Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 162
1.
Biochem Biophys Res Commun ; 718: 150037, 2024 Jul 23.
Article En | MEDLINE | ID: mdl-38735135

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for more than 80 % of lung cancer (LC) cases, making it the primary cause of cancer-related mortality worldwide. T-box transcription factor 5 (TBX5) is an important regulator of embryonic and organ development and plays a key role in cancer development. Here, our objective was to investigate the involvement of TBX5 in ferroptosis within LC cells and the underlying mechanisms. METHODS: First, TBX5 expression was examined in human LC cells. Next, overexpression of TBX5 and Yes1-associated transcriptional regulator (YAP1) and knockdown of TEA domain 1 (TEAD1) were performed in A549 and NCI-H1703 cells. The proliferation ability of A549 and NCI-H1703 cells, GSH, MDA, ROS, and Fe2+ levels were measured. Co-immunoprecipitation (Co-IP) was performed to verify whether TBX5 protein could bind YAP1. Then TBX5, YAP1, TEAD1, GPX4, p53, FTH1, SLC7A11 and PTGS2 protein levels were assessed. Finally, we verified the effect of TBX5 on ferroptosis in LC cells in vivo. RESULTS: TBX5 expression was down-regulated in LC cells, especially in A549 and NCI-H1703 cells. Overexpression of TBX5 significantly decreased proliferation ability of A549 and NCI-H1703 cells, downregulated GPX4 and GSH levels, and upregulated MDA, ROS, and Fe2+ levels. Co-IP verified that TBX5 protein could bind YAP1. Moreover, oe-YAP1 promoted proliferation ability of A549 and NCI-H1703 cells transfected with Lv-TBX5, upregulated GPX4 and GSH levels and downregulated MDA, ROS, and Fe2+ levels. Additionally, oe-YAP1 promoted FTH1 and SLC7A11 levels and inhibited p53 and PTGS2 levels in A549 and NCI-H1703 cells transfected with Lv-TBX5. However, transfection with si-TEAD1 further reversed these effects. In vivo experiments further validated that TBX5 promoted ferroptosis in LC cells. CONCLUSIONS: TBX5 inhibited the activation of YAP1-TEAD1 pathway to promote ferroptosis in LC cells.


Ferroptosis , Lung Neoplasms , T-Box Domain Proteins , TEA Domain Transcription Factors , Transcription Factors , YAP-Signaling Proteins , Ferroptosis/genetics , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , TEA Domain Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Line, Tumor , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude , Cell Proliferation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Gene Expression Regulation, Neoplastic , A549 Cells , Signal Transduction , Reactive Oxygen Species/metabolism
2.
Elife ; 132024 May 28.
Article En | MEDLINE | ID: mdl-38805545

As the most common degenerative joint disease, osteoarthritis (OA) contributes significantly to pain and disability during aging. Several genes of interest involved in articular cartilage damage in OA have been identified. However, the direct causes of OA are poorly understood. Evaluating the public human RNA-seq dataset showed that CBFB (subunit of a heterodimeric Cbfß/Runx1, Runx2, or Runx3 complex) expression is decreased in the cartilage of patients with OA. Here, we found that the chondrocyte-specific deletion of Cbfb in tamoxifen-induced Cbfbf/f;Col2a1-CreERT mice caused a spontaneous OA phenotype, worn articular cartilage, increased inflammation, and osteophytes. RNA-sequencing analysis showed that Cbfß deficiency in articular cartilage resulted in reduced cartilage regeneration, increased canonical Wnt signaling and inflammatory response, and decreased Hippo/Yap signaling and Tgfß signaling. Immunostaining and western blot validated these RNA-seq analysis results. ACLT surgery-induced OA decreased Cbfß and Yap expression and increased active ß-catenin expression in articular cartilage, while local AAV-mediated Cbfb overexpression promoted Yap expression and diminished active ß-catenin expression in OA lesions. Remarkably, AAV-mediated Cbfb overexpression in knee joints of mice with OA showed the significant protective effect of Cbfß on articular cartilage in the ACLT OA mouse model. Overall, this study, using loss-of-function and gain-of-function approaches, uncovered that low expression of Cbfß may be the cause of OA. Moreover, Local admission of Cbfb may rescue and protect OA through decreasing Wnt/ß-catenin signaling, and increasing Hippo/Yap signaling and Tgfß/Smad2/3 signaling in OA articular cartilage, indicating that local Cbfb overexpression could be an effective strategy for treatment of OA.


Cartilage, Articular , Hippo Signaling Pathway , Homeostasis , Osteoarthritis , Transforming Growth Factor beta , YAP-Signaling Proteins , Animals , Cartilage, Articular/metabolism , Mice , Osteoarthritis/genetics , Osteoarthritis/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Wnt Signaling Pathway , beta Catenin/metabolism , beta Catenin/genetics , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
3.
Sci Signal ; 17(838): eado6266, 2024 May 28.
Article En | MEDLINE | ID: mdl-38805583

Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.


Adaptor Proteins, Signal Transducing , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hippo Signaling Pathway/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Transcriptional Activation , Phosphorylation , HEK293 Cells , Epithelial-Mesenchymal Transition , Phosphoproteins/metabolism , Phosphoproteins/genetics , Animals , Serine-Threonine Kinase 3 , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
4.
Sci Rep ; 14(1): 11836, 2024 05 23.
Article En | MEDLINE | ID: mdl-38782965

Emerging evidence shows that FAT atypical cadherin 1 (FAT1) mutations occur in lymphoma and are associated with poorer overall survival. Considering that diffuse large B cell lymphoma (DLBCL) is the category of lymphoma with the highest incidence rate, this study aims to explore the role of FAT1 in DLBCL. The findings demonstrate that FAT1 inhibits the proliferation of DLBCL cell lines by downregulating the expression of YAP1 rather than by altering its cellular localization. Mechanistic analysis via meRIP-qPCR/luciferase reporter assays showed that FAT1 increases the m6A modification of YAP1 mRNA 3'UTR and the subsequent binding of heterogeneous nuclear ribonucleoprotein D (HNRNPD) to the m6A modified YAP1 mRNA, thus decreasing the stability of YAP1 mRNA. Furthermore, FAT1 increases YAP1 mRNA 3'UTR m6A modification by decreasing the activity of the TGFß-Smad2/3 pathway and the subsequent expression of ALKBH5, which is regulated at the transcriptional level by Smad2/3. Collectively, these results reveal that FAT1 inhibits the proliferation of DLBCL cells by increasing the m6A modification of the YAP1 mRNA 3'UTR via the TGFß-Smad2/3-ALKBH5 pathway. The findings of this study therefore indicate that FAT1 exerts anti-tumor effects in DLBCL and may represent a novel target in the treatment of this form of lymphoma.


3' Untranslated Regions , Adaptor Proteins, Signal Transducing , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse , RNA, Messenger , Transcription Factors , YAP-Signaling Proteins , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cadherins/metabolism , Cadherins/genetics , Adenosine/metabolism , Adenosine/analogs & derivatives , Signal Transduction
5.
Cell Commun Signal ; 22(1): 277, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755629

INTRODUCTION: Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS: We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS: We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS: We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.


Cell Movement , Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2 , Humans , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Movement/genetics , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Fibroblasts/metabolism
6.
Pharmacol Res ; 204: 107218, 2024 Jun.
Article En | MEDLINE | ID: mdl-38768671

This study investigates the role of Stanniocalcin-1 (STC1) in melanoma progression, with a focus on its impact on metastasis, angiogenesis, and immune evasion. Systematic bioinformatics analysis revealed the potential influence of STC1 dysregulation on prognosis, immune cell infiltration, response to immune therapy, and cellular functions. In vitro assays were conducted to assess the proliferation, invasion, migration, and angiogenesis capabilities of A375 cells. In vivo experiments utilizing C57BL/6 J mice established a lung metastasis model using B16-F10 cells to evaluate macrophage infiltration and M2 polarization. A Transwell co-culture system was employed to explore the crosstalk between melanoma and macrophages. Molecular interactions among STC1, YAP, ßPIX, and CCL2 are investigated using mass spectrometry, Co-Immunoprecipitation, Dual-Luciferase Reporter Assay, and Chromatin Immunoprecipitation experiments. STC1 was found to enhance lung metastasis by promoting the recruitment and polarization of M2 macrophages, thereby fostering an immunosuppressive microenvironment. Mechanistically, STC1 competes with YAP for binding to ßPIX within the KER domain in melanoma cells, leading to YAP activation and subsequent CCL2 upregulation. CCL2-induced M2 macrophages secrete VEGFA, which enhances tumor vascularization and increases STC1 expression via the AKT signaling pathway in melanoma cells, establishing a pro-metastatic feedback loop. Notably, STC1-induced YAP activation increases PD-L1 expression, promoting immune evasion. Silencing STC1 enhances the efficacy of PD-1 immune checkpoint therapy in mice. This research elucidates STC1's role in melanoma metastasis and its complex interactions with tumor-associated macrophages, proposing STC1 as a potential therapeutic target for countering melanoma metastasis and augmenting the efficacy of PD-1 immunotherapy.


Chemokine CCL2 , Glycoproteins , Macrophages , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , YAP-Signaling Proteins , Animals , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Humans , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Macrophages/metabolism , Macrophages/immunology , Vascular Endothelial Growth Factor A/metabolism , Glycoproteins/metabolism , Glycoproteins/genetics , Mice , Melanoma/pathology , Melanoma/metabolism , Melanoma/immunology , Melanoma/genetics , Feedback, Physiological , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Tumor Microenvironment , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Disease Progression , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics
7.
Clin Transl Med ; 14(4): e1658, 2024 Apr.
Article En | MEDLINE | ID: mdl-38659080

BACKGROUND: Chordoma, a rare bone tumour with aggressive local invasion and high recurrence rate with limited understanding of its molecular mechanisms. Circular RNAs (circRNAs) have been extensively implicated in tumorigenesis, yet their involvement in chordoma remains largely unexplored. N6-methyladenosine (m6A) modification holds a crucial function in regulating protein translation, RNA degradation and transcription. METHODS: Initially, screening and validation of circTEAD1 in chordoma were conducted by high-throughput sequencing. Subsequently, sh-circTEAD1 and an overexpression plasmid were constructed. Colony formation assays, cell counting kit-8, Transwell and wound healing assays were utilized to validate the function of circTEAD1 in vitro. RNA pull-down assays identified the binding proteins of circTEAD1, which underwent verification through RNA immunoprecipitation (RIP). Methylated RIP assays were conducted to detect the m6A binding sites. Following this, luciferase assay, RT-qPCR, RIP and Western blotting analyses were conducted, revealing that Yap1 was the direct target of circTEAD1. Afterwards, the same methods were utilized for the validation of the function of Yap1 in chordoma in vitro. Finally, the regulatory relationship between circTEAD1 and Yap1 in chordoma was verified by an in vivo tumour formation assay. RESULTS: CircTEAD1 was identified as an upregulated circRNA in chordoma specimens, with heightened circTEAD1 expression emerging as a prognostic indicator. In vitro experiments convincingly demonstrated that circTEAD1 significantly promoted chordoma cell invasion, migration and aggressiveness. Furthermore, the analysis revealed that methyltransferase-like 3-mediated m6A modification facilitated the cytoplasmic export of circTEAD1. The circTEAD1/IGF2BP3/Yap1 mRNA RNA-protein ternary complex not only bolstered the stability of Yap1 mRNA but also exerted a pivotal role in driving chordoma tumorigenesis. CONCLUSIONS: In this study, the role of m6A-modified circTEAD1 in chordoma was identified. The findings offer novel insights into the potential molecular targets for chordoma therapy, shedding light on the intricate interplay between circRNAs, m6A modification and Yap1 mRNA in chordoma pathogenesis.


Adenosine , Adenosine/analogs & derivatives , Chordoma , RNA, Circular , Transcription Factors , YAP-Signaling Proteins , Humans , Adenosine/metabolism , Adenosine/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Chordoma/genetics , Chordoma/pathology , Chordoma/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Carcinogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Mice , Cell Line, Tumor
8.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658677

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Acrylamides , Drug Resistance, Neoplasm , ErbB Receptors , Indoles , Lung Neoplasms , Mutation , Pyrimidines , Transcription Factors , Humans , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Line, Tumor , Acrylamides/pharmacology , Acrylamides/therapeutic use , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Gefitinib/pharmacology , Hippo Signaling Pathway , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , TEA Domain Transcription Factors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems
9.
Sci Rep ; 14(1): 9497, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664418

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Abnormalities, Multiple , Adaptor Proteins, Signal Transducing , Cleft Palate , Dental Enamel Hypoplasia , Exophthalmos , Fibroblasts , Fibrosis , Gingiva , Osteosclerosis , Proteomics , Signal Transduction , Transcription Factors , Transforming Growth Factor beta , YAP-Signaling Proteins , Humans , Transforming Growth Factor beta/metabolism , Gingiva/metabolism , Gingiva/pathology , Proteomics/methods , Fibrosis/metabolism , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Osteosclerosis/metabolism , Osteosclerosis/genetics , Osteosclerosis/pathology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Dental Enamel Hypoplasia/metabolism , Dental Enamel Hypoplasia/genetics , Dental Enamel Hypoplasia/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Microcephaly/metabolism , Microcephaly/genetics , Microcephaly/pathology , Female , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Male , Trans-Activators/metabolism , Trans-Activators/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Casein Kinase I/metabolism , Casein Kinase I/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Amelogenesis Imperfecta/metabolism , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Cells, Cultured
10.
FEBS Lett ; 598(9): 1045-1060, 2024 May.
Article En | MEDLINE | ID: mdl-38594215

TEAD transcription factors play a central role in the Hippo signaling pathway. In this study, we focused on transcriptional enhancer factor TEF-3 (TEAD4), exploring its regulation by the deubiquitinase OTU domain-containing protein 6A (OTUD6A). We identified OTUD6A as a TEAD4-interacting deubiquitinase, positively influencing TEAD-driven transcription without altering TEAD4 stability. Structural analyses revealed specific interaction domains: the N-terminal domain of OTUD6A and the YAP-binding domain of TEAD4. Functional assays demonstrated the positive impact of OTUD6A on the transcription of YAP-TEAD target genes. Despite no impact on TEAD4 nuclear localization, OTUD6A selectively modulated nuclear interactions, enhancing YAP-TEAD4 complex formation while suppressing VGLL4 (transcription cofactor vestigial-like protein 4)-TEAD4 interaction. Critically, OTUD6A facilitated YAP-TEAD4 complex binding to target gene promoters. Our study unveils the regulatory landscape of OTUD6A on TEAD4, providing insights into diseases regulated by YAP-TEAD complexes.


DNA-Binding Proteins , Muscle Proteins , TEA Domain Transcription Factors , Transcription Factors , TEA Domain Transcription Factors/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , HEK293 Cells , Muscle Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/chemistry , Transcription, Genetic , Protein Binding , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Promoter Regions, Genetic
11.
J Clin Invest ; 134(11)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652549

CD8+ T cell dysfunction impedes antitumor immunity in solid cancers, but the underlying mechanisms are diverse and poorly understood. Extracellular matrix (ECM) composition has been linked to impaired T cell migration and enhanced tumor progression; however, impacts of individual ECM molecules on T cell function in the tumor microenvironment (TME) are only beginning to be elucidated. Upstream regulators of aberrant ECM deposition and organization in solid tumors are equally ill-defined. Therefore, we investigated how ECM composition modulates CD8+ T cell function in undifferentiated pleomorphic sarcoma (UPS), an immunologically active desmoplastic tumor. Using an autochthonous murine model of UPS and data from multiple human patient cohorts, we discovered a multifaceted mechanism wherein the transcriptional coactivator YAP1 promotes collagen VI (COLVI) deposition in the UPS TME. In turn, COLVI induces CD8+ T cell dysfunction and immune evasion by remodeling fibrillar collagen and inhibiting T cell autophagic flux. Unexpectedly, collagen I (COLI) opposed COLVI in this setting, promoting CD8+ T cell function and acting as a tumor suppressor. Thus, CD8+ T cell responses in sarcoma depend on oncogene-mediated ECM composition and remodeling.


CD8-Positive T-Lymphocytes , Extracellular Matrix , Sarcoma , Tumor Microenvironment , YAP-Signaling Proteins , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Animals , Tumor Microenvironment/immunology , Mice , YAP-Signaling Proteins/immunology , YAP-Signaling Proteins/genetics , Humans , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Sarcoma/immunology , Sarcoma/pathology , Sarcoma/genetics , Sarcoma/metabolism , Collagen Type VI/genetics , Collagen Type VI/immunology , Collagen Type VI/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/immunology , Oncogenes , Neoplasm Proteins/immunology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I/immunology
12.
Pathol Res Pract ; 257: 155286, 2024 May.
Article En | MEDLINE | ID: mdl-38599044

In spite of the decrease in breast cancer (BC) death rates, it has remained a significant public health concern. Dysregulation of the Hippo pathway contributes to breast cancer development and progression by enhancing cancerous cell proliferation, survival, invasion, and migration. Investigating the connection between specific lncRNAs (SNHG15, HCP5, and LINC01433) and YAP and WWTR1, and the impact of these lncRNAs on the expression of YAP and WWTR1 proteins in the Hippo pathway, may offer valuable understanding for BC diagnosis and treatment. Forty BC tissue samples were acquired from the Tumor Bank and utilized for RNA and protein extraction. Real-time PCR and western blotting techniques were performed to assess the gene and protein expressions, respectively. Correlations between variables and their associations with clinicopathological features in BC were evaluated using Mann-Whitney U or Student's t-test. Additionally, the analysis of the GEO database was utilized to validate the findings. In cancerous tissue, the up-regulation of YAP, WWTR1, HCP5, SNHG15, and Linc01433 at both the mRNA and protein levels corresponds to the findings in GEO datasets. A significant association was found between YAP and histological grade, while WWTR1 showed a correlation with family history and HER-2. The distinct and notable expression of YAP, WWTR1, SNHG15, HCP5, and Linc01433 in BC tissues, together with the results of combined ROC curve analysis derived from our finding and GEO database suggest that a combined panel of these 5 RNAs may have great potential in predicting of BC and its management.


Adaptor Proteins, Signal Transducing , Breast Neoplasms , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Humans , RNA, Long Noncoding/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Middle Aged , Gene Expression Regulation, Neoplastic/genetics , Trans-Activators/genetics , Adult , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Aged
13.
EMBO J ; 43(9): 1740-1769, 2024 May.
Article En | MEDLINE | ID: mdl-38565949

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Adaptor Proteins, Signal Transducing , Breast Neoplasms , Signal Transduction , Trans-Activators , Transcription Factors , YAP-Signaling Proteins , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Female , Trans-Activators/metabolism , Trans-Activators/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Cell Line, Tumor , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositols/metabolism , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Nucleus/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
14.
Cancer Lett ; 590: 216861, 2024 May 28.
Article En | MEDLINE | ID: mdl-38583649

Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.


Adaptor Proteins, Signal Transducing , B7-H1 Antigen , Melanoma , Signal Transduction , TNF Receptor-Associated Factor 6 , Transcription Factors , YAP-Signaling Proteins , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Melanoma/metabolism , Melanoma/genetics , Melanoma/drug therapy , Melanoma/pathology , Melanoma/immunology , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Mice , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/genetics , Gene Expression Regulation, Neoplastic , Ubiquitination , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
15.
Signal Transduct Target Ther ; 9(1): 96, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653754

The translocation of YAP from the cytoplasm to the nucleus is critical for its activation and plays a key role in tumor progression. However, the precise molecular mechanisms governing the nuclear import of YAP are not fully understood. In this study, we have uncovered a crucial role of SOX9 in the activation of YAP. SOX9 promotes the nuclear translocation of YAP by direct interaction. Importantly, we have identified that the binding between Asp-125 of SOX9 and Arg-124 of YAP is essential for SOX9-YAP interaction and subsequent nuclear entry of YAP. Additionally, we have discovered a novel asymmetrical dimethylation of YAP at Arg-124 (YAP-R124me2a) catalyzed by PRMT1. YAP-R124me2a enhances the interaction between YAP and SOX9 and is associated with poor prognosis in multiple cancers. Furthermore, we disrupted the interaction between SOX9 and YAP using a competitive peptide, S-A1, which mimics an α-helix of SOX9 containing Asp-125. S-A1 significantly inhibits YAP nuclear translocation and effectively suppresses tumor growth. This study provides the first evidence of SOX9 as a pivotal regulator driving YAP nuclear translocation and presents a potential therapeutic strategy for YAP-driven human cancers by targeting SOX9-YAP interaction.


Adaptor Proteins, Signal Transducing , Cell Nucleus , SOX9 Transcription Factor , Transcription Factors , YAP-Signaling Proteins , Humans , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Active Transport, Cell Nucleus/genetics , Mice , Cell Line, Tumor , Animals , Repressor Proteins/genetics , Repressor Proteins/metabolism
16.
Development ; 151(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38602485

Alveologenesis, the final stage in lung development, substantially remodels the distal lung, expanding the alveolar surface area for efficient gas exchange. Secondary crest myofibroblasts (SCMF) exist transiently in the neonatal distal lung and are crucial for alveologenesis. However, the pathways that regulate SCMF function, proliferation and temporal identity remain poorly understood. To address this, we purified SCMFs from reporter mice, performed bulk RNA-seq and found dynamic changes in Hippo-signaling components during alveologenesis. We deleted the Hippo effectors Yap/Taz from Acta2-expressing cells at the onset of alveologenesis, causing a significant arrest in alveolar development. Using single cell RNA-seq, we identified a distinct cluster of cells in mutant lungs with altered expression of marker genes associated with proximal mesenchymal cell types, airway smooth muscle and alveolar duct myofibroblasts. In vitro studies confirmed that Yap/Taz regulates myofibroblast-associated gene signature and contractility. Together, our findings show that Yap/Taz is essential for maintaining functional myofibroblast identity during postnatal alveologenesis.


Cell Differentiation , Hippo Signaling Pathway , Morphogenesis , Myofibroblasts , Protein Serine-Threonine Kinases , Pulmonary Alveoli , Signal Transduction , YAP-Signaling Proteins , Animals , Mice , Myofibroblasts/metabolism , Myofibroblasts/cytology , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/cytology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Morphogenesis/genetics , Mesoderm/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Lung/metabolism , Organogenesis/genetics , Gene Expression Regulation, Developmental
17.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38436764

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Cell Communication , Liver , YAP-Signaling Proteins , Animals , Mice , Cell Communication/genetics , Endothelial Cells , Hepatocytes , Ligands , Liver/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
18.
J Clin Invest ; 134(10)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512451

Lactylation has been recently identified as a new type of posttranslational modification occurring widely on lysine residues of both histone and nonhistone proteins. The acetyltransferase p300 is thought to mediate protein lactylation, yet the cellular concentration of the proposed lactyl-donor, lactyl-coenzyme A, is about 1,000 times lower than that of acetyl-CoA, raising the question of whether p300 is a genuine lactyltransferase. Here, we report that alanyl-tRNA synthetase 1 (AARS1) moonlights as a bona fide lactyltransferase that directly uses lactate and ATP to catalyze protein lactylation. Among the candidate substrates, we focused on the Hippo pathway, which has a well-established role in tumorigenesis. Specifically, AARS1 was found to sense intracellular lactate and translocate into the nucleus to lactylate and activate the YAP-TEAD complex; and AARS1 itself was identified as a Hippo target gene that forms a positive-feedback loop with YAP-TEAD to promote gastric cancer (GC) cell proliferation. Consistently, the expression of AARS1 was found to be upregulated in GC, and elevated AARS1 expression was found to be associated with poor prognosis for patients with GC. Collectively, this work found AARS1 with lactyltransferase activity in vitro and in vivo and revealed how the metabolite lactate is translated into a signal of cell proliferation.


Alanine-tRNA Ligase , Signal Transduction , Stomach Neoplasms , Transcription Factors , YAP-Signaling Proteins , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acyl-tRNA Synthetases/metabolism , Amino Acyl-tRNA Synthetases/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lactic Acid/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Stomach Neoplasms/enzymology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Alanine-tRNA Ligase/genetics , Alanine-tRNA Ligase/metabolism
19.
Cancer Sci ; 115(5): 1476-1491, 2024 May.
Article En | MEDLINE | ID: mdl-38475938

Liver cancer is the sixth most common cancer and the third leading cause of cancer-related death globally. Despite efforts being made in last two decades in cancer diagnosis and treatment, the 5-year survival rate of liver cancer remains extremely low. TRIM21 participates in cancer metabolism, glycolysis, immunity, chemosensitivity and metastasis by targeting various substrates for ubiquitination. TRIM21 serves as a prognosis marker for human hepatocellular carcinoma (HCC), but the mechanism by which TRIM21 regulates HCC tumorigenesis and progression remains elusive. In this study, we demonstrated that TRIM21 protein levels were elevated in human HCC. Elevated TRIM21 expression was associated with HCC progression and poor survival. Knockdown of TRIM21 in HCC cell lines significantly impaired cell growth and metastasis and enhanced sorafenib-induced toxicity. Mechanistically, we found that knockdown of TRIM21 resulted in cytosolic translocation and inactivation of YAP. At the molecular level, we further identified that TRIM21 interacted and induced ubiquitination of MST1, which resulted in MST1 degradation and YAP activation. Knockdown of MST1 or overexpression of YAP reversed TRIM21 knockdown-induced impairment of HCC growth and chemosensitivity. Taken together, the current study demonstrates a novel mechanism that regulates the Hippo pathway and reveals TRM21 as a critical factor that promotes growth and chemoresistance in human HCC.


Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Ribonucleoproteins , Signal Transduction , Transcription Factors , Ubiquitination , YAP-Signaling Proteins , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Sorafenib/pharmacology , Sorafenib/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Animals , Gene Expression Regulation, Neoplastic , Male , Phosphoproteins/metabolism , Phosphoproteins/genetics , Gene Knockdown Techniques , Female , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics
20.
J Biol Chem ; 300(4): 107208, 2024 Apr.
Article En | MEDLINE | ID: mdl-38521502

Transforming growth factor-ß (TGF-ß) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-ß target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-ß in liver cancer cells. In addition, TGF-ß-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-ß- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-ß- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-ß and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.


Carcinoma, Hepatocellular , Cysteine-Rich Protein 61 , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Transforming Growth Factor beta , YAP-Signaling Proteins , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Data Mining , Gene Expression Regulation, Neoplastic/genetics , Hippo Signaling Pathway , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mice, Nude , Promoter Regions, Genetic , Signal Transduction/genetics , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , TEA Domain Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Up-Regulation , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics
...