Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 663
Filter
1.
Genes (Basel) ; 15(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39062617

ABSTRACT

The state of California (CA) added X-linked adrenoleukodystrophy (X-ALD) to newborn screening (NBS) in 2016 via the measurement of C26:0-lysophosphatidylcholine (C26:0-LPC) in a two-tier fashion, followed by sequencing of the ABCD1 gene. This has resulted in the identification of individuals with genetic conditions beyond X-ALD that can also result in elevated C26:0-LPC by NBS. We describe the biochemical, molecular, and clinical characteristics of nine patients from two metabolic centers in California who screened positive by NBS for elevated C26:0-LPC between 2016 and 2022 and were ultimately diagnosed with a genetic condition other than X-ALD. Seven individuals were diagnosed with Zellweger spectrum disorder (ZSD) due to biallelic variants in PEX genes. One male was diagnosed with Klinefelter syndrome and one female was found to have an X chromosome contiguous gene deletion syndrome after the identification of a heterozygous VUS and hemizygous VUS variant in ABCD1, respectively. Patients with ZSD had significantly higher first- and second-tier C26:0-LPC levels compared to the two non-ZSD cases. Identification of children with ZSD and atypical patterns of ABCD1 variants is a secondary benefit of NBS for X-ALD, leading to earlier diagnosis, prompt therapeutic initiation, and more accurate genetic counseling. As screening for X-ALD continues via the measurement of C26:0-LPC, our knowledge of additional genetic conditions associated with elevated C26:0-LPC will continue to advance, allowing for increased recognition of other genetic disorders for which early intervention is warranted.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Neonatal Screening , Humans , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/diagnosis , Male , Female , Infant, Newborn , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Zellweger Syndrome/genetics , Zellweger Syndrome/diagnosis , California , Genetic Testing/methods
2.
Gene ; 928: 148767, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39013483

ABSTRACT

BACKGROUND: Zellweger Syndrome (ZS), or cerebrohepatorenal syndrome, is a rare disorder due to PEX gene mutations affecting peroxisome function. While PEX6 coding mutations are known to cause ZS, the impact of noncoding mutations is less clear. METHODS: A Chinese neonate and his family were subjected to whole exome sequencing (WES) and bioinformatics to assess variant pathogenicity. A minigene assay was also performed for detailed splicing variant analysis. RESULTS: WES identified compound heterozygous PEX6 variants: c.315G>A (p. Trp105Ter) and c.2095-3 T>G. Minigene assays indicated that the latter variant led to abnormal mRNA splicing and the loss of exon 11 in PEX6 expression, potentially causing nonsense-mediated mRNA decay (NMD) or truncated protein structure. CONCLUSION: The study suggests that PEX6: c.2095-3 T>G might be a genetic contributor to the patient's condition, broadening the known mutation spectrum of PEX6. These insights lay groundwork for potential gene therapy for such variants.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Introns , Zellweger Syndrome , Humans , Zellweger Syndrome/genetics , Infant, Newborn , Male , ATPases Associated with Diverse Cellular Activities/genetics , Exome Sequencing , Mutation , RNA Splicing , Membrane Proteins/genetics , Pedigree , Asian People/genetics , Peroxins/genetics , China , Female , East Asian People
5.
JNMA J Nepal Med Assoc ; 62(270): 155-157, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38409970

ABSTRACT

Zellweger syndrome is an autosomal recessive disease within the spectrum of peroxisome biogenesis disorder manifesting in the neonatal period with profound dysfunction of the central nervous system, liver and kidney. Common clinical presentations include hypotonia, seizure, hepatomegaly, craniofacial dysmorphism and early death. Mutation in one of the PEX genes coding for a peroxisome assembly protein creates a functionally incompetent organelle causing accumulation of very long chain fatty acids in various organs. Here we report the case of a 5-month-old male presented at birth with hypotonia, poor feeding, gross congenital anomalies and later during early infancy with failure to thrive, several episodes of seizures, aspiration due to feeding difficulties and recurrent severe pneumonia. A whole genomic sequencing brought us to the final diagnosis of Zellweger syndrome. Despite an absence of treatment options, prompt diagnosis of Zellweger syndrome is important for providing appropriate symptomatic care, definitive genetic testing and prenatal counselling. Keywords: case reports; mutation; neonate; Zellweger syndrome.


Subject(s)
Peroxisomal Disorders , Zellweger Syndrome , Infant, Newborn , Humans , Male , Infant , Zellweger Syndrome/diagnosis , Zellweger Syndrome/genetics , Muscle Hypotonia/genetics , Peroxisomal Disorders/genetics , Genetic Testing , Mutation
6.
Cell Rep ; 43(2): 113744, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38329874

ABSTRACT

Peroxisome biogenesis disorders (PBDs) represent a group of metabolic conditions that cause severe developmental defects. Peroxisomes are essential metabolic organelles, present in virtually every eukaryotic cell and mediating key processes in immunometabolism. To date, the full spectrum of PBDs remains to be identified, and the impact PBDs have on immune function is unexplored. This study presents a characterization of the hepatic immune compartment of a neonatal PBD mouse model at single-cell resolution to establish the importance and function of peroxisomes in developmental hematopoiesis. We report that hematopoietic defects are a feature in a severe PBD murine model. Finally, we identify a role for peroxisomes in the regulation of the major histocompatibility class II expression and antigen presentation to CD4+ T cells in dendritic cells. This study adds to our understanding of the mechanisms of PBDs and expands our knowledge of the role of peroxisomes in immunometabolism.


Subject(s)
Peroxisomal Disorders , Zellweger Syndrome , Animals , Mice , Zellweger Syndrome/metabolism , Peroxisomes/metabolism , Antigen Presentation , Peroxisomal Disorders/metabolism
7.
Mol Genet Genomic Med ; 12(1): e2315, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37962062

ABSTRACT

BACKGROUND: Peroxisome biogenesis disorders (PBDs) are caused by variants in PEX genes that impair peroxisome function. Zellweger spectrum disorders (ZSDs) are the most severe and common subtype of PBDs, affecting multiple organ systems due to peroxisomal involvement in various metabolic functions. PEX13 gene variants are rare causes of ZSDs, with only 21 cases reported worldwide and none in China. METHODS: We describe an infant with biochemically and molecularly confirmed ZSDs due to variants in the PEX13 gene, identified by whole exome sequencing and validated by Sanger sequencing. The patient's treatment and prognosis were followed up. We also reviewed the literature on previously reported cases with PEX13 variants. RESULTS: The patient had severe hypotonia, seizures, hepatic dysfunction, failure to thrive, and dysmorphic features. Serum analysis revealed elevated levels of very long-chain fatty acids (VLCFA), phytanic acid, and pipecolic acid. We detected a novel homozygous missense variant c.493G>C (p. Ala165Pro) in the PEX13 gene (NM_002618.3), which caused severe clinical manifestations and was inherited from the consanguineous parents. The patient died at the age of 14 months. CONCLUSION: We report the first case of ZSDs due to the PEX13 variant in China. Our findings broaden the mutational spectrum of the PEX13 gene and indicate that missense variants can lead to severe ZSDs phenotypes, which has implications for genotype-phenotype correlations and genetic counseling.


Subject(s)
Peroxisomal Disorders , Zellweger Syndrome , Infant , Humans , Zellweger Syndrome/genetics , Zellweger Syndrome/metabolism , Peroxisomal Disorders/genetics , Mutation, Missense , Mutation , Membrane Proteins/genetics , Membrane Proteins/metabolism
8.
Chinese Journal of Pediatrics ; (12): 43-48, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013247

ABSTRACT

Objective: To summarize the clinical features and genetic characteristics of Zellweger spectrum disorder caused by PEX6 gene variation. Methods: This was a case series research. Clinical date and genetic results of 2 neonatal cases of Zellweger syndrome caused by PEX6 gene variation in Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology and Affiliated Hospital of Guangdong Medical University from July 2021 to July 2022 were retrospectively collected and analyzed. Literature up to August 2023 was searched from electronic databases of China National Knowledge Infrastructure (CNKI), Wanfang Data and PubMed with the combined keywords of "Zellweger syndrome" "Zellweger spectrum disorder", and "PEX6 gene" both in Chinese and English. The main clinical features and genetic characteristics of Zellweger spectrum disorder caused by PEX6 gene variation were summarized. Results: The 2 male neonates both developed clinical manifestations as dyspnea, hypotonia, feeding difficulties, enlarged fontanelle, and high palatine arch after birth. Biochemical parameters indicated elevated bile acids, and the cranial ultrasound showed the enlarged bilateral ventricles and subependymal cyst in both 2 neonates. Zellweger syndrome was confirmed by whole exome sequencing, and the results revealed PEX6 gene variation in the 2 neonates, including compound heterozygous variants c.315G>A and c.2095-3T>G, and homozygous variant c.506_507del. Case 1 was hospitalized for 5 days, and case 2 for 32 days; they both died shortly after being discharged (the specific time is unknown). Literature review found 26 patients, including 2 neonates in this study, with Zellweger spectrum disorder caused by PEX6 gene defect reported in 1 Chinese article and 11 English articles. Clinical features included hearing loss (19 cases), developmental delay (19 cases), vision impairment (19 cases), elevated very long chain fatty acids (17 cases), brain malformations (15 cases), hypotonia (12 cases), hepatic insufficiency (12 cases), distinctive facies (10 cases), and dental impairment (9 cases). Compound heterozygous variations dominated the variation types (15 cases), and the frameshift variations (16 cases) were the main pathogenic variations. Conclusions: Zellweger spectrum disorder should be considered when neonates show hypotonia, feeding difficulty, distinctive facial appearance, brain malformations and failure of hearing screening, or when older children show retinitis pigmentosa, sensorineural hearing loss, amelogenesis imperfecta and developmental delays. Detection of genetic variation in the PEX gene is crucial for definitive diagnosis.


Subject(s)
Child , Infant, Newborn , Humans , Male , Adolescent , Zellweger Syndrome/diagnosis , Muscle Hypotonia , Retrospective Studies , Frameshift Mutation , Exome Sequencing , Mutation , ATPases Associated with Diverse Cellular Activities/genetics
9.
Zhonghua Er Ke Za Zhi ; 62(1): 43-48, 2024 Jan 02.
Article in Chinese | MEDLINE | ID: mdl-38154976

ABSTRACT

Objective: To summarize the clinical features and genetic characteristics of Zellweger spectrum disorder caused by PEX6 gene variation. Methods: This was a case series research. Clinical date and genetic results of 2 neonatal cases of Zellweger syndrome caused by PEX6 gene variation in Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology and Affiliated Hospital of Guangdong Medical University from July 2021 to July 2022 were retrospectively collected and analyzed. Literature up to August 2023 was searched from electronic databases of China National Knowledge Infrastructure (CNKI), Wanfang Data and PubMed with the combined keywords of "Zellweger syndrome" "Zellweger spectrum disorder", and "PEX6 gene" both in Chinese and English. The main clinical features and genetic characteristics of Zellweger spectrum disorder caused by PEX6 gene variation were summarized. Results: The 2 male neonates both developed clinical manifestations as dyspnea, hypotonia, feeding difficulties, enlarged fontanelle, and high palatine arch after birth. Biochemical parameters indicated elevated bile acids, and the cranial ultrasound showed the enlarged bilateral ventricles and subependymal cyst in both 2 neonates. Zellweger syndrome was confirmed by whole exome sequencing, and the results revealed PEX6 gene variation in the 2 neonates, including compound heterozygous variants c.315G>A and c.2095-3T>G, and homozygous variant c.506_507del. Case 1 was hospitalized for 5 days, and case 2 for 32 days; they both died shortly after being discharged (the specific time is unknown). Literature review found 26 patients, including 2 neonates in this study, with Zellweger spectrum disorder caused by PEX6 gene defect reported in 1 Chinese article and 11 English articles. Clinical features included hearing loss (19 cases), developmental delay (19 cases), vision impairment (19 cases), elevated very long chain fatty acids (17 cases), brain malformations (15 cases), hypotonia (12 cases), hepatic insufficiency (12 cases), distinctive facies (10 cases), and dental impairment (9 cases). Compound heterozygous variations dominated the variation types (15 cases), and the frameshift variations (16 cases) were the main pathogenic variations. Conclusions: Zellweger spectrum disorder should be considered when neonates show hypotonia, feeding difficulty, distinctive facial appearance, brain malformations and failure of hearing screening, or when older children show retinitis pigmentosa, sensorineural hearing loss, amelogenesis imperfecta and developmental delays. Detection of genetic variation in the PEX gene is crucial for definitive diagnosis.


Subject(s)
Zellweger Syndrome , Child , Infant, Newborn , Humans , Male , Adolescent , Zellweger Syndrome/genetics , Zellweger Syndrome/diagnosis , Muscle Hypotonia , Retrospective Studies , Frameshift Mutation , Exome Sequencing , Mutation , ATPases Associated with Diverse Cellular Activities/genetics
10.
Indian J Pediatr ; 91(5): 507-509, 2024 May.
Article in English | MEDLINE | ID: mdl-38117438

ABSTRACT

Zellweger syndrome or cerebrohepatorenal syndrome is a rare, multisystem disorder occurring due to defect in metabolic pathway within the peroxisomes. Cirrhosis with portal hypertension is an important presentation of these patients. Given its progressive, multisystem nature, the role of liver transplantation (LT) in Zellweger syndrome remains undefined and controversial. An 11-y-old boy diagnosed with Zellweger syndrome presented to the authors with decompensated cirrhosis along with bilateral proptosis. After a meticulous evaluation, he was offered an ABO incompatible liver transplantation with his mother being the donor. He had an uneventful post operative period. After a follow up of 24 mo, he has normal graft function, normal cognition along with resolution of proptosis. Therefore, in a group of carefully selected patients with Zellweger syndrome, a liver transplantation can be offered successfully with an excellent prognosis.


Subject(s)
Exophthalmos , Hypertension, Portal , Liver Transplantation , Zellweger Syndrome , Male , Humans , Zellweger Syndrome/pathology , Liver Cirrhosis , Exophthalmos/pathology , Liver/pathology
11.
Orphanet J Rare Dis ; 18(1): 358, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974207

ABSTRACT

BACKGROUND: Zellweger spectrum disorders (ZSD) and X-linked adrenoleukodystrophy (X-ALD) are inherited metabolic diseases characterized by dysfunction of peroxisomes, that are essential for lipid metabolism and redox balance. Oxidative stress has been reported to have a significant role in the pathogenesis of neurodegenerative diseases such as peroxisomal disorders, but little is known on the intracellular activation of Mitogen-activated protein kinases (MAPKs). Strictly related to oxidative stress, a correct autophagic machinery is essential to eliminated oxidized proteins and damaged organelles. The aims of the current study are to investigate a possible implication of MAPK pathways and autophagy impairment as markers and putative therapeutic targets in X-ALD and ZSDs. METHODS: Three patients with ZSD (2 M, 1 F; age range 8-17 years) and five patients with X-ALD (5 M; age range 5- 22 years) were enrolled. A control group included 6 healthy volunteers. To evaluate MAPKs pathway, p-p38 and p-JNK were assessed by western blot analysis on peripheral blood mononuclear cells. LC3II/LC3I ratio was evaluated ad marker of autophagy. RESULTS: X-ALD and ZSD patients showed elevated p-p38 values on average 2- fold (range 1.21- 2.84) and 3.30-fold (range 1.56- 4.26) higher when compared with controls, respectively. p-JNK expression was on average 12-fold (range 2.20-19.92) and 2.90-fold (range 1.43-4.24) higher in ZSD and X-ALD patients than in controls. All patients had altered autophagic flux as concluded from the reduced LC3II/I ratio. CONCLUSIONS: In our study X-ALD and ZSD patients present an overactivation of MAPK pathways and an inhibition of autophagy. Considering the absence of successful therapies and the growing interest towards new therapies with antioxidants and autophagy inducers, the identification and validation of biomarkers to monitor optimal dosing and biological efficacy of the treatments is of prime interest.


Subject(s)
Adrenoleukodystrophy , Zellweger Syndrome , Humans , Child , Adolescent , Child, Preschool , Young Adult , Adult , Adrenoleukodystrophy/genetics , Zellweger Syndrome/metabolism , Leukocytes, Mononuclear/metabolism , Peroxisomes/metabolism , Oxidation-Reduction
12.
Mol Genet Metab ; 140(1-2): 107703, 2023.
Article in English | MEDLINE | ID: mdl-37802748

ABSTRACT

OBJECTIVE: To examine whether it is possible to screen for bile acid synthesis disorders (BASDs) including peroxisome biogenesis disorder 1a (PBD1A) and Niemann-Pick type C1 (NPC1) at the time of newborn mass screening by measuring the intermediary metabolites of bile acid (BA) synthesis. METHODS: Patients with 3ß-hydroxy-ΔSuchy et al. (2021)5-C27-steroid dehydrogenase/isomerase (HSD3B7) deficiency (n = 2), 3-oxo-ΔPandak and Kakiyama (n.d.)4-steroid 5ß-reductase (SRD5B1) deficiency (n = 1), oxysterol 7α-hydroxylase (CYP7B1) deficiency (n = 1), PBD1A (n = 1), and NPC1 (n = 2) with available dried blood spot (DBS) samples collected in the neonatal period were included. DBSs from healthy neonates at 4 days of age (n = 1055) were also collected for the control. Disease specific BAs were measured by newly optimized liquid chromatography-tandem mass spectrometry with short run cycle (5-min/run). The results were validated by comparing with those obtained by the conventional condition with longer run cycle (76-min/run). RESULTS: In healthy specimens, taurocholic acid and cholic acid were the two major BAs which constituted approximately 80% in the measured BAs. The disease marker BAs presented <10%. In BASDs, the following BAs were determined for the disease specific markers: Glyco/tauro 3ß,7α,12α-trihydroxy-5-cholenoic acid 3-sulfate for HSD3B7 deficiency (>70%); glyco/tauro 7α,12α-dihydroxy-3-oxo-4-cholenoic acid for SRD5B1 deficiency (54%); tauro 3ß-hydroxy-5-cholenoic acid 3-sulfate for CYP7B1 deficiency (94%); 3α,7α,12α-trihydroxy-5ß-cholestanoic acid for PBD1A (78%); and tauro 3ß,7ß-dihydroxy-5-cholenoic acid 3-sulfate for NPC1 (26%). *The % in the parenthesis indicates the portion found in the patient's specimen. CONCLUSIONS: Early postnatal screening for BASDs, PBD1A and NPC1 is feasible with the described DBS-based method by measuring disease specific BAs. The present method is a quick and affordable test for screening for these inherited diseases.


Subject(s)
Liver Diseases , Zellweger Syndrome , Infant, Newborn , Humans , Bile Acids and Salts , Neonatal Screening , Steroids , Sulfates
13.
J Inherit Metab Dis ; 46(6): 1159-1169, 2023 11.
Article in English | MEDLINE | ID: mdl-37747296

ABSTRACT

Measurement of plasmalogens is useful for the biochemical diagnosis of rhizomelic chondrodysplasia punctata (RCDP) and is also informative for Zellweger spectrum disorders (ZSD). We have developed a test method for the simultaneous quantitation of C16:0, C18:0, and C018:1 plasmalogen (PG) species and their corresponding fatty acids (FAs) in dried blood spots (DBS) and erythrocytes (RBC) by using capillary gas chromatography-mass spectrometry. Normal reference ranges for measured markers and 10 calculated ratios were established by the analysis of 720 and 473 unaffected DBS and RBC samples, respectively. Determination of preliminary disease ranges was made by using 45 samples from 43 unique patients: RCDP type 1 (DBS: 1 mild, 17 severe; RBC: 1 mild, 6 severe), RCDP type 2 (DBS: 2 mild, 1 severe; RBC: 2 severe), RCDP type 3 (DBS: 1 severe), RCDP type 4 (RBC: 2 severe), and ZSD (DBS: 3 severe; RBC: 2 mild, 7 severe). Postanalytical interpretive tools in Collaborative Laboratory Integrated Reports (CLIR) were used to generate an integrated score and a likelihood of disease. In conjunction with a review of clinical phenotype, phytanic acid, and very long-chain FA test results, the CLIR analysis allowed for differentiation between RCDP and ZSD. Data will continue to be gathered to improve CLIR analysis as more samples from affected patients with variable disease severity are analyzed. The addition of DBS analysis of PGs may allow for at-home specimen collection and second-tier testing for newborn screening programs.


Subject(s)
Chondrodysplasia Punctata, Rhizomelic , Peroxisomal Disorders , Zellweger Syndrome , Infant, Newborn , Humans , Plasmalogens , Chondrodysplasia Punctata, Rhizomelic/genetics , Peroxisomal Disorders/diagnosis , Phytanic Acid
14.
Ophthalmology ; 130(12): 1313-1326, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37541626

ABSTRACT

PURPOSE: Individuals with Zellweger spectrum disorder (ZSD) manifest a spectrum of clinical phenotypes but almost all have retinal degeneration leading to blindness. The onset, extent, and progression of retinal findings have not been well described. It is crucial to understand the natural history of vision loss in ZSD to define reliable endpoints for future interventional trials. Herein, we describe ophthalmic findings in the largest number of ZSD patients to date. DESIGN: Retrospective review of longitudinal data from medical charts and review of cross-sectional data from the literature. PARTICIPANTS: Sixty-six patients with ZSD in the retrospective cohort and 119 patients reported in the literature, divided into 4 disease phenotypes based on genotype or clinical severity. METHODS: We reviewed ophthalmology records collected from the retrospective cohort (Clinicaltrials.gov NCT01668186) and performed a scoping review of the literature for ophthalmic findings in patients with ZSD. We extracted available ophthalmic data and analyzed by age and disease severity. MAIN OUTCOME MEASURES: Visual acuity (VA), posterior and anterior segment descriptions, nystagmus, refraction, electroretinography findings, visual evoked potentials, and OCT results and images. RESULTS: Visual acuity was worse at younger ages in those with severe disease compared with older patients with intermediate to mild disease for all 78 participants analyzed, with a median VA of 0.93 logarithm of the minimum angle of resolution (Snellen 20/320). Longitudinal VA data revealed slow loss over time and legal blindness onset at an average age of 7.8 years. Funduscopy showed retinal pigmentation, macular abnormalities, small or pale optic discs, and attenuated vessels with higher prevalence in milder severity groups and did not change with age. Electroretinography waveforms were diminished in 91% of patients, 46% of which were extinguished and did not change with age. OCT in milder patients revealed schitic changes in 18 of 23 individuals (age range 1.8 to 30 years), with evolution or stable macular edema. CONCLUSIONS: In ZSD, VA slowly deteriorates and is associated with disease severity, serial electroretinography is not useful for documenting vision loss progression, and intraretinal schitic changes may be common. Multiple systematic measures are required to assess retinal dystrophy accurately in ZSD, including functional vision measures. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Evoked Potentials, Visual , Zellweger Syndrome , Humans , Child , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Cross-Sectional Studies , Retrospective Studies , Blindness , Retina
15.
Genet Med ; 25(11): 100944, 2023 11.
Article in English | MEDLINE | ID: mdl-37493040

ABSTRACT

PURPOSE: Zellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD. METHODS: We performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies. RESULTS: We identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients' fibroblasts. CONCLUSION: Our finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.


Subject(s)
Zellweger Syndrome , Humans , Alleles , Peroxisomes/genetics , Peroxisomes/metabolism , Protein Transport/physiology , Proteins/genetics , Zellweger Syndrome/genetics
16.
Epilepsy Behav ; 145: 109266, 2023 08.
Article in English | MEDLINE | ID: mdl-37385119

ABSTRACT

Zellweger spectrum disorders (ZSD) are rare autosomal recessive disorders caused by defects in peroxisome biogenesis factor (PEX; peroxin) genes leading to impaired transport of peroxisomal proteins with peroxisomal targeting signals (PTS). Four patients, including a pair of homozygotic twins, diagnosed as ZSD by genetic study with different clinical presentations and outcomes as well as various novel mutations are described here. A total of 3 novel mutations, including a nonsense, a frameshift, and a splicing mutation, in PEX1 from ZSD patients were identified and unequivocally confirmed that the p.Ile989Thr mutant PEX1 exhibited temperature-sensitive characteristics and is associated with milder ZSD. The nature of the p.Ile989Thr mutant exhibited different characteristics from that of the other previously identified temperature-sensitive p.Gly843Asp PEX1 mutant. Transcriptome profiles under nonpermissive vs. permissive conditions were explored to facilitate the understanding of p.Ile989Thr mutant PEX1. Further investigation of molecular mechanisms may help to clarify potential genetic causes that could modify the clinical presentation of ZSD.


Subject(s)
Zellweger Syndrome , Humans , Child , Zellweger Syndrome/genetics , Zellweger Syndrome/complications , Zellweger Syndrome/metabolism , Temperature , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Fibroblasts/metabolism , Mutation/genetics
17.
Orphanet J Rare Dis ; 18(1): 102, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37189159

ABSTRACT

BACKGROUND: The peroxisome is a ubiquitous single membrane-enclosed organelle with an important metabolic role. Peroxisomal disorders represent a class of medical conditions caused by deficiencies in peroxisome function and are segmented into enzyme-and-transporter defects (defects in single peroxisomal proteins) and peroxisome biogenesis disorders (defects in the peroxin proteins, critical for normal peroxisome assembly and biogenesis). In this study, we employed multivariate supervised and non-supervised statistical methods and utilized mass spectrometry data of neurological patients, peroxisomal disorder patients (X-linked adrenoleukodystrophy and Zellweger syndrome), and healthy controls to analyze the role of common metabolites in peroxisomal disorders, to develop and refine a classification models of X-linked adrenoleukodystrophy and Zellweger syndrome, and to explore analytes with utility in rapid screening and diagnostics. RESULTS: T-SNE, PCA, and (sparse) PLS-DA, operated on mass spectrometry data of patients and healthy controls were utilized in this study. The performance of exploratory PLS-DA models was assessed to determine a suitable number of latent components and variables to retain for sparse PLS-DA models. Reduced-features (sparse) PLS-DA models achieved excellent classification performance of X-linked adrenoleukodystrophy and Zellweger syndrome patients. CONCLUSIONS: Our study demonstrated metabolic differences between healthy controls, neurological patients, and peroxisomal disorder (X-linked adrenoleukodystrophy and Zellweger syndrome) patients, refined classification models and showed the potential utility of hexacosanoylcarnitine (C26:0-carnitine) as a screening analyte for Chinese patients in the context of a multivariate discriminant model predictive of peroxisomal disorders.


Subject(s)
Adrenoleukodystrophy , Peroxisomal Disorders , Zellweger Syndrome , Child , Humans , Adrenoleukodystrophy/diagnosis , East Asian People , Multivariate Analysis , Peroxisomal Disorders/diagnosis , Peroxisomal Disorders/metabolism , Zellweger Syndrome/diagnosis , Zellweger Syndrome/metabolism , China
18.
Am J Med Genet A ; 191(8): 2057-2063, 2023 08.
Article in English | MEDLINE | ID: mdl-37144748

ABSTRACT

Zellweger spectrum disorder (ZSD) is a group of autosomal recessive disorders caused by biallelic pathogenic variants in any one of the 13 PEX genes essential for peroxisomal biogenesis. We report a cohort of nine infants who presented at birth with severe neonatal features suggestive of ZSD and found to be homozygous for a variant in PEX6 (NM_000287.4:c.1409G > C[p.Gly470Ala]). All were of Mixtec ancestry and identified by the California Newborn Screening (NBS) Program to have elevated C26:0-lysophosphatidylcholine but no reportable variants in ABCD1. The clinical and biochemical features of this cohort are described within. Gly470Ala may represent a founder variant in the Mixtec population of Central California. ZSD should be considered in patients who present at birth with severe hypotonia and enlarged fontanelles, especially in the setting of an abnormal NBS, Mixtec ancestry, or family history of infant death. There is a need to further characterize the natural history of ZSD, the Gly470Ala variant, and expand upon possible genotype-phenotype correlations.


Subject(s)
Zellweger Syndrome , Humans , Infant, Newborn , Zellweger Syndrome/diagnosis , Zellweger Syndrome/genetics , Zellweger Syndrome/pathology , ATPases Associated with Diverse Cellular Activities/genetics , Genetic Association Studies , Neonatal Screening , Lysophosphatidylcholines
19.
BMJ Case Rep ; 16(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36931687

ABSTRACT

Genetic conditions have varied presentations, and one of them is the association with multiple malformation syndrome (MMS), which has a high mortality rate in the immediate postnatal period. Here, we describe a neonate born with multiple anomalies-wide anterior and posterior fontanelle, metopic suture, flat nasal bridge, hypertelorism, low set dysplastic ears, corneal cloudiness, micrognathia, webbed neck, simian crease, undescended testis, hypospadias, congenital talipes equinovarus, hypoplastic inferior cerebellar vermis, poor reflexes, hypotonia and ventricular septal defect. There was a history of sibling death with similar malformations, pointing towards a genetic aetiology. Clinical exome sequencing yielded the diagnosis of Zellweger syndrome with a rare mutation in PEX-19 gene. Inherited metabolic syndromes frequently masquerade as malformations, but family history of an affected sibling and clinical suspicion aided diagnosis of the infant.


Subject(s)
Abnormalities, Multiple , Clubfoot , Heart Septal Defects, Ventricular , Zellweger Syndrome , Infant , Infant, Newborn , Male , Humans , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Mutation
20.
Brain Dev ; 45(1): 58-69, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36511274

ABSTRACT

OBJECTIVE: Bile acid intermediates, 3α,7α,12α-trihydroxycholestanoic acid (THCA) and 3α,7α-dihydroxycholestanoic acid (DHCA), are metabolized in peroxisomes. Some peroxisomal disorders (PDs), such as Zellweger spectrum disorder (ZSD), show an accumulation of bile acid intermediates. In particular, ABCD3 deficiency and acyl-CoA-oxidase 2 deficiency are characterized by these metabolite abnormalities. In patients with ZSD, levels of bile acid intermediates can be lowered by a primary bile acid supplementation treatment; therefore, measuring their levels could help evaluate treatment effectiveness. Here, we established a method for the quantitative determination of bile acid intermediates (THCA/DHCA) for differentiating PDs and assessing bile acid treatment. METHODS: Serum samples, obtained from patients with several forms of ZSD as well as peroxisomal ß-oxidation enzyme deficiencies, were deproteinized and analyzed using liquid chromatography-mass spectrometry. RESULTS: Levels of the bile acid intermediates increased significantly in patients with Zellweger syndrome (ZS) and slightly in patients with neonatal adrenoleukodystrophy and infantile Refsum disease (IRD), reflecting the severity of these diseases. One patient with ZS treated with primary bile acids for 6 months showed slightly decreased serum DHCA levels but significantly increased serum THCA levels. One patient with IRD who underwent living-donor liver transplantation showed a rapid decrease in serum THCA and DHCA levels, which remained undetected for 6 years. In all controls, THCA and DHCA levels were below the detection limit. CONCLUSION: The analytical method developed in this study is useful for diagnosing various PD and validating bile acid treatment. Additionally, it can help predict the prognosis of patients with PD and support treatment strategies.


Subject(s)
Liver Transplantation , Peroxisomal Disorders , Zellweger Syndrome , Infant, Newborn , Humans , Bile Acids and Salts , Living Donors , Peroxisomal Disorders/diagnosis , Zellweger Syndrome/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL