Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 328
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2402514121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959034

ABSTRACT

Leaves of flowering plants are characterized by diverse venation patterns. Patterning begins with the selection of vein-forming procambial initial cells from within the ground meristem of a developing leaf, a process which is considered to be auxin-dependent, and continues until veins are anatomically differentiated with functional xylem and phloem. At present, the mechanisms responsible for leaf venation patterning are primarily characterized in the model eudicot Arabidopsis thaliana which displays a reticulate venation network. However, evidence suggests that vein development may proceed via a different mechanism in monocot leaves where venation patterning is parallel. Here, we employed Molecular Cartography, a multiplexed in situ hybridization technique, to analyze the spatiotemporal localization of a subset of auxin-related genes and candidate regulators of vein patterning in maize leaves. We show how different combinations of auxin influx and efflux transporters are recruited during leaf and vein specification and how major and minor vein ranks develop with distinct identities. The localization of the procambial marker PIN1a and the spatial arrangement of procambial initial cells that give rise to major and minor vein ranks further suggests that vein spacing is prepatterned across the medio-lateral leaf axis prior to accumulation of the PIN1a auxin transporter. In contrast, patterning in the adaxial-abaxial axis occurs progressively, with markers of xylem and phloem gradually becoming polarized as differentiation proceeds. Collectively, our data suggest that both lineage- and position-based mechanisms may underpin vein patterning in maize leaves.


Subject(s)
In Situ Hybridization , Indoleacetic Acids , Plant Leaves , Zea mays , Zea mays/genetics , Zea mays/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Xylem/growth & development , Xylem/cytology , Xylem/genetics
2.
New Phytol ; 243(3): 851-865, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38890801

ABSTRACT

Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.


Subject(s)
Cambium , Stem Cells , Xylem , Cambium/cytology , Cambium/growth & development , Cambium/physiology , Stem Cells/cytology , Xylem/cytology , Phloem/cytology , Plant Growth Regulators/metabolism , Signal Transduction , Plant Vascular Bundle/growth & development , Plant Vascular Bundle/cytology , Meristem/cytology , Meristem/growth & development
3.
EMBO J ; 43(9): 1822-1842, 2024 May.
Article in English | MEDLINE | ID: mdl-38565947

ABSTRACT

A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , Cell Division , Gene Expression Regulation, Plant , MicroRNAs , Plant Roots , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/cytology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Cell Division/genetics , Plant Roots/cytology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Differentiation , Xylem/cytology , Xylem/metabolism , Xylem/growth & development , Xylem/genetics
4.
Plant Cell Environ ; 45(1): 55-68, 2022 01.
Article in English | MEDLINE | ID: mdl-34783044

ABSTRACT

Xylem conductive capacity is a key determinant of plant hydraulic function and intimately linked to photosynthesis and productivity, but can be impeded by temporary or permanent conduit dysfunctions. Here we show that persistent xylem dysfunctions in unstressed plants are frequent in Alpine dwarf shrubs and occur in various but species-specific cross-sectional patterns. Combined synchrotron micro-computed tomography (micro-CT) imaging, xylem staining, and flow measurements in saturated samples of six widespread Ericaceae species evidence a high proportion (19%-50%) of hydraulically nonfunctional xylem areas in the absence of drought stress, with regular distribution of dysfunctions between or within growth rings. Dysfunctions were only partly reversible and reduced the specific hydraulic conductivity to 1.38 to 3.57 ×10-4 m2 s-1 MPa-1 . Decommission of inner growth rings was clearly related to stem age and a higher vulnerability to cavitation of older rings, while the high proportion of nonfunctional conduits in each annual ring needs further investigations. The lower the xylem fraction contributing to the transport function, the higher was the hydraulic efficiency of conducting xylem areas. Improved understanding of the functional lifespan of xylem elements and the prevalence and nature of dysfunctions is critical to correctly assess structure-function relationships and whole-plant hydraulic strategies.


Subject(s)
Ericaceae/physiology , Xylem/physiology , Austria , Ericaceae/anatomy & histology , Ericaceae/cytology , European Alpine Region , Plant Stems/anatomy & histology , Plant Stems/cytology , Species Specificity , Synchrotrons , Time Factors , X-Ray Microtomography , Xylem/anatomy & histology , Xylem/cytology
5.
J Integr Plant Biol ; 63(11): 1906-1921, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34347368

ABSTRACT

High-throughput single-cell RNA sequencing (scRNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The scRNA-seq profiled 9,798 cells, which were grouped into 12 clusters. Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations, we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type (cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.


Subject(s)
Populus/cytology , Xylem/cytology , Cell Differentiation , Cell Wall/metabolism , Gene Expression Profiling , Genome, Plant , Populus/genetics , Populus/metabolism , Sequence Analysis, RNA , Single-Cell Analysis
6.
Cells ; 10(8)2021 08 03.
Article in English | MEDLINE | ID: mdl-34440740

ABSTRACT

Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition.


Subject(s)
Cell Wall/metabolism , Plant Proteins/metabolism , Populus/metabolism , Xylem/metabolism , Cambium/metabolism , Cell Wall/drug effects , Down-Regulation/drug effects , Ethylenes/pharmacology , Gene Regulatory Networks , Lignin/metabolism , Phloem/metabolism , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Populus/growth & development , Up-Regulation/drug effects , Wood/growth & development , Wood/metabolism , Xylem/cytology , Xylem/drug effects
7.
EMBO J ; 40(15): e107455, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34152631

ABSTRACT

Plant microRNAs (miRNAs) guide cytosolic post-transcriptional gene silencing of sequence-complementary transcripts within the producing cells, as well as in distant cells and tissues. Here, we used an artificial miRNA-based system (amiRSUL) in Arabidopsis thaliana to explore the still elusive mechanisms of inter-cellular miRNA movement via forward genetics. This screen identified many mutant alleles of HASTY (HST), the ortholog of mammalian EXPORTIN5 (XPO5) with a recently reported role in miRNA biogenesis in Arabidopsis. In both epidermis-peeling and grafting assays, amiRSUL levels were reduced much more substantially in miRNA-recipient tissues than in silencing-emitting tissues. We ascribe this effect to HST controlling cell-to-cell and phloem-mediated movement of the processed amiRSUL, in addition to regulating its biogenesis. While HST is not required for the movement of free GFP or siRNAs, its cell-autonomous expression in amiRSUL-emitting tissues suffices to restore amiRSUL movement independently of its nucleo-cytosolic shuttling activity. By contrast, HST is dispensable for the movement and activity of amiRSUL within recipient tissues. Finally, HST enables movement of endogenous miRNAs that display mostly unaltered steady-state levels in hst mutant tissues. We discuss a role for HST as a hitherto unrecognized regulator of miRNA movement in relation to its recently assigned nuclear function at the nexus of MIRNA transcription and miRNA processing.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Karyopherins/metabolism , MicroRNAs/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biological Transport/genetics , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Karyopherins/genetics , Mutation , Phloem/cytology , Phloem/genetics , Plant Cells , Plant Roots/cytology , Plant Roots/genetics , Plants, Genetically Modified , RNA Interference , RNA, Plant , Xylem/cytology , Xylem/genetics
8.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723062

ABSTRACT

Xylem patterning in the root is established through the creation of opposing gradients of miRNAs and their targets, transcripts of the HD-ZIP III family of transcriptions factors, enabled by the cell-to-cell spread of the former. The miRNAs regulating xylem patterning, miR165/6, move through plasmodesmata, but how their trafficking is regulated remains elusive. Here, we describe that simultaneous mutation of the plasma membrane- and plasmodesmata-localized receptor-like kinases (RLKs) BARELY ANY MERISTEM (BAM) 1 and 2 or expression of the geminivirus-encoded BAM1/2-interactor C4 results in higher accumulation and broader distribution of the HD-ZIP III transcripts despite normal total accumulation of miR165/6, and ultimately causes defects in xylem patterning, which depend on the function of the aforementioned miRNA targets. Taken together, our results show that BAM1 and BAM2 are redundantly required for proper xylem patterning in the Arabidopsis root, by ensuring the proper distribution and accumulation of miR165/6-targeted transcripts.


Subject(s)
Genes, Plant , Plant Development/genetics , Plant Roots/cytology , Plant Roots/genetics , Protein Serine-Threonine Kinases/genetics , Xylem/cytology , Xylem/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , Protein Serine-Threonine Kinases/metabolism
9.
Dev Cell ; 56(7): 1056-1074.e8, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33725481

ABSTRACT

The shoot apical meristem allows for reiterative formation of new aerial structures throughout the life cycle of a plant. We use single-cell RNA sequencing to define the cellular taxonomy of the Arabidopsis vegetative shoot apex at the transcriptome level. We find that the shoot apex is composed of highly heterogeneous cells, which can be partitioned into 7 broad populations with 23 transcriptionally distinct cell clusters. We delineate cell-cycle continuums and developmental trajectories of epidermal cells, vascular tissue, and leaf mesophyll cells and infer transcription factors and gene expression signatures associated with cell fate decisions. Integrative analysis of shoot and root apical cell populations further reveals common and distinct features of epidermal and vascular tissues. Our results, thus, offer a valuable resource for investigating the basic principles underlying cell division and differentiation in plants at single-cell resolution.


Subject(s)
Arabidopsis/growth & development , Plant Shoots/growth & development , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Cycle , Cell Differentiation , Gravitropism/genetics , Phloem/cytology , Plant Epidermis/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plant Shoots/cytology , Plant Shoots/genetics , Plant Shoots/metabolism , Plant Stomata/growth & development , RNA-Seq , Single-Cell Analysis , Xylem/cytology
10.
Nat Commun ; 12(1): 669, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510146

ABSTRACT

Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning.


Subject(s)
Arabidopsis/metabolism , Cell Wall/metabolism , Microtubules/metabolism , Xylem/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Hypocotyl/cytology , Hypocotyl/genetics , Hypocotyl/metabolism , Microscopy, Fluorescence/methods , Plants, Genetically Modified , Single-Cell Analysis/methods , Time-Lapse Imaging/methods , Xylem/cytology , Xylem/genetics
11.
Plant Cell Rep ; 40(1): 127-142, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33068174

ABSTRACT

KEY MESSAGE: The HbCAld5H1 gene cloned from Hevea brasiliensis regulates the cambial activity, xylem differentiation, syringyl-guaiacyl ratio, secondary wall structure, lignification pattern and xylan distribution in xylem fibres of transgenic tobacco plants. Molecular characterization of lignin biosynthesis gene coniferaldehyde-5-hydroxylase (CAld5H) from Hevea brasiliensis and its functional validation was performed. Both sense and antisense constructs of HbCAld5H1 gene were introduced into tobacco through Agrobacterium-mediated genetic transformation for over expression and down-regulation of this key enzyme to understand its role affecting structural and cell wall chemistry. The anatomical studies of transgenic tobacco plants revealed the increase of cambial activity leading to xylogenesis in sense lines and considerable reduction in antisense lines. The ultra-structural studies showed that the thickness of secondary wall (S2 layer) of fibre had been decreased with non-homogenous lignin distribution in antisense lines, while sense lines showed an increase in S2 layer thickness. Maule color reaction revealed that syringyl lignin distribution in the xylem elements was increased in sense and decreased in antisense lines. The immunoelectron microscopy revealed a reduction in LM 10 and LM 11 labelling in the secondary wall of antisense tobacco lines. Biochemical studies showed a radical increase in syringyl lignin in sense lines without any significant change in total lignin content, while S/G ratio decreased considerably in antisense lines. Our results suggest that CAld5H gene plays an important role in xylogenesis stages such as cambial cell division, secondary wall thickness, xylan and syringyl lignin distribution in tobacco. Therefore, CAld5H gene could be considered as a promising target for lignin modification essential for timber quality improvement in rubber.


Subject(s)
Cell Wall/chemistry , Mixed Function Oxygenases/genetics , Nicotiana/genetics , Plant Proteins/genetics , Xylem/cytology , Acrolein/analogs & derivatives , Acrolein/metabolism , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Lignin/genetics , Lignin/metabolism , Mixed Function Oxygenases/metabolism , Phenotype , Plant Cells/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Proteins/metabolism , Plant Stems/anatomy & histology , Plant Stems/genetics , Plant Stems/metabolism , Plants, Genetically Modified , Nicotiana/cytology , Nicotiana/metabolism , Xylans/genetics , Xylans/metabolism , Xylem/metabolism
12.
Science ; 370(6518)2020 11 13.
Article in English | MEDLINE | ID: mdl-32943451

ABSTRACT

Optimal plant growth is hampered by deficiency of the essential macronutrient phosphate in most soils. Plant roots can, however, increase their root hair density to efficiently forage the soil for this immobile nutrient. By generating and exploiting a high-resolution single-cell gene expression atlas of Arabidopsis roots, we show an enrichment of TARGET OF MONOPTEROS 5/LONESOME HIGHWAY (TMO5/LHW) target gene responses in root hair cells. The TMO5/LHW heterodimer triggers biosynthesis of mobile cytokinin in vascular cells and increases root hair density during low-phosphate conditions by modifying both the length and cell fate of epidermal cells. Moreover, root hair responses in phosphate-deprived conditions are TMO5- and cytokinin-dependent. Cytokinin signaling links root hair responses in the epidermis to perception of phosphate depletion in vascular cells.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/growth & development , Basic Helix-Loop-Helix Transcription Factors/physiology , Meristem/growth & development , Phloem/growth & development , Phosphates/deficiency , Plant Epidermis/growth & development , Trans-Activators/physiology , Xylem/growth & development , Arabidopsis/cytology , Arabidopsis/genetics , Cytokinins/biosynthesis , Cytokinins/genetics , Meristem/cytology , Meristem/metabolism , Phloem/cytology , Phloem/metabolism , Plant Epidermis/cytology , Plant Epidermis/genetics , Plant Roots/cytology , Plant Roots/genetics , Plant Roots/growth & development , Xylem/cytology , Xylem/metabolism
13.
Sci Rep ; 10(1): 9025, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32493993

ABSTRACT

Cyst nematodes induce host-plant root cells to form syncytia from which the nematodes feed. Comprehensive histological investigation of these feeding sites is complicated by their variable shape and their positions deep within root tissue. Using tissue clearing and confocal microscopy, we examined thick (up to 150 µm) sections of wheat roots infected by cereal cyst nematodes (Heterodera avenae). This approach provided clear views of feeding sites and surrounding tissues, with resolution sufficient to reveal spatial relationships among nematodes, syncytia and host vascular tissues at the cellular level. Regions of metaxylem vessels near syncytia were found to have deviated from classical developmental patterns. Xylem vessel elements in these regions had failed to elongate but had undergone radial expansion, becoming short and plump rather than long and cylindrical. Further investigation revealed that vessel elements cease to elongate shortly after infection and that they later experience delays in secondary thickening (lignification) of their outer cell walls. Some of these elements were eventually incorporated into syncytial feeding sites. By interfering with a developmental program that normally leads to programmed cell death, H. avenae may permit xylem vessel elements to remain alive for later exploitation by the parasite.


Subject(s)
Nematode Infections/metabolism , Triticum/metabolism , Xylem/cytology , Animals , Cell Wall/metabolism , Cysts/metabolism , Gene Expression Regulation, Plant/genetics , Giant Cells/cytology , Infections , Microscopy, Confocal/methods , Nematoda/metabolism , Nematode Infections/physiopathology , Plant Diseases/parasitology , Plant Roots/metabolism , Plant Roots/parasitology , Triticum/parasitology , Tylenchoidea/parasitology , Tylenchoidea/physiology
14.
Microsc Microanal ; 26(3): 609-621, 2020 06.
Article in English | MEDLINE | ID: mdl-32495729

ABSTRACT

Mauritia flexuosa palms inhabit wetland environments in the dry, seasonal Brazilian savanna (Cerrado) and produce mucilaginous secretions in the stem and petiole that have a medicinal value. The present study sought to characterize the chemical natures of those secretions and to describe the anatomical structures involved in their synthesis. Chemical analyzes of the secretions, anatomical, histochemical analyses, and electron microscopy studies were performed on the roots, stipes, petioles, and leaf blades. Stipe and petiole secretions are similar, and rich in cell wall polysaccharides and pectic compounds such as rhamnose, arabinose, xylose, mannose, galactose, and glucose, which are hydrophilic largely due to their hydroxyl and carboxylate groups. Mucilaginous secretions accumulate in the lumens of vessel elements and sclerenchyma fibers of the root, stipe, petiole, and foliar veins; their synthesis involves cell wall loosening and the activities of dictyosomes. The outer faces of the cell walls of the parenchyma tissue in the mesophyll expand to form pockets that rupture and release pectocellulose substances into the intercellular spaces. The presence of mucilage in the xylem, extending from the roots to the leaf veins and continuous with the leaf apoplast, and sub-stomatal chambers suggest a strategy for plant water economy.


Subject(s)
Arecaceae/metabolism , Bodily Secretions/physiology , Plant Leaves/cytology , Polysaccharides/metabolism , Wetlands , Xylem/cytology , Arabinose , Brazil , Cell Wall , Galactose , Glucose , Mannose , Plant Leaves/metabolism , Plant Roots/cytology , Rhamnose , Xylem/metabolism , Xylose
15.
PLoS One ; 15(5): e0233106, 2020.
Article in English | MEDLINE | ID: mdl-32437374

ABSTRACT

In the conifer tree rings, each tracheid goes through three phases of differentiation before becoming an element of the stem water-conducting structure: division, extension, and cell wall thickening. These phases are long-lasting and separated temporally, especially cell wall thickening. Despite the numerous lines of evidence that external conditions affect the rate of growth processes and the final anatomical dimensions during the respective phases of tracheid differentiation, the influence of the environment on anatomical dimensions during the cell division phase (cambial activity) has not yet been experimentally confirmed. In this communication, we provide indirect evidence of such an effect through observations of the small fluctuations in the latewood cell wall thickness of rapidly growing tree rings, which exhibit a high cell production rate (more than 0.4 cells per day on average). Such small fluctuations in the cell wall thickness cannot be driven by variations in external factors during the secondary wall deposition phase, since this phase overlaps for several tens of latewood cells in the rings of fast-growing trees due to its long duration.


Subject(s)
Cambium/metabolism , Cell Wall/metabolism , Picea/metabolism , Xylem/metabolism , Cambium/cytology , Picea/cytology , Xylem/cytology
16.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32041869

ABSTRACT

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Subject(s)
Magnoliopsida/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism , Biological Evolution , Cell Membrane , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Photosynthesis , Phycodnaviridae , Plants, Genetically Modified , Potassium/metabolism , Water/metabolism , Xylem/cytology , Xylem/metabolism
17.
Plant Cell Physiol ; 61(2): 255-264, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31922574

ABSTRACT

Stem cells undergo cell division and differentiation to ensure organized tissue development. Because plant cells are immobile, plant stem cells ought to decide their cell fate prior to differentiation, to locate specialized cells in the correct position. In this study, based on a chemical screen, we isolated a novel secondary cell wall indicator BF-170, which binds to lignin and can be used to image in vitro and in situ xylem development. Use of BF-170 to observe the vascular differentiation pattern in the in vitro vascular cell induction system, VISUAL, revealed that adaxial mesophyll cells of cotyledons predominantly generate ectopic xylem cells. Moreover, phloem cells are abundantly produced on the abaxial layer, suggesting the involvement of leaf adaxial-abaxial polarity in determining vascular cell fate. Analysis of abaxial polarity mutants highlighted the role of YAB3, an abaxial cell fate regulator, in suppressing xylem and promoting phloem differentiation on the abaxial domains in VISUAL. Furthermore, YABBY family genes affected in vivo vascular development during the secondary growth. Our results denoted the possibility that such mediators of spatial information contribute to correctly determine the cell fate of vascular stem cells, to conserve the vascular pattern of land plants.


Subject(s)
Cell Differentiation/physiology , Optical Imaging/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Stem Cells/metabolism , Aniline Compounds , Arabidopsis/cytology , Arabidopsis/genetics , Cell Wall , Cotyledon/cytology , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/metabolism , Fluorescent Dyes , Genes, Plant , Lignin/metabolism , Phloem/cytology , Phloem/genetics , Phloem/growth & development , Plant Leaves/cytology , Plant Roots/cytology , Quinolines , Xylem/cytology , Xylem/genetics , Xylem/growth & development
18.
Proc Natl Acad Sci U S A ; 117(1): 733-740, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31874927

ABSTRACT

Vascular plants provide most of the biomass, food, and feed on earth, yet the molecular innovations that led to the evolution of their conductive tissues are unknown. Here, we reveal the evolutionary trajectory for the heterodimeric TMO5/LHW transcription factor complex, which is rate-limiting for vascular cell proliferation in Arabidopsis thaliana Both regulators have origins predating vascular tissue emergence, and even terrestrialization. We further show that TMO5 evolved its modern function, including dimerization with LHW, at the origin of land plants. A second innovation in LHW, coinciding with vascular plant emergence, conditioned obligate heterodimerization and generated the critical function in vascular development in Arabidopsis In summary, our results suggest that the division potential of vascular cells may have been an important factor contributing to the evolution of vascular plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Trans-Activators/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation/genetics , Phloem/cytology , Phloem/growth & development , Phloem/metabolism , Phylogeny , Plants, Genetically Modified , Protein Multimerization/genetics , Trans-Activators/metabolism , Xylem/cytology , Xylem/growth & development , Xylem/metabolism
19.
Plant J ; 101(2): 293-309, 2020 01.
Article in English | MEDLINE | ID: mdl-31587430

ABSTRACT

The transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is a Class II KNOTTED1-like homeobox (KNOX2) gene that, in interfascicular fibres, acts as a negative regulator of secondary cell wall biosynthesis. In addition, knat7 loss-of-function mutants display an irregular xylem (irx) phenotype, suggesting a potential positive regulatory role in xylem vessel secondary cell wall deposition. Although our understanding of the role of KNAT7 is evolving, the function(s) of the closely related KNOX2 genes, KNAT3, KNAT4, and KNAT5, in secondary wall formation still remain unclear. We found that all four Arabidopsis KNOX2 genes were expressed in the inflorescence stems. However, only the knat3 knat7 double mutants showed a phenotype, displaying an enhanced irx phenotypes relative to the single mutants, as well as decreased interfascicular fibre cell wall thickness. Moreover, knat3 knat7 double mutants had reduced stem tensile and flexural strength compared with wild-type and single mutants. In contrast, KNAT3 overexpression resulted in thicker interfascicular fibre secondary cell walls in inflorescence stems, suggesting a potential positive regulation in interfascicular fibre secondary wall development. This work identifies KNAT3 as a potential transcriptional activator working together with KNAT7 to promote secondary cell wall biosynthesis in xylem vessels, while concurrently acting antagonistically with KNAT7 to influence secondary wall formation in interfascicular fibres.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Wall/metabolism , Homeodomain Proteins/metabolism , Repressor Proteins/metabolism , Transcriptome , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Wall/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Knockout Techniques , Homeodomain Proteins/genetics , Mutation , Nuclear Proteins , Phenotype , Plant Stems/cytology , Plant Stems/genetics , Plant Stems/metabolism , Repressor Proteins/genetics , Transcription Factors/genetics , Xylem/cytology , Xylem/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...