Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 932
Filter
1.
J Med Case Rep ; 18(1): 486, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39375771

ABSTRACT

BACKGROUND: Pompe disease, a rare autosomal recessive disorder, is caused by mutations in the acid α-glucosidase gene. Pompe disease is a congenital metabolic disorder that affects all organs, particularly the striated muscle and nerve cells. Diagnosis is typically confirmed through enzyme assays that reveal reduced acid α-glucosidase activity. Enzyme replacement therapy utilizing human α-glucosidase is an available treatment option. Timely diagnosis and treatment in the early stages of the disease significantly impact the effectiveness of enzyme replacement therapy in enhancing patient condition. Here, we present a case of a patient with Pompe disease diagnosed 20 years after the onset of clinical symptoms. CASE PRESENTATION: A 38-year-old Iranian Baloch woman referred to our rheumatology clinic with progressive muscle weakness presents with a complex medical history. On mechanical ventilation for 12 years, she has endured fatigue and limb weakness since the age of 16, exacerbated following an abortion at 19. Despite undergoing corticosteroid and azathioprine therapies, the suspected diagnosis of inflammatory myopathy did not yield improvement. Hospitalization at 23 due to respiratory failure post-pregnancy led to her continued reliance on a ventilator. A dried blood spot test indicated reduced GAA enzyme activity, confirming a diagnosis of Pompe disease through genetic testing. Treatment with myozyme for 2 years demonstrated limited efficacy, as the patient experienced improved breathing but no significant overall improvement in limb-girdle muscular weakness. This case underscores the challenges and complexities involved in diagnosing and managing rare neuromuscular disorders like Pompe disease. CONCLUSION: Early intervention with enzyme replacement therapy plays a crucial role in halting further muscle loss and disease progression in Pompe disease patients. It is important to note that treatment during advanced stages of the disease may not yield substantial benefits. Nevertheless, enzyme instability and denaturation due to temperature and neutral pH levels, along with limited delivery to disease-relevant tissues, can pose challenges in treatment. However, timely diagnosis of Pompe disease is paramount for its effective management and improved outcomes.


Subject(s)
Enzyme Replacement Therapy , Glycogen Storage Disease Type II , Muscle Strength , Humans , Glycogen Storage Disease Type II/drug therapy , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/therapy , Female , Enzyme Replacement Therapy/methods , Adult , Early Diagnosis , alpha-Glucosidases/therapeutic use , alpha-Glucosidases/genetics , Treatment Outcome , Muscle Weakness/drug therapy
2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273088

ABSTRACT

Studying a patient with Pompe disease (PD) is like opening Pandora's box. The specialist is faced with numerous clinical features similar to those of several diseases, and very often the symptoms are well hidden and none is associated with this rare disease. In recent years, scientific interest in this disease has been growing more and more, but still no symptom is recognized as key to a correct diagnosis of it, nor is there any specific disease marker to date. New diagnostic/therapeutic proposals on disease allow for the diffusion of knowledge of this pathology for timely diagnosis of the patient. Due to unawareness and difficulty in diagnosis, many adults with PD are diagnosed with great delay. In this article, we report and discuss current knowledge of PD and provide new data from work conducted on a cohort of 2934 Italian subjects recruited in recent years. A genetic analysis of the GAA gene was performed on patients with significant clinical signs and pathological enzyme activity to define the genetic profile of subjects. This identified 39 symptomatic PD subjects with low acid alpha-glucosidase enzyme activity and the presence of two causative mutations in GAA gene regions. Furthermore, 22 subjects with genetic variants of uncertain significance (GVUS) were identified.


Subject(s)
Glycogen Storage Disease Type II , Mutation , alpha-Glucosidases , Glycogen Storage Disease Type II/genetics , Humans , alpha-Glucosidases/genetics , Italy , Male , Female , Adult , Middle Aged
3.
J Proteome Res ; 23(10): 4409-4421, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39235835

ABSTRACT

N-Glycan-dependent endoplasmic reticulum quality control (ERQC) primarily mediates protein folding, which determines the fate of the polypeptide. Monoglucose residues on N-glycans determine whether the nascent N-glycosylated proteins enter into and escape from the calnexin (CANX)/calreticulin (CALR) cycle, which is a central system of the ERQC. To reveal the impact of ERQC on glycosylation and protein fate, we performed comprehensive quantitative proteomic and glycoproteomic analyses using cells defective in N-glycan-dependent ERQC. Deficiency of MOGS encoding the ER α-glucosidase I, CANX, or/and CALR broadly affected protein expression and glycosylation. Among the altered glycoproteins, the occupancy of oligomannosidic N-glycans was significantly affected. Besides the expected ER stress, proteins and glycoproteins involved in pathways for lysosome and viral infection are differentially changed in those deficient cells. We demonstrated that lysosomal hydrolases were not correctly modified with mannose-6-phosphates on the N-glycans and were directly secreted to the culture medium in N-glycan-dependent ERQC mutant cells. Overall, the CANX/CALR cycle promotes the correct folding of glycosylated peptides and influences the transport of lysosomal hydrolases.


Subject(s)
Calnexin , Endoplasmic Reticulum , Glycoproteins , Lysosomes , Polysaccharides , Proteome , alpha-Glucosidases , Glycosylation , Endoplasmic Reticulum/metabolism , Polysaccharides/metabolism , Calnexin/metabolism , Calnexin/genetics , Lysosomes/metabolism , Proteome/metabolism , Proteome/analysis , Glycoproteins/metabolism , Glycoproteins/genetics , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Calreticulin/metabolism , Calreticulin/genetics , Hydrolases/metabolism , Hydrolases/genetics , Humans , Proteomics/methods , Protein Folding , Animals
4.
Medicine (Baltimore) ; 103(35): e39534, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213226

ABSTRACT

OBJECTIVE: Clinical and genetic mutation analysis was performed on 5 infantile glycogen storage disease type II children in Chinese mainland. METHODS: Clinical data of 5 children with infantile-type glycogen storage disease type II due to the acidic α-glucosidase (GAA) gene variants diagnosed and treated at Hebei Provincial Children's Hospital from January 2018 to April 2020 were retrospectively analyzed. RESULTS: Among the 5 cases, 1 was female and 4 were male, and the age at first diagnosis was from 2 months to 7 months. The first symptoms of all 5 cases showed progressive muscle weakness, hypotonia, and motor developmental backwardness, and all of them had abnormally elevated creatine kinase, and the echocardiograms suggested different degrees of myocardial hypertrophy, with ejection fractions ranging from 44% to 67%. Analysis of GAA gene variations: all 5 cases were compound heterozygous, and a total of 12 variant loci were detected, of which c.2024_2026delACA, c.2853G > A, c.1124G > T, c.574G > A, c.2509C > T, and c.2013G > A were new mutations that had not been reported. FOLLOWUP: All 5 children died before 1 year of age, and the age of death ranged from 7 months to 11.5 months, with a mean survival time of 9.8 months. CONCLUSION: Peripheral blood GAA gene testing and alpha-glucosidase enzyme activity testing is an effective method for diagnosing this disease.


Subject(s)
Glycogen Storage Disease Type II , alpha-Glucosidases , Humans , Female , Male , Infant , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/diagnosis , alpha-Glucosidases/genetics , Retrospective Studies , Mutation , China/epidemiology
5.
Food Chem ; 460(Pt 3): 140670, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39106747

ABSTRACT

Anthocyanins are natural flavonoids with a high antioxidant power and many associated health benefits, but most rice produce little amounts of these compounds. In this study, 141 MYB transcription factors in 15 chromosomes, including the nucleus-localised ZlMYB1 (Zla03G003370) and ZlMYB2 (Zla15G015220), were discovered in Zizania latifolia. Overexpression of ZlMYB1 or ZlMYB2 in rice seeds induced black pericarps, and flavonoid content, antioxidant capacity, and α-glucosidase and tyrosinase inhibition effects significantly increased compared to those in the control seeds. ZlMYB1 and ZlMYB2 overexpression induced the upregulation of 764 and 279 genes, respectively, and the upregulation of 162 and 157 flavonoids, respectively, linked to a black pericarp phenotype. The expression of flavonoid 3'-hydroxylase and UDP-glycose flavonoid glycosyltransferase, as well as the activities of these enzymes, increased significantly in response to ZlMYB1 or ZlMYB2 overexpression. This study systematically confirmed that the overexpression of ZlMYB1 and ZlMYB2 promotes flavonoid biosynthesis (especially of anthocyanins) in rice.


Subject(s)
Antioxidants , Flavonoids , Monophenol Monooxygenase , Oryza , Plant Proteins , Seeds , alpha-Glucosidases , Seeds/chemistry , Seeds/genetics , Seeds/metabolism , Seeds/enzymology , Oryza/genetics , Oryza/chemistry , Oryza/metabolism , Oryza/enzymology , Flavonoids/metabolism , Flavonoids/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/chemistry , Gene Expression Regulation, Plant , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/enzymology
6.
Rev Med Inst Mex Seguro Soc ; 62(1): 1-5, 2024 Jan 08.
Article in Spanish | MEDLINE | ID: mdl-39110956

ABSTRACT

Background: Pompe disease (PD) is a rare autosomal recessive genetic disorder (1 in 14,000) which affects the synthesis of acid alpha-glucosidase (AGA), leading to intralysosomal glycogen accumulation in muscle tissue. The clinical presentation is heterogeneous, with variable degrees of involvement and progression, classifiable based on the age of onset into infantile (classic or non-classic) and late-onset forms (juvenile or adult). The diagnostic test of choice is the enzymatic analysis of AGA, and the only pharmacological treatment is enzyme replacement therapy (ERT). This document aims to report a clinical case of late-onset PD. Clinical case: 14-year-old male who started at the age of 5 with postural alterations, gait changes, and decreased physical performance compared to his peers. A diagnostic evaluation was initiated in 2022 due to worsening neuromuscular symptoms, accompanied by dyspnea, tachycardia, and chest pain. A suspicion of a lysosomal storage myopathy was established, and through enzymatic determination of AGA the diagnosis of PD was confirmed. The study of the GAA gene revealed the association of 2 previously unreported genomic variants. ERT was initiated, resulting in clinical improvement. Conclusions: The age of symptom onset, severity of clinical presentation, and prognosis of the disease depend on the specific mutations involved. In this case, the identified genetic alterations are associated with different phenotypes. However, based on the clinical presentation, it is categorized as juvenile PD with an indeterminate prognosis.


Introducción: la enfermedad de Pompe (EP) es un padecimiento genético autosómico recesivo poco frecuente (1:14,000) que afecta la síntesis de alfa-glucosidasa ácida (AGA) y condiciona un depósito de glucógeno intralisosomal en tejido muscular. La presentación clínica es heterogénea, con grados variables de afectación y progresión, clasificable según la edad de aparición en infantil (clásica y no clásica) y de inicio tardío (juvenil o de adultez). La prueba diagnóstica de elección es el análisis enzimático de AGA y el único tratamiento farmacológico es la terapia de reemplazo enzimático (TRE). Este documento tiene como objetivo reportar un caso clínico de EP de inicio tardío. Caso clínico: paciente de sexo masculino de 14 años que comenzó a los 5 años con alteraciones de la postura, marcha y desempeño físico. Se inició protocolo de estudio ante agravamiento de los síntomas neuromusculares, a los que se agregaron disnea, taquicardia y dolor torácico. Se sospechó de una miopatía metabólica de depósito lisosomal y mediante determinación enzimática de AGA se confirmó el diagnóstico de EP. El estudio molecular del gen GAA reportó una asociación de 2 variantes genómicas no descritas previamente. Se empleó la TRE con mejoría clínica. Conclusiones: la edad de inicio del cuadro clínico, severidad y pronóstico dependen de las mutaciones presentadas. En este caso, las alteraciones genéticas encontradas están relacionadas con diferentes fenotipos; no obstante, por clínica es categorizado como una EP juvenil con pronóstico indeterminado.


Subject(s)
Genotype , Glycogen Storage Disease Type II , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Humans , Male , Adolescent , alpha-Glucosidases/genetics , Mexico , Enzyme Replacement Therapy
7.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3796-3803, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39099353

ABSTRACT

Pomegranate peel-derived extracellular nanovesicles(PPENs) were isolated and purified by ultra-high speed centrifugation and sucrose density gradient centrifugation. Their morphology and structure were characterized. In vitro α-glucosidase inhibition assay and model test of insulin resistance(IR) in HepG2 cells showed that PPENs had good anti-diabetic activity. The IC_(50) value of α-glucosidase inhibition was(35.3±1.1) µg·mL~(-1), significantly better than the positive drug acarbose. At a concentration of 100 µg·mL~(-1), PPENs could increase the glucose absorption of IR cells significantly. Lipidome, proteome, and metabolite analysis of PPENs were performed using chromatography-mass spectrometry. MicroRNA(miRNA) sequences were identified, and target genes of miRNA were predicted. The analysis results indicated that PPENs contained abundant lipids and transport proteins, providing a material basis for the transportation and distribution of PPENs in tissue. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis suggested that lipids and miRNAs may be the key components of PPENs to exert anti-diabetic activity.


Subject(s)
Hypoglycemic Agents , Pomegranate , Pomegranate/chemistry , Humans , Hep G2 Cells , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , MicroRNAs/genetics , alpha-Glucosidases/genetics , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism , Fruit/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Nanoparticles/chemistry
8.
Appl Microbiol Biotechnol ; 108(1): 443, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153091

ABSTRACT

The α-glucosidase from Schwanniomyces occidentalis (GAM1p) was expressed in Komagataella phaffii to about 70 mg/L, and its transferase activity studied in detail. Several isomaltooligosaccharides (IMOS) were formed using 200 g/L maltose. The major production of IMOS (81.3 g/L) was obtained when 98% maltose was hydrolysed, of which 34.8 g/L corresponded to isomaltose, 26.9 g/L to isomaltotriose, and 19.6 g/L to panose. The addition of glucose shifted the IMOS synthesis towards products containing exclusively α(1 → 6)-linkages, increasing the production of isomaltose and isomaltotriose about 2-4 fold, enabling the formation of isomaltotetraose, and inhibiting that of panose to about 12 times. In addition, the potential of this enzyme to glycosylate 12 possible hydroxylated acceptors, including eight sugars and four phenolic compounds, was evaluated. Among them, only sucrose, xylose, and piceid (a monoglucosylated derivative of resveratrol) were glucosylated, and the main synthesised products were purified and characterised by MS and NMR. Theanderose, α(1 → 4)-D-glucosyl-xylose, and a mixture of piceid mono- and diglucoside were obtained with sucrose, xylose, and piceid as acceptors, respectively. Maximum production of theanderose reached 81.7 g/L and that of the glucosyl-xylose 26.5 g/L, whereas 3.4 g/L and only 1 g/L were produced of the piceid mono- and diglucoside respectively. KEY POINTS: • Overexpression of a yeast α-glucosidase producing novel molecules. • Yeast enzyme producing the heterooligosaccharides theanderose and glucosyl-xylose. • Glycosylation of the polyphenol piceid by a yeast α-glucosidase.


Subject(s)
alpha-Glucosidases , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Glycosylation , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Saccharomycetales/genetics , Glucose/metabolism , Oligosaccharides/metabolism , Maltose/metabolism , Isomaltose/metabolism , Isomaltose/analogs & derivatives , Xylose/metabolism , Glucans
10.
Mol Genet Genomic Med ; 12(7): e2480, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958145

ABSTRACT

BACKGROUND: Pompe Disease (PD) is a metabolic myopathy caused by variants in the GAA gene, resulting in deficient enzymatic activity. We aimed to characterize the clinical features and related genetic variants in a series of Mexican patients. METHODS: We performed a retrospective study of clinical records of patients diagnosed with LOPD, IOPD or pseudodeficiency. RESULTS: Twenty-nine patients were included in the study, comprising these three forms. Overall, age of symptom onset was 0.1 to 43 years old. The most frequent variant identified was c.-32-13T>G, which was detected in 14 alleles. Among the 23 different variants identified in the GAA gene, 14 were classified as pathogenic, 5 were likely pathogenic, and 1 was a variant of uncertain significance. Two variants were inherited in cis arrangement and 2 were pseudodeficiency-related benign alleles. We identified two novel variants (c.1615 G>A and c.1076-20_1076-4delAAGTCGGCGTTGGCCTG). CONCLUSION: To the best of our knowledge, this series represent the largest phenotypic and genotypic characterization of patients with PD in Mexico. Patients within our series exhibited a combination of LOPD and IOPD associated variants, which may be related to genetic diversity within Mexican population. Further population-wide studies are required to better characterize the incidence of this disease in Mexican population.


Subject(s)
Age of Onset , Glycogen Storage Disease Type II , Mutation , alpha-Glucosidases , Humans , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/pathology , Male , Female , Child, Preschool , Child , Adult , alpha-Glucosidases/genetics , Infant , Mexico/epidemiology , Adolescent , Phenotype , Retrospective Studies , Genetic Association Studies , Alleles , Young Adult
11.
Food Chem ; 457: 140107, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39032479

ABSTRACT

Bacillus stercoris PSSR12 (B. stercoris PE), an isolate from rice field soils, was identified via 16s rRNA sequencing. The synthesis of the inulin and inulin producing enzyme (IPE) in B. stercoris PE was verified using SDS-PAGE and FTIR. This study aimed to assess the impact of B. stercoris PE treatment on in vitro inhibition of α-amylase and α-glucosidase from traditional and commercial rice varieties of South India. Additionally, the study investigated enzymatic inhibition and mRNA expression of starch synthesis genes (RAmy1a, GBSSIa, SBEIIa, and SBEIIb). Glucose transporter gene expression (GLUT1 and GLUT4) patterns were analyzed in 3T3-L1 adipocytes to evaluate glucose uptake in B. stercoris PE treated rice varieties. The application of B. stercoris PE enhanced grain quality by imparting starch ultra-structural rigidity, inhibiting starch metabolizing enzymes, and inducing molecular changes in starch synthesis genes. This approach holds promise for managing type II diabetes mellitus and potentially reducing insulin dependence.


Subject(s)
Glucose , Inulin , Oryza , Starch , alpha-Amylases , Oryza/metabolism , Oryza/chemistry , Oryza/microbiology , Inulin/metabolism , Inulin/chemistry , Glucose/metabolism , Starch/metabolism , Starch/chemistry , alpha-Amylases/metabolism , alpha-Amylases/genetics , Bacillus/metabolism , Bacillus/genetics , Bacillus/chemistry , Mice , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Animals
12.
Reprod Domest Anim ; 59(6): e14643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877774

ABSTRACT

Progesterone has been shown to stimulate glycogen catabolism in uterine epithelial cells. Acid α-glucosidase (GAA) is an enzyme that breaks down glycogen within lysosomes. We hypothesized that progesterone may stimulate glycogenolysis in the uterine epithelium via GAA. We found that GAA was more highly expressed in the stroma on Day 1 than on Day 11. However, GAA did not appear to differ in the epithelium on Days 1 and 11. Progesterone (0-10 µM) had no effect on the levels of the full-length inactive protein (110 kDa) or the cleaved (active) peptides present inside the lysosome (70 and 76 kDa) in immortalized bovine uterine epithelial (BUTE) cells. Furthermore, the activity of GAA did not differ between the BUTE cells treated with 10 µM progesterone or control. Overall, we confirmed that GAA is present in the cow endometrium and BUTE cells. However, progesterone did not affect protein levels or enzyme activity.


Subject(s)
Endometrium , Progesterone , alpha-Glucosidases , Animals , Cattle , Female , Endometrium/metabolism , Endometrium/enzymology , Progesterone/pharmacology , Progesterone/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Epithelial Cells/metabolism , Glycogenolysis , Lysosomes/enzymology , Lysosomes/metabolism , Glycogen/metabolism
13.
J Agric Food Chem ; 72(20): 11531-11548, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38700894

ABSTRACT

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.


Subject(s)
Amides , Antioxidants , Digestion , Glycoside Hydrolase Inhibitors , Plant Extracts , Zanthoxylum , alpha-Glucosidases , Zanthoxylum/chemistry , Zanthoxylum/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/genetics , Humans , Amides/chemistry , Amides/metabolism , Amides/pharmacology , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/metabolism , Models, Biological , Phenol/metabolism , Phenol/chemistry
14.
Sci Rep ; 14(1): 11890, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789465

ABSTRACT

Biofilm-associated candidiasis poses a significant challenge in clinical settings due to the limited effectiveness of existing antifungal treatments. The challenges include increased pathogen virulence, multi-drug resistance, and inadequate penetration of antimicrobials into biofilm structures. One potential solution to this problem involves the development of novel drugs that can modulate fungal virulence and biofilm formation, which is essential for pathogenesis. Resistance in Candida albicans is initiated by morphological changes from yeast to hyphal form. This transition triggers a series of events such as cell wall elongation, increased adhesion, invasion of host tissues, pathogenicity, biofilm formation, and the initiation of an immune response. The cell wall is a critical interface for interactions with host cells, primarily through various cell wall proteins, particularly mannoproteins. Thus, cell wall proteins and enzymes are considered potential antifungal targets. In this regard, we explored α-glucosidase as our potential target which plays a crucial role in processing mannoproteins. Previous studies have shown that inhibition of α-glucosidase leads to defects in cell wall integrity, reduced adhesion, diminished secretion of hydrolytic enzymes, alterations in immune recognition, and reduced pathogenicity. Since α-glucosidase, primarily converts carbohydrates, our study focuses on FDA-approved carbohydrate mimic drugs (Glycomimetics) with well-documented applications in various biological contexts. Through virtual screening of 114 FDA-approved carbohydrate-based drugs, a pseudo-sugar Acarbose, emerged as a top hit. Acarbose is known for its pharmacological potential in managing type 2 diabetes mellitus by targeting α-glucosidase. Our preliminary investigations indicate that Acarbose effectively inhibits C. albicans biofilm formation, reduces virulence, impairs morphological switching, and hinders the adhesion and invasion of host cells, all at very low concentrations in the nanomolar range. Furthermore, transcriptomic analysis reveals the mechanism of action of Acarbose, highlighting its role in targeting α-glucosidase.


Subject(s)
Acarbose , Antifungal Agents , Candida albicans , Candidiasis , alpha-Glucosidases , Candida albicans/drug effects , Candida albicans/pathogenicity , Acarbose/pharmacology , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Antifungal Agents/pharmacology , Candidiasis/drug therapy , Candidiasis/microbiology , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Biofilms/drug effects , Biofilms/growth & development , Computer Simulation , Cell Wall/metabolism , Cell Wall/drug effects , Transcriptome , Fungal Proteins/metabolism , Fungal Proteins/genetics , Molecular Docking Simulation , Virulence/drug effects
15.
Anaerobe ; 87: 102853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614290

ABSTRACT

OBJECTIVES: We investigated potential relationships among initial lesions of the intestinal mucosa, fecal enzymatic activities and microbiota profiles. METHODS: Fecal samples from 54 volunteers were collected after recruitment among individuals participating in a colorectal cancer (CRC) screening program in our region (Northern Spain) or attending for consultation due to clinical symptoms; intestinal mucosa samples were resected during colonoscopy. Enzymatic activities were determined in fecal supernatants by a semi-quantitative method. The fecal microbiota composition was determined by 16S rRNA gene-based sequencing. The results were compared between samples from clinical diagnosis groups (controls and polyps), according with the type of polyp (hyperplastic polyps or conventional adenomas) and considering the grade of dysplasia for conventional adenomas (low and high grade dysplasia). RESULTS: High levels of α-glucosidase activity were more frequent among samples from individuals diagnosed with intestinal polyps, reaching statistical significance for conventional adenomas and for low grade dysplasia adenomas when compared to controls. Regarding the microbiota profiles, higher abundance of Christensenellaceae_R-7 group and Oscillospiraceae_UCG-002 were found in fecal samples displaying low α-glucosidase activity as compared with those with higher activity as well as in controls with respect to conventional adenomas. A relationship was evidenced among intestinal mucosal lesions, gut glucosidase activities and intestinal microbiota profiles. CONCLUSIONS: Our findings suggest a relationship among altered fecal α-glucosidase levels, the presence of intestinal mucosal lesions, which can be precursors of CRC, and shifts in defined microbial groups of the fecal microbiota.


Subject(s)
Feces , Gastrointestinal Microbiome , Intestinal Mucosa , alpha-Glucosidases , Adult , Aged , Female , Humans , Male , Middle Aged , alpha-Glucosidases/metabolism , alpha-Glucosidases/genetics , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Feces/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestinal Mucosa/enzymology , RNA, Ribosomal, 16S/genetics , Spain
16.
BMC Pediatr ; 24(1): 194, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500078

ABSTRACT

BACKGROUND: Pompe disease, classified as glycogen storage disease type II, arises from a deficiency in the acid alpha-glucosidase (GAA) enzyme, leading to glycogen accumulation in multiple tissues. The unique correlation between genotype and enzyme activity is a key feature. This case highlights an infantile-onset form, emphasizing genetic counseling and prenatal testing importance. CASE PRESENTATION: An 18-week-old infant with respiratory distress, cyanosis, and fever was admitted. Born healthy, her sibling died from Pompe disease. She presented with cardiomegaly, hypotonia, and absent reflexes. Diagnosis was confirmed by significantly reduced GAA activity. Despite treatment initiation, the patient succumbed to cardiac arrest. CONCLUSIONS: The case underscores genetic counseling's role, offering insights into prenatal testing advancements, antenatal diagnosis through echocardiography, and the significance of early intervention, particularly in infantile-onset Pompe disease. SYNOPSIS: Genetic risk assessment and prenatal testing are crucial for families with a history of Pompe disease to improve early diagnosis and management outcomes.


Subject(s)
Glycogen Storage Disease Type II , Humans , Infant , alpha-Glucosidases/genetics , Genetic Counseling , Genotype , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/genetics , Muscle Hypotonia
17.
Insect Biochem Mol Biol ; 167: 104097, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428508

ABSTRACT

Mosquito vectors of medical importance both blood and sugar feed, and their saliva contains bioactive molecules that aid in both processes. Although it has been shown that the salivary glands of several mosquito species exhibit α-glucosidase activities, the specific enzymes responsible for sugar digestion remain understudied. We therefore expressed and purified three recombinant salivary α-glucosidases from the mosquito vectors Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus and compared their functions and structures. We found that all three enzymes were expressed in the salivary glands of their respective vectors and were secreted into the saliva. The proteins, as well as mosquito salivary gland extracts, exhibited α-glucosidase activity, and the recombinant enzymes displayed preference for sucrose compared to p-nitrophenyl-α-D-glucopyranoside. Finally, we solved the crystal structure of the Ae. aegypti α-glucosidase bound to two calcium ions at a 2.3 Ångstrom resolution. Molecular docking suggested that the Ae. aegypti α-glucosidase preferred di- or polysaccharides compared to monosaccharides, consistent with enzymatic activity assays. Comparing structural models between the three species revealed a high degree of similarity, suggesting similar functional properties. We conclude that the α-glucosidases studied herein are important enzymes for sugar digestion in three mosquito species.


Subject(s)
Aedes , Anopheles , Culex , Animals , Mosquito Vectors/genetics , alpha-Glucosidases/genetics , Aedes/genetics , Anopheles/genetics , Molecular Docking Simulation , Culex/genetics , Sugars
18.
Neurogenetics ; 25(3): 281-286, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38498292

ABSTRACT

Mannosyl-oligosaccharide glucosidase - congenital disorder of glycosylation (MOGS-CDG) is determined by biallelic mutations in the mannosyl-oligosaccharide glucosidase (glucosidase I) gene. MOGS-CDG is a rare disorder affecting the processing of N-Glycans (CDG type II) and is characterized by prominent neurological involvement including hypotonia, developmental delay, seizures and movement disorders. To the best of our knowledge, 30 patients with MOGS-CDG have been published so far. We described a child who is compound heterozygous for two novel variants in the MOGS gene. He presented Early Infantile Developmental and Epileptic Encephalopathy (EI-DEE) in the absence of other specific systemic involvement and unrevealing first-line biochemical findings. In addition to the previously described features, the patient presented a Hirschprung disease, never reported before in individuals with MOGS-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Exome Sequencing , Humans , Male , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/diagnosis , Infant , alpha-Glucosidases/genetics , Mutation/genetics , Spasms, Infantile/genetics , Spasms, Infantile/diagnosis , Epilepsy/genetics , Epilepsy/diagnosis , Developmental Disabilities/genetics , Developmental Disabilities/diagnosis
19.
Neuromuscul Disord ; 34: 1-8, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38087756

ABSTRACT

Pompe disease is a rare genetic disorder with an estimated prevalence of 1:60.000. The two main phenotypes are Infantile Onset Pompe Disease (IOPD) and Late Onset Pompe Disease (LOPD). There is no published data from Spain regarding the existing number of cases, regional distribution, clinical features or, access and response to the treatment. We created a registry to collect all these data from patients with Pompe in Spain. Here, we report the data of the 122 patients registered including nine IOPD and 113 LOPD patients. There was a high variability in how the diagnosis was obtained and how the follow-up was performed among different centres. Seven IOPD patients were still alive being all treated with enzymatic replacement therapy (ERT) at last visit. Ninety four of the 113 LOPD patients had muscle weakness of which 81 were receiving ERT. We observed a progressive decline in the results of muscle function tests during follow-up. Overall, the Spanish Pompe Registry is a valuable resource for understanding the demographics, patient's journey and clinical characteristics of patients in Spain. Our data supports the development of agreed guidelines to ensure that the care provided to the patients is standardized across the country.


Subject(s)
Glycogen Storage Disease Type II , Humans , Glycogen Storage Disease Type II/epidemiology , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , alpha-Glucosidases/genetics , Phenotype , Registries , Enzyme Replacement Therapy/methods
20.
J Inherit Metab Dis ; 47(1): 119-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37204237

ABSTRACT

Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.


Subject(s)
Dependovirus , Glycogen Storage Disease Type II , Mice , Humans , Animals , Infant, Newborn , Dependovirus/genetics , Dependovirus/metabolism , Genetic Vectors/genetics , Mice, Knockout , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/pathology , alpha-Glucosidases/genetics , alpha-Glucosidases/therapeutic use , Liver/metabolism , Muscle, Skeletal/pathology , Glycogen/metabolism , Genetic Therapy , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL