Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.810
1.
PeerJ ; 12: e17394, 2024.
Article En | MEDLINE | ID: mdl-38827296

The increasing frequency of zoonotic spillover events and viral mutations in low and middle-income countries presents a critical global health challenge. Contributing factors encompass cultural practices like bushmeat consumption, wildlife trade for traditional medicine, habitat disruption, and the encroachment of impoverished settlements onto natural habitats. The existing "vaccine gap" in many developing countries exacerbates the situation by allowing unchecked viral replication and the emergence of novel mutant viruses. Despite global health policies addressing the root causes of zoonotic disease emergence, there is a significant absence of concrete prevention-oriented initiatives, posing a potential risk to vulnerable populations. This article is targeted at policymakers, public health professionals, researchers, and global health stakeholders, particularly those engaged in zoonotic disease prevention and control in low and middle-income countries. The article underscores the importance of assessing potential zoonotic diseases at the animal-human interface and comprehending historical factors contributing to spillover events. To bridge policy gaps, comprehensive strategies are proposed that include education, collaborations, specialized task forces, environmental sampling, and the establishment of integrated diagnostic laboratories. These strategies advocate simplicity and unity, breaking down barriers, and placing humanity at the forefront of addressing global health challenges. Such a strategic and mental shift is crucial for constructing a more resilient and equitable world in the face of emerging zoonotic threats.


Developing Countries , Zoonoses , Humans , Animals , Zoonoses/prevention & control , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Mutation , Health Policy/legislation & jurisprudence , Global Health , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/transmission
2.
J Med Virol ; 96(6): e29737, 2024 Jun.
Article En | MEDLINE | ID: mdl-38874191

Outbreaks of airborne viral emerging infectious diseases (EIDs) cause an increasing burden on global public health, particularly with a backdrop of intensified climate change. However, infection sources and drivers for outbreaks of airborne viral EIDs remain unknown. Here, we aim to explore the driving mechanisms of outbreaks based on the one health perspective. Outbreak information for 20 types of airborne viral EIDs was collected from the Global Infectious Disease and Epidemiology Network database and a systematic literature review. Four statistically significant and high-risk spatiotemporal clusters for airborne viral EID outbreaks were identified globally using multivariate scan statistic tests. There were 112 outbreaks with clear infection sources, and zoonotic spillover was the most common source (95.54%, 107/112). Since 1970, the majority of outbreaks occurred in healthcare facilities (24.82%), followed by schools (17.93%) and animal-related settings (15.93%). Significant associations were detected between the number of earthquakes, storms, duration of floods, and airborne viral EIDs' outbreaks using a case-crossover study design and multivariable conditional logistic regression. These findings implied that zoonotic spillover and extreme weather events are driving global outbreaks of airborne viral EIDs, and targeted prevention and control measures should be made to reduce the airborne viral EIDs burden.


Communicable Diseases, Emerging , Disease Outbreaks , Weather , Zoonoses , Humans , Animals , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Zoonoses/epidemiology , Zoonoses/virology , Zoonoses/transmission , Global Health , Air Microbiology , Virus Diseases/epidemiology , Virus Diseases/transmission , Virus Diseases/virology , Climate Change
3.
Adv Exp Med Biol ; 1451: 1-20, 2024.
Article En | MEDLINE | ID: mdl-38801568

Monkeypox (Mpox) is a zoonotic disease caused by a virus (monkeypox virus-MPV) belonging to the Poxviridae family. In humans, the disease has an incubation period of 5-21 days and then progresses in two phases, the prodromal phase and the rash phase. The prodromal phase is characterized by non-specific symptoms such as fever, muscle pain, malaise, lymphadenopathy, headache, and chills. Skin lesions appear in the rash phase of the disease. These lesions progress through different stages (macules, papules, vesicles, and pustules). In May 2022, WHO reported an outbreak of human Mpox in several countries which were previously Mpox-free. As per the CDC report of March 01, 2023, a total of 86,231 confirmed cases of Mpox and 105 deaths have been reported from 110 countries and territories across the globe. Notably, more than 90% of these countries were reporting Mpox for the first time. The phylogenetic analysis revealed that this outbreak was associated with the virus from the West African clade. However, most of the cases in this outbreak had no evidence of travel histories to MPV-endemic countries in Central or West Africa. This outbreak was primarily driven by the transmission of the virus via intimate contact in men who have sex with men (MSM). The changing epidemiology of Mpox raised concerns about the increasing spread of the disease in non-endemic countries and the urgent need to control and prevent it. In this chapter, we present all the documented cases of Mpox from 1970 to 2023 and discuss the past, present, and future of MPV.


Disease Outbreaks , Monkeypox virus , Mpox (monkeypox) , Animals , Humans , Monkeypox virus/genetics , Monkeypox virus/pathogenicity , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Mpox (monkeypox)/virology , Phylogeny , Zoonoses/epidemiology , Zoonoses/virology , Zoonoses/transmission
4.
Adv Exp Med Biol ; 1451: 21-33, 2024.
Article En | MEDLINE | ID: mdl-38801569

In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.


One Health , Poxviridae Infections , Poxviridae , Humans , Animals , Poxviridae Infections/virology , Poxviridae Infections/transmission , Poxviridae Infections/epidemiology , Poxviridae/physiology , Poxviridae/pathogenicity , Poxviridae/genetics , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Pandemics , Viral Zoonoses/transmission , Viral Zoonoses/virology , Viral Zoonoses/epidemiology
5.
Adv Exp Med Biol ; 1451: 75-90, 2024.
Article En | MEDLINE | ID: mdl-38801572

The current multicounty outbreak of monkeypox virus (MPXV) posed an emerging and continued challenge to already strained public healthcare sector, around the globe. Since its first identification, monkeypox disease (mpox) remained enzootic in Central and West African countries where reports of human cases are sporadically described. Recent trends in mpox spread outside the Africa have highlighted increased incidence of spillover of the MPXV from animal to humans. While nature of established animal reservoirs remained undefined, several small mammals including rodents, carnivores, lagomorphs, insectivores, non-human primates, domestic/farm animals, and several species of wildlife are proposed to be carrier of the MPXV infection. There are established records of animal-to-human (zoonotic) spread of MPXV through close interaction of humans with animals by eating bushmeat, contracting bodily fluids or trading possibly infected animals. In contrast, there are reports and increasing possibilities of human-to-animal (zooanthroponotic) spread of the MPXV through petting and close interaction with pet owners and animal care workers. We describe here the rationales and molecular factors which predispose the spread of MPXV not only amongst humans but also from animals to humans. A range of continuing opportunities for the spread and evolution of MPXV are discussed to consider risks beyond the currently identified groups. With the possibility of MPXV establishing itself in animal reservoirs, continued and broad surveillance, investigation into unconventional transmissions, and exploration of spillover events are warranted.


Monkeypox virus , Mpox (monkeypox) , Zoonoses , Animals , Mpox (monkeypox)/transmission , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Humans , Monkeypox virus/pathogenicity , Monkeypox virus/genetics , Zoonoses/transmission , Zoonoses/virology , Zoonoses/epidemiology , Disease Reservoirs/virology , Disease Outbreaks , Animals, Wild/virology
6.
Adv Exp Med Biol ; 1451: 171-181, 2024.
Article En | MEDLINE | ID: mdl-38801578

Despite being common worldwide, parapoxvirus infections are regarded as neglected zoonoses because their incidence is either unknown or grossly overestimated. In ruminants all throughout the world, parapoxvirus produces oral lesions and infectious pustular dermatitis. The pathogen is typically spread directly via items contaminated with parapoxvirus and indirectly via a near contact with dermatological lesions that contain the virus on affected animals. Animals infected with the parapoxvirus typically exhibit no clinical symptoms, and the mode of parapoxvirus transmission is occasionally unclear. For accurate etiological diagnosis and appropriate therapy of patients affected by zoonotic infections, the significance of adopting a "One Health" approach and cross-sector collaboration between human and veterinary medicine should be emphasized. The causative pathogen of ecthyma contagiosum in general people is the orf virus, which mostly infects various animals, either pets or wildlife species. The illness primarily affects minute wild ruminants, sheep, cattle, deer, and goats, and it can spread to people through contact with infected animals or contaminated meats anywhere in the world. Taxonomically speaking, the virus belongs to the parapoxvirus genus. Thus pathogen can be detected from crusts for a very long period (several months to several years), and the virus is found to be resistant to inactivation with a hot or dry atmosphere. In immunocompetent individuals, the lesions often go away on their own with a period as long 2 months. Nevertheless, it necessitates the applying of diverse strategies, such as antiviral, immunological modulator, or modest surgical excisions in immunosuppressed patients. The interaction of the virus with various host populations aids in the development of a defense mechanism against the immune system. The parapoxvirus illness in humans is covered in this chapter. The orf illness, a significant known human parapoxvirus infection, is given specific attention.


Ecthyma, Contagious , Orf virus , Ecthyma, Contagious/virology , Ecthyma, Contagious/transmission , Ecthyma, Contagious/diagnosis , Ecthyma, Contagious/epidemiology , Animals , Humans , Orf virus/pathogenicity , Orf virus/isolation & purification , Orf virus/genetics , Zoonoses/virology , Zoonoses/transmission , Parapoxvirus/genetics , Parapoxvirus/isolation & purification
7.
Adv Exp Med Biol ; 1451: 355-368, 2024.
Article En | MEDLINE | ID: mdl-38801590

Monkeypox (mpox), a zoonotic disease caused by the monkeypox virus (MPXV), poses a significant public health threat with the potential for global dissemination beyond its endemic regions in Central and West Africa. This study explores the multifaceted aspects of monkeypox, covering its epidemiology, genomics, travel-related spread, mass gathering implications, and economic consequences. Epidemiologically, mpox exhibits distinct patterns, with variations in age and gender susceptibility. Severe cases can arise in immunocompromised individuals, underscoring the importance of understanding the factors contributing to its transmission. Genomic analysis of MPXV highlights its evolutionary relationship with the variola virus and vaccinia virus. Different MPXV clades exhibit varying levels of virulence and transmission potential, with Clade I associated with higher mortality rates. Moreover, the role of recombination in MPXV evolution remains a subject of interest, with implications for understanding its genetic diversity. Travel and mass gatherings play a pivotal role in the spread of monkeypox. The ease of international travel and increasing globalization have led to outbreaks beyond African borders. The economic ramifications of mpox outbreaks extend beyond public health. Direct treatment costs, productivity losses, and resource-intensive control efforts can strain healthcare systems and economies. While vaccination and mitigation strategies have proven effective, the cost-effectiveness of routine vaccination in non-endemic countries remains a subject of debate. This study emphasizes the role of travel, mass gatherings, and genomics in its spread and underscores the economic impacts on affected regions. Enhancing surveillance, vaccination strategies, and public health measures are essential in controlling this emerging infectious disease.


Disease Outbreaks , Global Health , Monkeypox virus , Mpox (monkeypox) , Travel , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/virology , Mpox (monkeypox)/transmission , Humans , Disease Outbreaks/prevention & control , Monkeypox virus/genetics , Monkeypox virus/pathogenicity , Animals , Rare Diseases/epidemiology , Rare Diseases/genetics , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/prevention & control , Public Health , Female , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology , Male
8.
Viruses ; 16(5)2024 04 26.
Article En | MEDLINE | ID: mdl-38793568

The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.


Animals, Domestic , Hepatitis E virus , Hepatitis E , Milk , Ruminants , Zoonoses , Animals , Hepatitis E/transmission , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Milk/virology , Ruminants/virology , Zoonoses/virology , Zoonoses/transmission , Humans , Animals, Domestic/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Goats/virology , Sheep/virology , Genotype
9.
Nat Microbiol ; 9(6): 1408-1416, 2024 Jun.
Article En | MEDLINE | ID: mdl-38724757

Historically, monkeypox (mpox) was a zoonotic disease endemic in Africa. However, in 2022, a global outbreak occurred following a substantial increase in cases in Africa, coupled with spread by international travellers to other continents. Between January 2022 and October 2023, about 91,000 confirmed cases from 115 countries were reported, leading the World Health Organization to declare a public health emergency. The basic biology of monkeypox virus (MPXV) can be inferred from other poxviruses, such as vaccinia virus, and confirmed by genome sequencing. Here the biology of MPXV is reviewed, together with a discussion of adaptive changes during MPXV evolution and implications for transmission. Studying MPXV biology is important to inform specific host interactions, to aid in ongoing outbreaks and to predict those in the future.


Disease Outbreaks , Monkeypox virus , Mpox (monkeypox) , Monkeypox virus/genetics , Monkeypox virus/physiology , Monkeypox virus/pathogenicity , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Mpox (monkeypox)/virology , Mpox (monkeypox)/prevention & control , Disease Outbreaks/prevention & control , Humans , Animals , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/prevention & control , Genome, Viral , Africa/epidemiology , Phylogeny
13.
Rev Med Virol ; 34(3): e2541, 2024 May.
Article En | MEDLINE | ID: mdl-38743385

As the mankind counters the ongoing COVID-19 pandemic by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), it simultaneously witnesses the emergence of mpox virus (MPXV) that signals at global spread and could potentially lead to another pandemic. Although MPXV has existed for more than 50 years now with most of the human cases being reported from the endemic West and Central African regions, the disease is recently being reported in non-endemic regions too that affect more than 50 countries. Controlling the spread of MPXV is important due to its potential danger of a global spread, causing severe morbidity and mortality. The article highlights the transmission dynamics, zoonosis potential, complication and mitigation strategies for MPXV infection, and concludes with suggested 'one health' approach for better management, control and prevention. Bibliometric analyses of the data extend the understanding and provide leads on the research trends, the global spread, and the need to revamp the critical research and healthcare interventions. Globally published mpox-related literature does not align well with endemic areas/regions of occurrence which should ideally have been the scenario. Such demographic and geographic gaps between the location of the research work and the endemic epicentres of the disease need to be bridged for greater and effective translation of the research outputs to pubic healthcare systems, it is suggested.


Bibliometrics , Humans , Disease Outbreaks/prevention & control , Animals , Mpox (monkeypox)/epidemiology , Mpox (monkeypox)/transmission , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/virology , COVID-19/transmission , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/prevention & control , Pandemics/prevention & control
14.
Sci Rep ; 14(1): 10431, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714841

Reverse zoonotic respiratory diseases threaten great apes across Sub-Saharan Africa. Studies of wild chimpanzees have identified the causative agents of most respiratory disease outbreaks as "common cold" paediatric human pathogens, but reverse zoonotic transmission pathways have remained unclear. Between May 2019 and August 2021, we conducted a prospective cohort study of 234 children aged 3-11 years in communities bordering Kibale National Park, Uganda, and 30 adults who were forest workers and regularly entered the park. We collected 2047 respiratory symptoms surveys to quantify clinical severity and simultaneously collected 1989 nasopharyngeal swabs approximately monthly for multiplex viral diagnostics. Throughout the course of the study, we also collected 445 faecal samples from 55 wild chimpanzees living nearby in Kibale in social groups that have experienced repeated, and sometimes lethal, epidemics of human-origin respiratory viral disease. We characterized respiratory pathogens in each cohort and examined statistical associations between PCR positivity for detected pathogens and potential risk factors. Children exhibited high incidence rates of respiratory infections, whereas incidence rates in adults were far lower. COVID-19 lockdown in 2020-2021 significantly decreased respiratory disease incidence in both people and chimpanzees. Human respiratory infections peaked in June and September, corresponding to when children returned to school. Rhinovirus, which caused a 2013 outbreak that killed 10% of chimpanzees in a Kibale community, was the most prevalent human pathogen throughout the study and the only pathogen present at each monthly sampling, even during COVID-19 lockdown. Rhinovirus was also most likely to be carried asymptomatically by adults. Although we did not detect human respiratory pathogens in the chimpanzees during the cohort study, we detected human metapneumovirus in two chimpanzees from a February 2023 outbreak that were genetically similar to viruses detected in study participants in 2019. Our data suggest that respiratory pathogens circulate in children and that adults become asymptomatically infected during high-transmission times of year. These asymptomatic adults may then unknowingly carry the pathogens into forest and infect chimpanzees. This conclusion, in turn, implies that intervention strategies based on respiratory symptoms in adults are unlikely to be effective for reducing reverse zoonotic transmission of respiratory viruses to chimpanzees.


Common Cold , Pan troglodytes , Animals , Humans , Child , Female , Male , Child, Preschool , Common Cold/epidemiology , Common Cold/virology , Adult , Uganda/epidemiology , Prospective Studies , Zoonoses/epidemiology , Zoonoses/virology , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , Ape Diseases/epidemiology , Ape Diseases/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/veterinary , Rhinovirus/isolation & purification , Rhinovirus/genetics , SARS-CoV-2/isolation & purification , Incidence
15.
Nat Commun ; 15(1): 4171, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755147

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Antibodies, Viral , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Guinea/epidemiology , Ebolavirus/immunology , Ebolavirus/isolation & purification , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/transmission , Adult , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Zoonoses/virology , Zoonoses/epidemiology , Zoonoses/transmission , Female , Cross-Sectional Studies , Disease Outbreaks , Young Adult , Aged , Enzyme-Linked Immunosorbent Assay , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Antigens, Viral/immunology
16.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678025

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Disease Reservoirs , Introduced Species , Lassa Fever , Lassa virus , Murinae , Zoonoses , Animals , Lassa virus/pathogenicity , Lassa virus/physiology , Lassa Fever/transmission , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa Fever/veterinary , Disease Reservoirs/virology , Humans , Rats , Murinae/virology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , Sierra Leone/epidemiology , Guinea/epidemiology , Ecosystem , Rodent Diseases/virology , Rodent Diseases/epidemiology , Rodent Diseases/transmission
18.
Braz J Infect Dis ; 28(2): 103742, 2024.
Article En | MEDLINE | ID: mdl-38670166

A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.


Immunocompromised Host , Organ Transplantation , Transplant Recipients , Humans , Organ Transplantation/adverse effects , Animals , Virus Diseases/transmission , Virus Diseases/virology , Disease Susceptibility , Zoonoses/transmission , Zoonoses/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Risk Factors
19.
Comp Immunol Microbiol Infect Dis ; 109: 102183, 2024 Jun.
Article En | MEDLINE | ID: mdl-38640700

Henipavirus (HNV) is well known for two zoonotic viruses in the genus, Hendra virus (HeV) and Nipah virus (NiV), which pose serious threat to human and animal health. In August 2022, a third zoonotic virus in the genus Henipavirus, Langya virus (LayV), was discovered in China. The emergence of HeV, NiV, and LayV highlights the persistent threat of HNV to human and animal health. In addition to the above three HNVs, new species within this genus are still being discovered. Although they have not yet caused a pandemic in humans or livestock, they still have the risk of spillover as a potential threat to the health of humans and animals. It's important to understand the infection and transmission of different HNV in animals for the prevention and control of current or future HNV epidemics. Therefore, this review mainly summarizes the animal origin, animal infection and transmission of HNV that have been found worldwide, and further analyzes and summarizes the rules of infection and transmission, so as to provide a reference for relevant scientific researchers. Furthermore, it can provide a direction for epidemic prevention and control, and animal surveillance to reduce the risk of the global pandemic of HNV.


Henipavirus Infections , Henipavirus , Animals , Henipavirus Infections/transmission , Henipavirus Infections/epidemiology , Henipavirus Infections/veterinary , Henipavirus Infections/virology , Humans , Zoonoses/transmission , Zoonoses/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Nipah Virus/pathogenicity , Hendra Virus
20.
Phytother Res ; 38(6): 3080-3121, 2024 Jun.
Article En | MEDLINE | ID: mdl-38613154

Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.


Antiviral Agents , Curcumin , Curcumin/pharmacology , Animals , Humans , Antiviral Agents/pharmacology , Zoonoses/drug therapy , Zoonoses/virology , SARS-CoV-2/drug effects , Prions/drug effects , Influenza A virus/drug effects , Dengue Virus/drug effects , COVID-19 Drug Treatment , COVID-19/virology
...