Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
Food Res Int ; 192: 114829, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147518

ABSTRACT

This study focused on exploring the Zn2+ chelating peptide GFLGSP: the characterization of structure/Zn2+ chelating mode and the potential mechanisms for promoting Zn2+ transport in Caco-2 cells. The findings revealed the bidentate chelating between Zn2+ and carboxyl oxygen atom in Pro6 residue. Thereafter, the secondary structure of GFLGSP remained unchanged, but there was an increase in zeta potential and particle size. Notably, the GFLGSP-Zn2+ complex enhanced the Zn2+ transport rate and modulated ZIP4 and ZNT1 expression in a Caco-2 cells monolayer model. As revealed by molecular docking analysis, GFLGSP interacted with ZIP4 through intermolecular hydrogen bonds as well as Van der Waals forces. The Zn2+ transport mechanisms of the GFLGSP-Zn2+ complex encompassed ZIP4 (vital channel), endocytosis (primary pathway) and paracellular transport (supplementary pathway). Based on these results, the tilapia skin collagen-derived GFLGSP hold promise as the potential dietary Zn2+ supplement.


Subject(s)
Cation Transport Proteins , Chelating Agents , Molecular Docking Simulation , Peptides , Zinc , Humans , Caco-2 Cells , Zinc/metabolism , Zinc/chemistry , Chelating Agents/chemistry , Chelating Agents/metabolism , Chelating Agents/pharmacology , Cation Transport Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Biological Transport
2.
Sci Rep ; 14(1): 19306, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164283

ABSTRACT

The Violaceae family is rich in metal-tolerant species and species producing cyclic peptides (cyclotides) that are linked to the resistance to biotic factors. Plants that inhabit areas polluted with heavy metals have developed various mechanisms of tolerance. To test the role of cyclotides in protection against abiotic factors, including heavy metals, cell suspension cultures of Viola species/genotypes (V. lutea ssp. westfalica, V. tricolor, V. arvensis, and V. uliginosa), representing different levels of tolerance to heavy metals (from the most tolerant-MET to the least tolerant populations/species-NMET), were used. The relative abundances of the cyclotides in the control, untreated cell suspensions of all the selected species/genotypes, and cells treated with Zn or Pb (200 µM or 2000 µM) for 24 h or 72 h were determined via MALDI-MS. Transmission electron microscopy with X-ray microanalysis was used to detect putative co-localization of the cyclotides with Zn or Pb in the cells of V. tricolor treated with the highest concentration of heavy metals for 72 h. Cyclotide biosynthesis was dependent on the type of heavy metal and its concentration, time of treatment, plant species, and population type (MET vs. NMET). It was positively correlated with the level of tolerance of particular Viola species. The increased production of cyclotides was observed in the cells of metallophyte species, mostly in Zn-treated cells. The nonmetallophyte-V. uliginosa presented a decrease in the production of cyclotides independent of the dose and duration of the metal treatment. Cyclotides co-localized with Pb more evidently than with Zn, suggesting that cyclotides have heavy metal affinity. V. lutea ssp. westfalica transcriptome mining yielded 100 cyclotide sequences, 16 known and 84 novel named viwe 1-84. These findings support the hypothesis that cyclotides are involved in certain mechanisms of plant tolerance to heavy metals.


Subject(s)
Cyclotides , Metals, Heavy , Viola , Cyclotides/metabolism , Viola/metabolism , Viola/drug effects , Viola/genetics , Metals, Heavy/toxicity , Zinc/metabolism , Zinc/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics
3.
Cell Mol Life Sci ; 81(1): 357, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158587

ABSTRACT

SLC30A9 (ZnT9) is a mitochondria-resident zinc transporter. Mutations in SLC30A9 have been reported in human patients with a novel cerebro-renal syndrome. Here, we show that ZnT9 is an evolutionarily highly conserved protein, with many regions extremely preserved among evolutionarily distant organisms. In Drosophila melanogaster (the fly), ZnT9 (ZnT49B) knockdown results in acutely impaired movement and drastic mitochondrial deformation. Severe Drosophila ZnT9 (dZnT9) reduction and ZnT9-null mutant flies are pupal lethal. The phenotype of dZnT9 knockdown can be partially rescued by mouse ZnT9 expression or zinc chelator TPEN, indicating the defect of dZnT9 loss is indeed a result of zinc dyshomeostasis. Interestingly, in the mouse, germline loss of Znt9 produces even more extreme phenotypes: the mutant embryos exhibit midgestational lethality with severe development abnormalities. Targeted mutagenesis of Znt9 in the mouse brain leads to serious dwarfism and physical incapacitation, followed by death shortly. Strikingly, the GH/IGF-1 signals are almost non-existent in these tissue-specific knockout mice, consistent with the medical finding in some human patients with severe mitochondrial deficiecny. ZnT9 mutations cause mitochondrial zinc dyshomeostasis, and we demonstrate mechanistically that mitochondrial zinc elevation quickly and potently inhibits the activities of respiration complexes. These results reveal the critical role of ZnT9 and mitochondrial zinc homeostasis in mammalian development. Based on our functional analyses, we finally discussed the possible nature of the so far identified human SLC30A9 mutations.


Subject(s)
Cation Transport Proteins , Embryonic Development , Mitochondria , Zinc , Animals , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Humans , Zinc/metabolism , Mice , Mitochondria/metabolism , Embryonic Development/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Evolution, Molecular , Mice, Knockout , Amino Acid Sequence , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Transcription Factors , Cell Cycle Proteins
4.
Proc Natl Acad Sci U S A ; 121(32): e2304382121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088389

ABSTRACT

Microbes rarely exist in isolation and instead form complex polymicrobial communities. As a result, microbes have developed intricate offensive and defensive strategies that enhance their fitness in these complex communities. Thus, identifying and understanding the molecular mechanisms controlling polymicrobial interactions is critical for understanding the function of microbial communities. In this study, we show that the gram-negative opportunistic human pathogen Pseudomonas aeruginosa, which frequently causes infection alongside a plethora of other microbes including fungi, encodes a genetic network which can detect and defend against gliotoxin, a potent, disulfide-containing antimicrobial produced by the ubiquitous filamentous fungus Aspergillus fumigatus. We show that gliotoxin exposure disrupts P. aeruginosa zinc homeostasis, leading to transcriptional activation of a gene encoding a previously uncharacterized dithiol oxidase (herein named as DnoP), which detoxifies gliotoxin and structurally related toxins. Despite sharing little homology to the A. fumigatus gliotoxin resistance protein (GliT), the enzymatic mechanism of DnoP from P. aeruginosa appears to be identical that used by A. fumigatus. Thus, DnoP and its transcriptional induction by low zinc represent a rare example of both convergent evolution of toxin defense and environmental cue sensing across kingdoms. Collectively, these data provide compelling evidence that P. aeruginosa has evolved to survive exposure to an A. fumigatus disulfide-containing toxin in the natural environment.


Subject(s)
Aspergillus fumigatus , Gliotoxin , Pseudomonas aeruginosa , Gliotoxin/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/genetics , Zinc/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Interactions , Humans , Fungal Proteins/metabolism , Fungal Proteins/genetics
5.
Sci Rep ; 14(1): 18431, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117781

ABSTRACT

Reactive oxygen species (ROS) serve vital physiological functions, but aberrant ROS production contributes to numerous diseases. Unfortunately, therapeutic progress targeting pathogenic ROS has been hindered by the limited understanding of whether the mechanisms driving pathogenic ROS differ from those governing physiological ROS generation. To address this knowledge gap, we utilised a cellular model of Parkinson's disease (PD), as an exemplar of ROS-associated diseases. We exposed SH-SY5Y neuroblastoma cells to the PD-toxin, MPP+ (1-methyl-4-phenylpyridinium) and studied ROS upregulation leading to cell death, the primary cause of PD. We demonstrate: (1) MPP+ stimulates ROS production by raising cytoplasmic Ca2+ levels, rather than acting directly on mitochondria. (2) To raise the Ca2+, MPP+ co-stimulates NADPH oxidase-2 (NOX2) and the Transient Receptor Potential Melastatin2 (TRPM2) channel that form a positive feedback loop to support each other's function. (3) Ca2+ exacerbates mitochondrial ROS (mtROS) production not directly, but via Zn2+. (4) Zn2+ promotes electron escape from respiratory complexes, predominantly from complex III, to generate mtROS. These conclusions are drawn from data, wherein inhibition of TRPM2 and NOX2, chelation of Ca2+ and Zn2+, and prevention of electron escape from complexes -all abolished the ability of MPP+ to induce mtROS production and the associated cell death. Furthermore, calcium ionophore mimicked the effects of MPP+, while Zn2+ ionophore replicated the effects of both MPP+ and Ca2+. Thus, we unveil a previously unrecognized signalling circuit involving NOX2, TRPM2, Ca2+, Zn2+, and complex III that drives cytotoxic ROS production. This circuit lies dormant in healthy cells but is triggered by pathogenic insults and could therefore represent a safe therapeutic target for PD and other ROS-linked diseases.


Subject(s)
Calcium , Mitochondria , NADPH Oxidase 2 , Parkinson Disease , Reactive Oxygen Species , TRPM Cation Channels , Zinc , Reactive Oxygen Species/metabolism , Humans , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Zinc/metabolism , TRPM Cation Channels/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Calcium/metabolism , Cell Line, Tumor , Mitochondria/metabolism , Mitochondria/drug effects , 1-Methyl-4-phenylpyridinium
6.
BMC Plant Biol ; 24(1): 775, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143521

ABSTRACT

BACKGROUND: To optimize irrigation water use and productivity, understanding the interactions between plants, irrigation techniques, and fertilization practices is crucial. Therefore, the experiment aims to assess the effectiveness of two application methods of potassium humate combined with chelated zinc under partial root-zone drip irrigation techniques on maize nutrient uptake, yield, and irrigation water use efficiency across two irrigation levels. METHODS: Open-field experiments were carried out in two summer seasons of 2021 and 2022 under alternate and fixed partial root-zone drip irrigation techniques to investigate their impacts at two irrigation levels and applied foliar and soil applications of potassium humate or chelated zinc in a sole and combinations on maize. RESULTS: Deficit irrigation significantly increased hydrogen peroxide levels and decreased proline, antioxidant enzymes, carbohydrate, chlorophyll (a + b), and nutrient uptake in both partial root-zone techniques. The implementation of combined soil application of potassium humate and chelated zinc under drought conditions on maize led to varying impacts on antioxidant enzymes and nutritional status, depending on the type of partial root-zone technique. Meanwhile, the results showed that fixed partial root-zone irrigation diminished the negative effects of drought stress by enhancing phosphorus uptake (53.8%), potassium uptake (59.2%), proline (74.4%) and catalase (75%); compared to the control. These enhancements may contribute to improving the defense system of maize plants in such conditions. On the other hand, the same previous treatments under alternate partial root zone modified the defense mechanism of plants and improved the contents of peroxidase, superoxide dismutase, and the uptake of magnesium, zinc, and iron by 81.3%, 82.3%, 85.1%, 56.9%, and 80.2%, respectively. CONCLUSIONS: Adopting 75% of the irrigation requirements and treating maize plants with the soil application of 3 g l-1 potassium humate combined with 1.25 kg ha-1 chelated zinc under alternate partial root-zone technique, resulted in the maximum root length, leaf water content, chlorophyll content, yield, and irrigation water use efficiency.


Subject(s)
Agricultural Irrigation , Plant Roots , Potassium , Zea mays , Zinc , Zea mays/metabolism , Agricultural Irrigation/methods , Zinc/metabolism , Potassium/metabolism , Plant Roots/metabolism , Water/metabolism , Desert Climate , Soil/chemistry , Droughts , Fertilizers
7.
Biochemistry ; 63(16): 2051-2062, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39099176

ABSTRACT

The copper chaperone for Sod1 (Ccs) is a metallochaperone that plays a multifaceted role in the maturation of Cu,Zn superoxide dismutase (Sod1). The Ccs mutation R163W was identified in an infant with fatal neurological abnormalities. Based on a comprehensive structural and functional analysis, we developed the first data-driven model for R163W-related pathogenic phenotypes. The work here confirms previous findings that the substitution of arginine with tryptophan at this site, which is located adjacent to a conserved Zn binding site, creates an unstable Zn-deficient protein that loses its ability to efficiently activate Sod1. Intriguingly, R163W Ccs can reduce copper (i.e., Cu(II) → Cu(I)) bound in its Sod1-like domain (D2), and this novel redox event is accompanied by disulfide bond formation. The loss of Zn binding, along with the unusual ability to bind copper in D2, diverts R163W Ccs toward aggregation. The remarkably high affinity of D2 Cu(I) binding converts R163W from a Cu chaperone to a Cu scavenger that accelerates Sod1 deactivation (i.e., an Anti-chaperone). Overall, these findings present a first-of-its-kind molecular mechanism for Ccs dysfunction that leads to pathogenesis in humans.


Subject(s)
Copper , Molecular Chaperones , Superoxide Dismutase-1 , Humans , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/chemistry , Copper/metabolism , Zinc/metabolism , Models, Molecular , Amino Acid Substitution , Binding Sites , Oxidation-Reduction
8.
Nature ; 632(8025): 672-677, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112705

ABSTRACT

The neurotransmitter dopamine has central roles in mood, appetite, arousal and movement1. Despite its importance in brain physiology and function, and as a target for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and mechanisms by which it is inhibited by small molecules and Zn2+ are without a high-resolution structural context. Here we determine the structure of hDAT in a tripartite complex with the competitive inhibitor and cocaine analogue, (-)-2-ß-carbomethoxy-3-ß-(4-fluorophenyl)tropane2 (ß-CFT), the non-competitive inhibitor MRS72923 and Zn2+ (ref. 4). We show how ß-CFT occupies the central site, approximately halfway across the membrane, stabilizing the transporter in an outward-open conformation. MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward-facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits transport activity.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors , Humans , Allosteric Site/drug effects , Cocaine/analogs & derivatives , Cocaine/chemistry , Cocaine/metabolism , Cocaine/pharmacology , Cryoelectron Microscopy , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/ultrastructure , Dopamine Uptake Inhibitors/chemistry , Dopamine Uptake Inhibitors/metabolism , Dopamine Uptake Inhibitors/pharmacology , Models, Molecular , Movement/drug effects , Protein Conformation/drug effects , Zinc/metabolism , Zinc/chemistry , Zinc/pharmacology
10.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125801

ABSTRACT

Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.


Subject(s)
Lactoferrin , Mannheimia haemolytica , Metalloproteases , Proteolysis , Lactoferrin/metabolism , Lactoferrin/pharmacology , Metalloproteases/metabolism , Metalloproteases/antagonists & inhibitors , Animals , Apoproteins/metabolism , Apoproteins/chemistry , Molecular Docking Simulation , Sheep , Cattle , Collagenases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Zinc/metabolism
11.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125848

ABSTRACT

Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.


Subject(s)
Aminoacyltransferases , Zinc , Humans , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Zinc/metabolism , Zinc/chemistry , Binding Sites , Cobalt/metabolism , Cobalt/chemistry , Protein Binding , Models, Molecular
12.
Sci Rep ; 14(1): 18024, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39098874

ABSTRACT

Developing high-yielding rice varieties that possess favorable agronomic characteristics and enhanced grain Zn content is crucial in ensuring food security and addressing nutritional needs. This research employed ICIM, IM, and multi-parent population QTL mapping methods to identify important genetic regions associated with traits such as DF, PH, NT, NP, PL, YLD, TGW, GL, GW, Zn, and Fe. Two populations of recombinant inbred lines consisting of 373 lines were phenotyped for agronomic, yield and grain micronutrient traits for three seasons at IRRI, and genotyped by sequencing. Most of the traits demonstrated moderate to high broad-sense heritability. There was a positive relationship between Zn and Fe contents. The principal components and correlation results revealed a significant negative association between YLD and Zn/Fe. ICIM identified 81 QTLs, while IM detected 36 QTLs across populations. The multi-parent population analysis detected 27 QTLs with six of them consistently detected across seasons. We shortlisted eight candidate genes associated with yield QTLs, 19 genes with QTLs for agronomic traits, and 26 genes with Zn and Fe QTLs. Notable candidate genes included CL4 and d35 for YLD, dh1 for DF, OsIRX10, HDT702, sd1 for PH, OsD27 for NP, whereas WFP and OsIPI1 were associated with PL, OsRSR1 and OsMTP1 were associated to TGW. The OsNAS1, OsRZFP34, OsHMP5, OsMTP7, OsC3H33, and OsHMA1 were associated with Fe and Zn QTLs. We identified promising RILs with acceptable yield potential and high grain Zn content from each population. The major effect QTLs, genes and high Zn RILs identified in our study are useful for efficient Zn biofortification of rice.


Subject(s)
Chromosome Mapping , Oryza , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Oryza/genetics , Genetic Linkage , Phenotype , Zinc/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Genotype
13.
Nat Commun ; 15(1): 6888, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134525

ABSTRACT

Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.


Subject(s)
Peroxidase , Zinc , Humans , Catalysis , Peroxidase/metabolism , Peroxidase/chemistry , Zinc/chemistry , Zinc/metabolism , Animals , Catalytic Domain , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Mice , Cell Line, Tumor , Density Functional Theory
14.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125963

ABSTRACT

The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.


Subject(s)
Coordination Complexes , Copper , DNA , Molecular Docking Simulation , Prodigiosin , Serum Albumin, Bovine , Zinc , Prodigiosin/chemistry , Prodigiosin/metabolism , Prodigiosin/pharmacology , Copper/chemistry , Copper/metabolism , Zinc/metabolism , Zinc/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , DNA/metabolism , DNA/chemistry , Animals , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Cattle , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Binding Sites
15.
Nat Commun ; 15(1): 6518, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117623

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons in the central nervous system (CNS). Mutations in the metalloenzyme SOD1 are associated with inherited forms of ALS and cause a toxic gain of function thought to be mediated by dimer destabilization and misfolding. SOD1 binds two Cu and two Zn ions in its homodimeric form. We have applied native ambient mass spectrometry imaging to visualize the spatial distributions of intact metal-bound SOD1G93A complexes in SOD1G93A transgenic mouse spinal cord and brain sections and evaluated them against disease pathology. The molecular specificity of our approach reveals that metal-deficient SOD1G93A species are abundant in CNS structures correlating with ALS pathology whereas fully metalated SOD1G93A species are homogenously distributed. Monomer abundance did not correlate with pathology. We also show that the dimer-destabilizing post-translational modification, glutathionylation, has limited influence on the spatial distribution of SOD1 dimers.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain , Mass Spectrometry , Mice, Transgenic , Spinal Cord , Superoxide Dismutase-1 , Animals , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/chemistry , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Mice , Spinal Cord/metabolism , Spinal Cord/pathology , Mass Spectrometry/methods , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology , Copper/metabolism , Zinc/metabolism , Humans , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/chemistry , Mutation , Protein Processing, Post-Translational , Protein Multimerization , Disease Models, Animal , Male
16.
Article in English | MEDLINE | ID: mdl-38960471

ABSTRACT

Acinetobacter baumannii is a gram-negative bacterium well known for its multidrug resistance and connection to nosocomial infections under ESKAPE pathogens. This opportunistic pathogen is ubiquitously associated with nosocomial infections, posing significant threats within healthcare environments. Its critical clinical symptoms, namely, meningitis, urinary tract infections, bloodstream infections, ventilator-associated pneumonia, and pneumonia, catalyze the imperative demand for innovative therapeutic interventions. The proposed research focuses on delineating the role of Zinc, a crucial metallo-binding protein and micronutrient integral to bacterial metabolism and virulence, to enhance understanding of the pathogenicity of A. baumannii. RNA sequencing and subsequent DESeq2 analytical methods were used to identify differential gene expressions influenced by zinc exposure. Exploiting the STRING database for functional enrichment analysis has demonstrated the complex molecular mechanisms underlying the enhancement of pathogenicity prompted by Zinc. Moreover, hub genes like gltB, ribD, AIL77834.1, sdhB, nuoI, acsA_1, acoC, accA, accD were predicted using the cytohubba tool in Cytoscape. This investigation underscores the pivotal role of Zinc in the virulence of A. baumannii elucidates the underlying molecular pathways responsible for its pathogenicity. The research further accentuates the need for innovative therapeutic strategies to combat A. baumannii infections, particularly those induced by multidrug-resistant strains.


Subject(s)
Acinetobacter baumannii , Drug Resistance, Multiple, Bacterial , Zinc , Acinetobacter baumannii/genetics , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/metabolism , Zinc/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Virulence/genetics , Humans , Gene Expression Profiling , Transcriptome , Acinetobacter Infections/microbiology , Acinetobacter Infections/metabolism , Acinetobacter Infections/drug therapy , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
17.
BMC Plant Biol ; 24(1): 648, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977994

ABSTRACT

BACKGROUND: A study on photosynthetic and enzyme activity changes and mineral content in lettuce under cadmium stress has been conducted in a greenhouse, utilizing the modulated effect of zinc (Zn) application in the nutrient solution on lettuce. Zn is a micronutrient that plays an essential role in various critical plant processes. Accordingly, three concentrations of Zn (0.022, 5, and 10 mg L- 1) were applied to hydroponically grown lettuce (Lactuca sativa L. cv. Ferdos) under three concentrations of Cd toxicity (0, 2.5, and 5 mg L- 1). RESULTS: The results showed that along with increasing concentrations of zinc in the nutrient solution, growth traits such as plant performance, chlorophyll index (SPAD), minimum fluorescence (F0), leaf zinc content (Zn), leaf and root iron (Fe) content, manganese (Mn), copper (Cu), and cadmium increased as well. The maximum amounts of chlorophyll a (33.9 mg g- 1FW), chlorophyll b (17.3 mg g- 1FW), carotenoids (10.7 mg g- 1FW), maximum fluorescence (Fm) (7.1), and variable fluorescence (Fv) (3.47) were observed in the treatment with Zn without Cd. Along with an increase in Cd concentration in the nutrient solution, the maximum amounts of leaf proline (5.93 mmol g- 1FW), malondialdehyde (MDA) (0.96 µm g- 1FW), hydrogen peroxide (H2O2) (22.1 µm g- 1FW), and superoxide dismutase (SOD) (90.3 Unit mg- 1 protein) were recorded in lettuce treated with 5 mg L- 1 of Cd without Zn. Additionally, the maximum activity of leaf guaiacol peroxidase (6.46 Unit mg- 1 protein) was obtained with the application of Cd at a 5 mg L- 1 concentration. CONCLUSIONS: In general, an increase in Zn concentration in the nutrient solution decreased the absorption and toxicity of Cd in lettuce leaves, as demonstrated in most of the measured traits. These findings suggest that supplementing hydroponic nutrient solutions with zinc can mitigate the detrimental effects of cadmium toxicity on lettuce growth and physiological processes, offering a promising strategy to enhance crop productivity and food safety in cadmium-contaminated environments.


Subject(s)
Cadmium , Chlorophyll , Hydroponics , Lactuca , Zinc , Lactuca/drug effects , Lactuca/growth & development , Lactuca/metabolism , Cadmium/toxicity , Zinc/metabolism , Chlorophyll/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Photosynthesis/drug effects
18.
Environ Sci Technol ; 58(28): 12467-12476, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38966939

ABSTRACT

The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40‰, Δ66Znshoot-root = -0.36 to -0.27‰) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.


Subject(s)
Cadmium , Oryza , Soil , Zinc , Oryza/metabolism , Oryza/genetics , Cadmium/metabolism , Zinc/metabolism , Soil/chemistry , Plant Roots/metabolism , Biological Transport , Soil Pollutants/metabolism
19.
Biochemistry ; 63(14): 1709-1717, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38975737

ABSTRACT

I present the perspective that the divalent metalome and the metabolome can be modeled as a network of chelating interactions instead of separate entities. I review progress in understanding the complex cellular environment, in particular recent contributions to modeling metabolite-Mg2+ interactions. I then demonstrate a simple extension of these strategies based approximately on intracellular Escherichia coli concentrations. This model is composed of four divalent metal cations with a range of cellular concentrations and physical properties (Mg2+, Ca2+, Mn2+, and Zn2+), eight representative metabolites, and interaction constants. I applied this model to predict the speciation of divalent metal cations between free and metabolite-chelated species. This approach reveals potentially beneficial properties, including maintenance of free divalent metal cations at biologically relevant concentrations, buffering of free divalent metal cations, and enrichment of functional metabolite-chelated species. While currently limited by available interaction coefficients, this modeling strategy can be generalized to more complex systems. In summary, biochemists should consider the potential of cellular metabolites to form chelating interactions with divalent metal cations.


Subject(s)
Cations, Divalent , Escherichia coli , Cations, Divalent/metabolism , Cations, Divalent/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Chelating Agents/chemistry , Chelating Agents/metabolism , Models, Biological , Metabolome , Magnesium/metabolism , Magnesium/chemistry , Buffers , Zinc/metabolism , Zinc/chemistry
20.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004715

ABSTRACT

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Subject(s)
Biofortification , Malnutrition , Micronutrients , Triticum , Triticum/metabolism , Triticum/genetics , Micronutrients/metabolism , Malnutrition/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Zinc/metabolism , Nutritive Value
SELECTION OF CITATIONS
SEARCH DETAIL