Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999992

ABSTRACT

Clinical differentiation of progressive supranuclear palsy (PSP) from Parkinson's disease (PD) is challenging due to overlapping phenotypes and the late onset of specific atypical signs. Therefore, easily assessable diagnostic biomarkers are highly needed. Since PD is a synucleopathy while PSP is a tauopathy, here, we investigated the clinical usefulness of serum oligomeric-α-synuclein (o-α-synuclein) and 181Thr-phosphorylated tau (p-tau181), which are considered as the most important pathological protein forms in distinguishing between these two parkinsonisms. We assessed serum o-α-synuclein and p-tau181 by ELISA and SIMOA, respectively, in 27 PSP patients, 43 PD patients, and 39 healthy controls (HC). Moreover, we evaluated the correlation between serum biomarkers and biological and clinical features of these subjects. We did not find any difference in serum concentrations of p-tau181 and o-α-synuclein nor in the o-α-synuclein/p-tau181 ratio between groups. However, we observed that serum p-tau181 positively correlated with age in HC and PD, while serum o-α-synuclein correlated positively with disease severity in PD and negatively with age in PSP. Finally, the o-α-synuclein/p-tau181 ratio showed a negative correlation with age in PD.


Subject(s)
Biomarkers , Parkinson Disease , Supranuclear Palsy, Progressive , alpha-Synuclein , tau Proteins , Humans , Supranuclear Palsy, Progressive/blood , Supranuclear Palsy, Progressive/diagnosis , alpha-Synuclein/blood , Parkinson Disease/blood , tau Proteins/blood , Female , Male , Aged , Biomarkers/blood , Middle Aged , Phosphorylation , Case-Control Studies , Diagnosis, Differential
2.
Neurology ; 103(2): e209506, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38896810

ABSTRACT

OBJECTIVES: To longitudinally characterize disease-relevant CSF and plasma biomarkers in individuals at risk for genetic prion disease up to disease conversion. METHODS: This single-center longitudinal cohort study has followed known carriers of PRNP pathogenic variants at risk for prion disease, individuals with a close relative who died of genetic prion disease but who have not undergone predictive genetic testing, and controls. All participants were asymptomatic at first visit and returned roughly annually. We determined PRNP genotypes, measured NfL and GFAP in plasma, and RT-QuIC, total PrP, NfL, T-tau, and beta-synuclein in CSF. RESULTS: Among 41 carriers and 21 controls enrolled, 28 (68%) and 15 (71%) were female, and mean ages were 47.5 and 46.1. At baseline, all individuals were asymptomatic. We observed RT-QuIC seeding activity in the CSF of 3 asymptomatic E200K carriers who subsequently converted to symptomatic and died of prion disease. 1 P102L carrier remained RT-QuIC negative through symptom conversion. No other individuals developed symptoms. The prodromal window from detection of RT-QuIC positivity to disease onset was 1 year long in an E200K individual homozygous (V/V) at PRNP codon 129 and 2.5 and 3.1 years in 2 codon 129 heterozygotes (M/V). Changes in neurodegenerative and neuroinflammatory markers were variably observed prior to onset, with increases observed for plasma NfL in 4/4 converters, and plasma GFAP, CSF NfL, CSF T-tau, and CSF beta-synuclein each in 2/4 converters, although values relative to age and fold changes relative to individual baseline were not remarkable for any of these markers. CSF PrP was longitudinally stable with mean coefficient of variation 9.0% across all individuals over up to 6 years, including data from converting individuals at RT-QuIC-positive timepoints. DISCUSSION: CSF prion seeding activity may represent the earliest detectable prodromal sign in E200K carriers. Neuronal damage and neuroinflammation markers show limited sensitivity in the prodromal phase. CSF PrP levels remain stable even in the presence of RT-QuIC seeding activity. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov NCT05124392 posted 2017-12-01, updated 2023-01-27.


Subject(s)
Biomarkers , Prion Diseases , Prion Proteins , Humans , Female , Male , Middle Aged , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Prion Proteins/genetics , Prion Proteins/cerebrospinal fluid , Prion Proteins/blood , Prion Diseases/genetics , Prion Diseases/cerebrospinal fluid , Prion Diseases/blood , Prion Diseases/diagnosis , Longitudinal Studies , Adult , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Heterozygote , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/genetics , Disease Progression , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , alpha-Synuclein/blood
3.
EMBO Mol Med ; 16(7): 1657-1674, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839930

ABSTRACT

Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/blood , Parkinson Disease/blood , Parkinson Disease/metabolism , Parkinson Disease/genetics , Aged , Male , Female , Middle Aged , Protein Multimerization , Protein Aggregates
4.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791346

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid ß 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.


Subject(s)
Biomarkers , Exosomes , MicroRNAs , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Parkinson Disease/genetics , Exosomes/metabolism , Exosomes/genetics , Biomarkers/blood , MicroRNAs/blood , MicroRNAs/genetics , alpha-Synuclein/blood , Amyloid beta-Peptides/blood
5.
Sci Adv ; 10(20): eadl6442, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748787

ABSTRACT

Early and precise diagnosis of α-synucleinopathies is challenging but critical. In this study, we developed a molecular beacon-based assay to evaluate microRNA-containing extracellular vesicles (EVs) in plasma. We recruited 1203 participants including healthy controls (HCs) and patients with isolated REM sleep behavior disorder (iRBD), α-synucleinopathies, or non-α-synucleinopathies from eight centers across China. Plasma miR-44438-containing EV levels were significantly increased in α-synucleinopathies, including those in the prodromal stage (e.g., iRBD), compared to both non-α-synucleinopathy patients and HCs. However, there are no significant differences between Parkinson's disease (PD) and multiple system atrophy. The miR-44438-containing EV levels negatively correlated with age and the Hoehn and Yahr stage of PD patients, suggesting a potential association with disease progression. Furthermore, a longitudinal analysis over 16.3 months demonstrated a significant decline in miR-44438-containing EV levels in patients with PD. These results highlight the potential of plasma miR-44438-containing EV as a biomarker for early detection and progress monitoring of α-synucleinopathies.


Subject(s)
Biomarkers , Circulating MicroRNA , Extracellular Vesicles , Parkinson Disease , Synucleinopathies , Humans , Extracellular Vesicles/metabolism , Male , Biomarkers/blood , Female , Middle Aged , Circulating MicroRNA/blood , Parkinson Disease/blood , Parkinson Disease/diagnosis , Aged , Synucleinopathies/blood , Synucleinopathies/diagnosis , alpha-Synuclein/blood , Case-Control Studies , MicroRNAs/blood , Multiple System Atrophy/blood , Multiple System Atrophy/diagnosis
6.
Anal Chem ; 96(21): 8586-8593, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38728058

ABSTRACT

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Subject(s)
Boron Compounds , Electrochemical Techniques , Luminescent Measurements , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Boron Compounds/chemistry , Biosensing Techniques/methods , alpha-Synuclein/analysis , alpha-Synuclein/blood , Protoporphyrins/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection
7.
J Parkinsons Dis ; 14(4): 667-679, 2024.
Article in English | MEDLINE | ID: mdl-38669557

ABSTRACT

Background: Misfolded α-synuclein can be detected in blood samples of Parkinson's disease (PD) patients by a seed amplification assay (SAA), but the association with disease duration is not clear, yet. Objective: In the present study we aimed to elucidate whether seeding activity of misfolded α-synuclein derived from neuronal exosomes in blood is associated with PD diagnosis and disease duration. Methods: Cross-sectional samples of PD patients were analyzed and compared to samples of age- and gender-matched healthy controls using a blood-based SAA. Presence of α-synuclein seeding activity and differences in seeding parameters, including fluorescence response (in arbitrary units) at the end of the amplification assay (F60) were analyzed. Additionally, available PD samples collected longitudinally over 5-9 years were included. Results: In the cross-sectional dataset, 79 of 80 PD patients (mean age 69 years, SD = 8; 56% male) and none of the healthy controls (n = 20, mean age 70 years, SD = 10; 55% male) showed seeding activity (sensitivity 98.8%). When comparing subgroups divided by disease duration, longer disease duration was associated with lower α-synuclein seeding activity (F60: p < 0.001). In the longitudinal analysis 10/11 patients showed a gradual decrease of α-synuclein seeding activity over time. Conclusions: This study confirms the high sensitivity of the blood-based α-synuclein SAA applied here. The negative association of α-synuclein seeding activity in blood with disease duration makes this parameter potentially interesting as biomarker for future studies on the pathophysiology of disease progression in PD, and for biologically oriented trials in this field.


Subject(s)
Exosomes , Parkinson Disease , alpha-Synuclein , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , alpha-Synuclein/blood , alpha-Synuclein/metabolism , Male , Female , Exosomes/metabolism , Aged , Middle Aged , Cross-Sectional Studies , Longitudinal Studies , Neurons/metabolism , Neurons/pathology , Biomarkers/blood , Disease Progression
8.
J Neurol ; 271(6): 3610-3615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492015

ABSTRACT

Menopause increases the risk for Parkinson's disease (PD), although the underlying biological mechanisms have not been established in patients. Here, we aimed to understand the basis of menopause-related vulnerability to PD. Main motor and non-motor scores, blood levels of estradiol, testosterone, follicle-stimulating hormone, and luteinizing hormone, CSF levels of total α-synuclein, amyloid-ß-42, amyloid-ß-40, total tau, and phosphorylated-181-tau were examined in 45 women with postmenopausal-onset PD and 40 age-matched controls. PD patients had higher testosterone and lower estradiol levels than controls, and the residual estradiol production was associated with milder motor disturbances and lower dopaminergic requirements. In PD but not in controls, follicle-stimulating hormone levels correlated with worse cognitive scores and CSF markers of amyloidopathy and neuronal loss. In conclusion, menopause-related hormonal changes might differentially contribute to clinical-pathological trajectories of PD, accounting for the peculiar vulnerability to the disease.


Subject(s)
Parkinson Disease , Postmenopause , tau Proteins , Humans , Female , Parkinson Disease/blood , Parkinson Disease/cerebrospinal fluid , Postmenopause/blood , Middle Aged , Aged , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Estradiol/blood , alpha-Synuclein/blood , alpha-Synuclein/cerebrospinal fluid , Follicle Stimulating Hormone/blood , Follicle Stimulating Hormone/cerebrospinal fluid , Testosterone/blood , Testosterone/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Luteinizing Hormone/blood , Luteinizing Hormone/cerebrospinal fluid
9.
Eur J Neurosci ; 59(10): 2563-2576, 2024 May.
Article in English | MEDLINE | ID: mdl-38379501

ABSTRACT

Parkinson's disease (PD), being the second largest neurodegenerative disease, poses challenges in early detection, resulting in a lack of timely treatment options to effectively manage the disease. By the time clinical diagnosis becomes possible, more than 60% of dopamine neurons in the substantia nigra (SN) of patients have already degenerated. Therefore, early diagnosis or identification of warning signs is crucial for the prompt and timely beginning of the treatment. However, conducting invasive or complex diagnostic procedures on asymptomatic patients can be challenging, making routine blood tests a more feasible approach in such cases. Numerous studies have been conducted over an extended period to search for effective diagnostic biomarkers in blood samples. However, thus far, no highly effective biomarkers have been confirmed. Besides classical proteins like α-synuclein (α-syn), phosphorylated α-syn and oligomeric α-syn, other molecules involved in disease progression should also be given equal attention. In this review, we will not only discuss proposed biomarkers that are currently under investigation but also delve into the mechanisms underlying the disease, focusing on processes such as α-syn misfolding, intercellular transmission and the crossing of the blood-brain barrier (BBB). Our aim is to provide an updated overview of molecules based on these processes that may potentially serve as blood biomarkers.


Subject(s)
Biomarkers , Parkinson Disease , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Biomarkers/blood , alpha-Synuclein/blood , Blood-Brain Barrier/metabolism
10.
Acta Neurol Belg ; 124(3): 831-842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38170418

ABSTRACT

OBJECTIVE: Whether alpha-synuclein in peripheral body fluids can be used for the diagnosis of Parkinson's disease (PD) remains in controversy. This study evaluates diagnostic potential of alpha-synuclein for PD in various peripheral body fluids using a meta-analysis approach. METHODS: Studies published before October 2022 were searched in Web of Science and PubMed databases. The results were computed using the STATA 12.0 statistical software. RESULTS: In plasma, PD patients exhibited elevated alpha-synuclein levels relative to healthy controls (HCs) [standard mean difference (SMD) = 0.78, 95% confidence interval (CI) = 0.42 to 1.15] with a sensitivity of 0.79 (95% CI: 0.64-0.89) and a specificity of 0.95 (95% CI: 0.90-0.98). Higher plasma alpha-synuclein levels were correlated with longer disease durations, higher Unified Parkinson's Disease Rating Scale motor scores, and higher Hoehn and Yahr stages in PD patients. Plasma neural-derived exosomal alpha-synuclein levels (SMD = 1.82, 95% CI = 0.30 to 3.35), ratio of plasma neural-derived exosomal alpha-synuclein to total alpha-synuclein (SMD = 1.26, 95% CI = 0.19 to 2.33), and erythrocytic alpha-synuclein levels were also increased in PD patients (SMD = 6.57, 95% CI = 3.55 to 9.58). In serum, there was no significant difference in alpha-synuclein levels between PD patients and HCs (SMD = 0.54, 95% CI = - 0.27 to 1.34). In saliva, reduced alpha-synuclein levels were observed in PD patients (SMD = - 0.85, 95% CI = - 1.67 to - 0.04). CONCLUSIONS: Alpha-synuclein levels in plasma, plasma neural-derived exosome, erythrocyte, and saliva may serve as potential biomarkers for the diagnosis of PD.


Subject(s)
Biomarkers , Parkinson Disease , alpha-Synuclein , Parkinson Disease/diagnosis , Parkinson Disease/blood , Parkinson Disease/metabolism , Humans , alpha-Synuclein/blood , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Biomarkers/blood , Body Fluids/metabolism , Body Fluids/chemistry , Saliva/metabolism , Saliva/chemistry
11.
J Neurovirol ; 30(1): 57-70, 2024 02.
Article in English | MEDLINE | ID: mdl-38167982

ABSTRACT

In recent years, we have seen the widespread devastations and serious health complications manifested by COVID-19 globally. Although we have effectively controlled the pandemic, uncertainties persist regarding its potential long-term effects, including prolonged neurological issues. To gain comprehensive insights, we conducted a meta-analysis of mass spectrometry-based proteomics data retrieved from different studies with a total of 538 COVID-19 patients and 523 healthy controls. The meta-analysis revealed that top-enriched pathways were associated with neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). Further analysis confirmed a direct correlation in the expression patterns of 24 proteins involved in Alzheimer's and 23 proteins in Parkinson's disease with COVID-19. Protein-protein interaction network and cluster analysis identified SNCA as a hub protein, a known biomarker for Parkinson's disease, in both AD and PD. To the best of our knowledge, this is the first meta-analysis study providing proteomic profiling evidence linking COVID-19 to neurological complications.


Subject(s)
Alzheimer Disease , Biomarkers , COVID-19 , Parkinson Disease , Protein Interaction Maps , Proteome , SARS-CoV-2 , COVID-19/blood , COVID-19/virology , COVID-19/metabolism , Humans , Parkinson Disease/virology , Parkinson Disease/blood , Parkinson Disease/metabolism , Parkinson Disease/genetics , Alzheimer Disease/blood , Alzheimer Disease/virology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Biomarkers/blood , Biomarkers/metabolism , alpha-Synuclein/blood , alpha-Synuclein/metabolism , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL