-induced CRC progression, we performed RNA-Seq analysis at cellular and animal levels after TCM exposure. Both the KEGG and GO enrichment analyses indicated the activation of endoplasmic reticulum stress (ERS) and the regulation of the cytoskeleton. Subsequently, we confirmed the activation of the IRE1α/XBP1 pathway of ERS through western blot and RT-qPCR. Additionally, we observed the aggregation of cytoskeletal proteins F-actin and ß-tubulin at the cell membrane periphery and the development of cellular pseudopods using immunofluorescence following exposure to TCM in vitro. The downregulation of IRE1α and XBP1 through siRNA interference resulted in the disruption of cell cytoskeleton rearrangement and impaired cell migration capability. Conversely, treatment with TCM mitigated this inhibitory effect. Moreover, chronic exposure to low concentration of TCM also triggered CRC cell migration by causing cytoskeletal reorganization, a process controlled by the IRE1α/XBP1 axis. Our study concludes that TCM exposure induces cell migration through the activation of ERS, which in turn regulates cytoskeleton rearrangement. This study offers novel insights into the mechanism through which TCM facilitates the progression of CRC.


Subject(s)
Chloroform , Colorectal Neoplasms , Endoplasmic Reticulum Stress , Protein Serine-Threonine Kinases , X-Box Binding Protein 1 , Animals , Humans , Mice , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Endoribonucleases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Water Pollutants, Chemical/toxicity , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Chloroform/toxicity , Drinking Water
16.
Cell Commun Signal ; 22(1): 376, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39061070

ABSTRACT

Acute kidney injury (AKI) is closely related to lysosomal dysfunction and ferroptosis in renal tubular epithelial cells (TECs), for which effective treatments are urgently needed. Although selenium nanoparticles (SeNPs) have emerged as promising candidates for AKI therapy, their underlying mechanisms have not been fully elucidated. Here, we investigated the effect of SeNPs on hypoxia/reoxygenation (H/R)-induced ferroptosis and lysosomal dysfunction in TECs in vitro and evaluated their efficacy in a murine model of ischemia/reperfusion (I/R)-AKI. We observed that H/R-induced ferroptosis was accompanied by lysosomal Fe2+ accumulation and dysfunction in TECs, which was ameliorated by SeNPs administration. Furthermore, SeNPs protected C57BL/6 mice against I/R-induced inflammation and ferroptosis. Mechanistically, we found that lysosomal Fe2+ accumulation and ferroptosis were associated with the excessive activation of NCOA4-mediated ferritinophagy, a process mitigated by SeNPs through the upregulation of X-box binding protein 1 (XBP1). Downregulation of XBP1 promoted ferritinophagy and partially counteracted the protective effects of SeNPs on ferroptosis inhibition in TECs. Overall, our findings revealed a novel role for SeNPs in modulating ferritinophagy, thereby improving lysosomal function and attenuating ferroptosis of TECs in I/R-AKI. These results provide evidence for the potential application of SeNPs as therapeutic agents for the prevention and treatment of AKI.


Subject(s)
Ferroptosis , Nanoparticles , Reperfusion Injury , Selenium , X-Box Binding Protein 1 , Animals , Humans , Male , Mice , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Autophagy/drug effects , Ferritins/metabolism , Ferroptosis/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Mice, Inbred C57BL , Nanoparticles/chemistry , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Selenium/pharmacology , Selenium/administration & dosage , Signal Transduction/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics
17.
Br J Cancer ; 131(5): 918-930, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969867

ABSTRACT

BACKGROUND: Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies. METHODS: We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations. RESULTS: Carfilzomib, via proteasome ß5 + ß2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits ß5 + ß1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2. CONCLUSION: Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2 , Bortezomib , Drug Synergism , HIV Protease Inhibitors , Lopinavir , Nelfinavir , Oligopeptides , Triple Negative Breast Neoplasms , Unfolded Protein Response , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Oligopeptides/pharmacology , HIV Protease Inhibitors/pharmacology , Nelfinavir/pharmacology , Cell Line, Tumor , Lopinavir/pharmacology , Female , Bortezomib/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Unfolded Protein Response/drug effects , Proteasome Inhibitors/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Endoplasmic Reticulum Stress/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects
18.
Genes Immun ; 25(4): 324-335, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060428

ABSTRACT

This study aimed to analyze single-cell sequencing data to investigate immune cell interactions in ankylosing spondylitis (AS) and ulcerative colitis (UC). Vertebral bone marrow blood was collected from three AS patients for 10X single-cell sequencing. Analysis of single-cell data revealed distinct cell types in AS and UC patients. Cells significantly co-expressing immune cells (P < 0.05) were subjected to communication analysis. Overlapping genes of these co-expressing immune cells were subjected to GO and KEGG analyses. Key genes were identified using STRING and Cytoscape to assess their correlation with immune cell expression. The results showed the significance of neutrophils in both diseases (P < 0.01), with notable interactions identified through communication analysis. XBP1 emerged as a Hub gene for both diseases, with AUC values of 0.760 for AS and 0.933 for UC. Immunohistochemistry verified that the expression of XBP1 was significantly lower in the AS group and significantly greater in the UC group than in the control group (P < 0.01). This finding highlights the critical role of neutrophils in both AS and UC, suggesting the presence of shared immune response elements. The identification of XBP1 as a potential therapeutic target offers promising intervention avenues for both diseases.


Subject(s)
Colitis, Ulcerative , Neutrophils , Spondylitis, Ankylosing , X-Box Binding Protein 1 , Humans , Spondylitis, Ankylosing/genetics , Spondylitis, Ankylosing/immunology , Neutrophils/immunology , Neutrophils/metabolism , Colitis, Ulcerative/immunology , Colitis, Ulcerative/genetics , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism , Male , Adult , Female , Single-Cell Analysis
19.
CNS Neurosci Ther ; 30(7): e14891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39056330

ABSTRACT

BACKGROUND: The prevalence of dementia around the world is increasing, and these patients are more likely to have cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorders over their lifetime. Previous studies have proven that melatonin could improve memory loss, but its specific mechanism is still confused. METHODS: In this study, we used in vivo and in vitro models to examine the neuroprotective effect of melatonin on scopolamine (SCOP)-induced cognitive dysfunction. The behavioral tests were performed. 18F-FDG PET imaging was used to assess the metabolism of the brain. Protein expressions were determined through kit detection, Western blot, and immunofluorescence. Nissl staining was conducted to reflect neurodegeneration. MTT assay and RNAi transfection were applied to perform the in vitro experiments. RESULTS: We found that melatonin could ameliorate SCOP-induced cognitive dysfunction and relieve anxious-like behaviors or HT22 cell damage. 18F-FDG PET-CT results showed that melatonin could improve cerebral glucose uptake in SCOP-treated mice. Melatonin restored the cholinergic function, increased the expressions of neurotrophic factors, and ameliorated oxidative stress in the brain of SCOP-treated mice. In addition, melatonin upregulated the expression of silent information regulator 1 (SIRT1), which further relieved endoplasmic reticulum (ER) stress by decreasing the expression of phosphorylate inositol-requiring enzyme (p-IRE1α) and its downstream, X-box binding protein 1 (XBP1). CONCLUSIONS: These results indicated that melatonin could ameliorate SCOP-induced cognitive dysfunction through the SIRT1/IRE1α/XBP1 pathway. SIRT1 might be the critical target of melatonin in the treatment of dementia.


Subject(s)
Cognitive Dysfunction , Melatonin , Scopolamine , Signal Transduction , Sirtuin 1 , X-Box Binding Protein 1 , Melatonin/pharmacology , Melatonin/therapeutic use , Animals , Sirtuin 1/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , X-Box Binding Protein 1/metabolism , Mice , Male , Signal Transduction/drug effects , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Maze Learning/drug effects
20.
EMBO Rep ; 25(8): 3627-3650, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38982191

ABSTRACT

Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.


Subject(s)
Cell Fusion , Endoribonucleases , Muscle Development , Muscle, Skeletal , Myoblasts , Protein Serine-Threonine Kinases , Signal Transduction , X-Box Binding Protein 1 , Animals , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Myoblasts/metabolism , Myoblasts/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Muscle Development/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Satellite Cells, Skeletal Muscle/metabolism , Regeneration/genetics , Cell Differentiation/genetics , Gene Expression Regulation , Membrane Proteins , Muscle Proteins
SELECTION OF CITATIONS
SEARCH DETAIL